Environmental Soil and Water Chemistry

Download Environmental Soil and Water Chemistry

Post on 08-Nov-2014

325 views

Category:

Documents

11 download

Embed Size (px)

DESCRIPTION

ENVIRONMENTAL SOIL AND WATER CHEMISTRYPRINCIPLES AND APPLICATIONSV. P. EVANGELOU

TRANSCRIPT

V.

P.

EVANGELOU

SOIL andWATER

ENVIRONMENTAL SOIL AND WATER CHEMISTRY

ENVIRONMENTAL SOIL AND WATER CHEMISTRYPRINCIPLES AND APPLICATIONS

v. P. EVANGELOUUniversity of Kentucky Lexington, Kentucky

A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto

This book is printed on acid-free paper.

9

Copyright 1998 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. No part of this pUblication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 7504744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

Library of Congress Cataloging-in-Publication Data Evangelou, V. P.Environmental soil and water chemistry: principles and applications I Bill Evangelou. p. cm. Includes bibliographical references and index. ISBN 0-471-16515-8 (cloth: alk. paper) 1. Soil pollution. 2. Soil chemistry. 3. Water-Pollution. 4. Water chemistry. I. Title. TD878.E93 1998 628.5-dc21 98-13433

CIP

To my late brother, P. Evangelou, M.D., who taught me how to read and write. His gift is passed on! Thank you to my Wife Shelly, daughter Julia, and son Peter, with love

Do you feel the need to read because you understand or do you feel the need to understand and therefore you read?

ContentsPreface About the Author PRINCIPLES xvii xix

1

I

WATER CHEMISTRY AND MINERAL SOLUBILITY

3 3

1

Physical Chemistry of Water and Some of Its Constituents

1.1

Elements of Nature 3 1.1.1 Light Metals [Groups 1, 2, and Aluminum (AI)] 5 1.1.2 Heavy Metals (Transition Metals) 6 1.1.3 Nonmetals or Metalloids 6 1.2 Chemical Bonding 6 1.3 Review of Chemical Units 12 1.4 Basic Information About Water Chemistry 16 1.4.1 Physical States and Properties of Water 17 1.4.2 Effects of Temperature, Pressure, and Dissolved Salts 20 1.4.3 Hydration 21 1.5 Chemical Properties of Water 22 1.6 Bronsted-Lowry and Lewis Definitions of Acids and Bases 23 1.6.1 Weak Monoprotic Acids 24 1.6.2 Weak Polyprotic Acids 25 1.6.3 Titration Curve 27 1.6.4 Environmental Water Buffers 29 1.6.5 Open and Closed Systems 32 Acid-Base Chemistry Problems 34 Problems and Questions 42SolutionlMineral-Salt Chemistry

2

45

2.1

Introduction 45 2.1.1 Mineral Solubility 48 Single-Ion Activity Coefficient 51 2.1.2 2.1.3 Ion Pair or Complex Effects 53vii

viii Iteration Example 62 2.1.4 Role of Hydroxide on Metal Solubility 65 Special Note 71 2.1.5 Solubility Diagrams 78 2.2 Specific Conductance 80 Example 82 2.3 Acidity-Alkalinity 82 2.3.1 Alkalinity Speciation 83 2.3.2 Neutralization Potential 87 2.3.3 Alkalinity Contribution by CaC0 3 88 2.4 Chelates 91 Problems and Questions 98

CONTENTS

IT

SOIL MINERALS AND SURFACE CHEMICAL PROPERTIES 3 Soil Minerals and Their Surface Properties3.1 3.2 Composition and Structure of Soil Minerals 100 Aluminosilicate Minerals 102 Soil Mineral Terms and Definitions 116 3.3 Metal-Oxides 131 3.4 Soil Organic Matter 131 3.4.1 Humic Substances 135 3.4.2 Reaction Among Humic Substances, Clays, and Metals 137 3.4.3 Mechanisms of Complex Formation 140 3.5 Clay Mineral Surface Charge 141 3.5.1 Permanent Structural Charge 141 3.5.2 Variable Charge 146 3.5.3 Mixtures of Constant and Variably Charged Minerals 149 3.5.4 Relevant Soil Charge Components 150 3.6 Soil-Mineral Titrations 154 3.6.1 Conductimetric Titration 154 3.6.2 Potentiometric Titration 156 3.6.3 Soil Acidity 160 3.7 Soil and Soil Solution Components 163 3.8 Role of Soil-Minerals in Controlling Water Chemistry Problems and Questions 164

100 100

164

4 Sorption and Exchange Reactions4.1 4.2 Sorption Processes 167 4.1.1 Surface Functional Groups 169 Adsorption-Sorption Models 178 4.2.1 Freundlich Equilibrium Approach

167

179

CONTENTS

ix

4.2.2 Langmuir Equilibrium Approach 183 4.2.3 Surface Complexation Models 186 Adsorption on a Surface Fraction Basis 188 4.3 Exchange Reactions 191 4.3.1 Homovalent Cation Exchange 191 Relationship Between CRCa and ExCa 194 Nonpreference Homovalent Isotherms 196 4.3.2 Heterovalent Cation Exchange 196 Relationship Between SAR and ExNa 199 4.3.3 The Vanselow Equation 201 4.3.4 Relationship Between Kv and KG 205 4.3.5 Ion Preference 208 Nonpreference Heterovalent Isotherms 209 4.3.6 Adsorbed-Ion Activity Coefficients 210 Example on Adsorbed-Ion Activity Coefficients 211 4.3.7 Quantity-Intensity Relationships 213 QII Justification 215 4.3.8 Ternary Exchange Systems 216 4.3.9 Influence of Anions 219 4.3.10 Exchange Reversibility 221 4.3.11 Thermodynamic Relationships 223 Problems and Questions 225

ill

ELECTROCHEMISTRY AND KINETICS

229 229

5

Redox Chemistry 5.1 Redox 229 5.2 Redox-Driven Reactions 231 Some Thermodynamic Relationships 232 5.3 Redox Equilibria 234 5.3.1 Redox as Eh and the Standard Hydrogen Electrode (SHE) 235 5.3.2 Redox as pe and the Standard Hydrogen Electrode (SHE) 236 5.3.3 Redox as Eh in the Presence of Solid Phases 241 5.3.4 Redox as pe in the Presence of Solid Phases 243 5.4 Stability Diagrams 244 5.5 How Do You Measure Redox? 253 5.5.1 Redox in Soils 255 Problems and Questions 259 Pyrite Oxidation Chemistry 6.1 Introduction 260 6.2 Characterization 261

6

260

x

CONTENTS

6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10

Pyrite Oxidation Mechanisms 261 Bacterial Pyrite Oxidation 263 Electrochemistry and Galvanic Effects 264 Bacterial Oxidation of Fe2+ 265 Surface Mechanisms 265 Carbonate Role on Pyrite Oxidation 268 Mn- and Fe-Oxides 269 Prediction of Acid Drainage 269 6.10.1 Potential Acidity 269 6.10.2 Acid-BaseAccounting 270 6.10.3 Simulated Weathering 270 Problems and Questions 271272

7

Reaction Kinetics in Soil-Water Systems 7.1 Introduction 272 7.2 Rate Laws 274 7.2.1 First-Order Rate Law 274 7.2.2 Second-Order Rate Law 276 7.2.3 Zero-Order Rate Law 277 7.3 Application of Rate Laws 279 7.3.1 Pseudo First-Order Reactions 280 7.3.2 Reductive and Oxidative Dissolution 287 7.3.3 Oxidative Precipitation or Reductive Precipitation 291 7.3.4 Effect of Ionic Strength on Kinetics 294 7.3.5 Determining Reaction Rate Order 295 7.4 Other Kinetic Models 297 7.5 Enzyme-Catalyzed Reactions (Consecutive Reactions) 299 7.5.1 Noncompetitive Inhibition, Michaelis-Menten Steady State 299 Derivation of the Noncompetitive Equation 302 7.5.2 Competitive Inhibition 304 Derivation of Competitive Inhibition 306 7.5.3 Uncompetitive Inhibition 307 Derivation of Uncompetitive Inhibition 309 7.5.4 Competitive-Uncompetitive Inhibition 310 Competitive-Uncompetitive Inhibition 311 7.6 Factors Controlling Reaction Rates 313 7.6.1 Temperature Influence 313 7.6.2 Relationships Between Kinetics and Thermodynamics of Exchange 317 Problems and Questions 318

CONTENTS

xi

APPLICATIONS

321

IV

SOIL DYNAMICS AND AGRICULTURAI,-ORGANIC CHEMICALS 8

323

Organic Matter, Nitrogen, Phosphorus and Synthetic Organics 3238.1 8.2 Introduction 323 Decomposition of Organic Waste 323 8.2.1 Some General Properties of Soil Organic Matter (SOM) 325 8.2.2 Nitrogen Mineralization-Immobilization 326 8.2.3 Ammonia Reactions in Soil-Water Systems 329 8.2.4 NH3 Volatilization 330 An Equilibrium-Based Model for Predicting Potential Ammonia Volatilization from Soil 332 8.2.5 Nitrification 334 8.2.6 Denitrification 340 8.2.7 Eutrophication 341 8.3 Phosphorus in Soils 342 8.4 Sulfur in Soils. 344 8.5 Microbial Role in Soil Reactions 345 8.6 Synthetic Organic Chemicals 345 8.6.1 Names of Organic Compounds-Brief Review 345 8.6.2 Persistence of Organics in Soil-Water Systems 352 8.6.3 Adsorption-Sorption of Synthetic Organics . 355 Problems and Questions 362

v

COLLOIDS AND TRANSPORT PROCESSES IN SOILS 9 Soil Colloids and Water-Suspended Solids9.1 9.2 Introduction 364 Factors Affecting Colloid Behavior and Importance 9.2.1 Colloid Dispersion or Flocculation 367 9.2.2 Zeta Potential 373 9.2.3 Repulsive Index 374 9.3 Flocculation and Settling Rates 383 9.4 Flocculants 389 Problems and Questions 389 366

364 364

10

Water and Solute Transport Processes10.1 Water Mobility 391 10.2 Soil Dispersion-Saturated Hydraulic Conductivity 10.3 Solute Mobility 397 393

391

xii

CONTENTS

10.4 Miscible Displacement 398 Problems and Questions 405

11

The Chemistry and Management of Salt-Affected Soils and Brackish Waters 11.1 Introduction 407 11.1.1 Osmotic Effect 408 11.1.2 SpecificIon Effect 408 11.1.3 Physicochemical Effect 408 Derivation of the Empirical SAR-ESP Relationship 409 11.2 Salts and Sources 411 11.2.1 High Sodium 411 11.2.2 SAR and ESP Parameters 411 11.2.3 SAR-ESP Relationships 412 11.2.4 Adverse Effects ofNa+ in the Soil-Water Environment 414 11.2.5 Brine Chloride and Bromide 415 11.2.6 Heavy Metals 416 11.2.7 Boron 416 11.2.8 Alkalinity 416 11.3 Management of Brine Disposal 419 11.3.1 Reclamation of Salt-Affected Soils 420 11.3.2 Brine Evaluation Prior to Disposal 423 Problems and Questions 426

407

VI

LAND-DISTURBANCE POLLUTION AND ITS CONTROL 12 Acid Drainage Prevention and Heavy Metal Removal Technologies 12.1 Introduction 428 12.2 Mechanisms of Acid Drainage Control 429 12.2.1 Precipitation 429 12.2.2 Redox Potential 439 12.3 Acid Drainage Prevention Technologies 449 12.3.1 Alkaline Materials 449 12.3.2 Phosphate 451 12.3.3 Anoxic Limestone Drains 451 12.3.4 Hydrology 451 12.3.5 Microencapsulation Technologies 452 12.3.6 Organic Waste 452 12.3.7 Bactericides 452 12.3.8 Wetlands 454 12.3.9 Inundation 454

428

428

CONTENTS

xiii

12.4 Neutralization Technologies 456 12.4.1 Calcium Bases 456 12.4.2 Sodium and Potassium Bases 457 12.4.3 Ammonia 458 Problems and Questions 473

VII SOIL AND WATER: QUALITY AND TREATMENTTECHNOLOGmS13 Water Quality 13.1 Introduction 476 13.2 Aquatic Contaminants 483 13.3 Toxicity Indicators 484 13.4 Metals 484 13.5 Primary Contaminants 484 13.5.1 Arsenic 484 13.5.2 Barium 485 13.5.3 Aluminum 485 13.5.4 Cadmium 485 13.5.5 Chromium 486 13.5.6 Fluoride 486 13.5.7 Lead 486 13.5.8 Mercury 486 13.5.9 Nitrate 487 13.5.10 Selenium 487 13.5.11 Nickel 487 13.5.12 Silver 487 13.6 Secondary Contaminants 488 13.6.1 Copper 488 13.6.2 Iron 488 13.6.3 Zinc 488 13.6.4 Foaming Agents 488 13.6.5 Chloride 488 13.6.6 Color 489 13.6.7 Corrosivity 489 13.6.8 Hardness 489 13.6.9 Manganese 489 13.6.10 Odor 490 13.6.11 pH 490 13.6.12 Sodium 490 13.6.13 Sulfate 490 13.6.14 Taste 490 13.6.15 Total Dissolved Solids 491 13.7 Microbiological MCLs 491

476 476

xiv

CONTENTS

13.8 Maximum Contaminant Levels for Turbidity 491 13.9 Radioactivity (Radionuclides) 491 13.lOAmmonia 492 13.11 Industrial Organics 493 13.11.1 Benzene 493 13.11.2 Carbon Tetrachloride 493 13.11.3 Chlordane 493 13.11.4 Chlorobenzene 493 13.11.5 m-Dichlorobenzene, o-Dichlorobenzene, and p-Dichlorobenzene 493 13.11.6 1,2-Dichloroethane 493 13.11.7 1,I-Dichloroethylene and 1,2-Dichloroethylene 493 13.11.8 Methylene Chloride 494 13.11.9 Polychlorinated Biphenyls 494 13.11.10Tetrachloroethylene 494 13.11.11 Trichlorobenzene(s) 494 13.11.121,1,1-Trichlorethane 494 13.11.13 Trichloroethylene 494 13.11.14 Vinyl Chloride 494 13.11.15Xylene(s) 495 13.12 Pesticides 495 13.12.1 Endrin 495 13.12.2 Lindane 495 13.12.3 Methoxychlor 495 13.12.4 Toxaphene 495 13.12.5 2,4-D (2,4-Dichlorophenoxyacetic Acid) 496 13.12.6 2,4,5-TP (Silvex) 496 13.12.7 Trihalomethanes 496 13.13 Chelators 496 13.13.1 EDTA 496 13.13.2 NTA 497 13.13.3 DTPA 497 13.13.4 DMPS 497 13.13.5 Citrate 497 13.14Summary 497 Problems and Questions 49814 Soil and Water Decontamination Technologies 14.1 Introduction 499 14.2 Methods of Soil Treatment 499 14.2.1 High-Low Temperature Treatment 500 14.2.2 Radio Frequency Heating 500 14.2.3 Steam Stripping 500 14.2.4 Vacuum Extraction 500 14.2.5 Aeration 501 499

CONTENTS

xv

14.2.6 Bioremediation 501 14.2.7 Soil Flushing or Washing 502 14.3 In Situ Technologies 502 14.3.1 Surfactant Enhancements 502 14.3.2 Cosolvents 502 14.3.3 Electrokinetics 503 14.3.4 Hydraulic and Pneumatic Fracturing 503 14.3.5 Treatment Walls 505 14.4 Supercritical Water Oxidation 507 14.5 Public Community Water Systems 507 14.5.1 Some General Information on Water Testing 509 14.5.2 Microbiological Maximum Contaminant Levels 510 14.5.3 Activated Carbon Filtration 510 145.4 Air Stripping 510 14.5.5' Disinfection 511 14.5.6 Distillation 512 14.5.7 Ion Exchange 512 14.5.8 Mechanical Filtration 513 14.5.9 Reverse Osmosis 513 14.6 Bottled Water 513 Problems and Questions 515Appendix 517

SUGGESTED AND CITED REFERENCESIndex

520557

PrefaceFor the past 18 years I have been involved in educating undergraduate and graduate students in the field of soil-water chemistry. Early in my teaching/research career, students in the college of agriculture in the field of soils had primarily a farming background. With the passing of time, however, the number of such students declined dramatically and most universities and colleges across the country established environmental science units in some form or another. Some of these units represented the reorganization of soil science departments, forestry departments, and so on; others represented independent environmental or natural resources departments. Similar reorganization took place or is currently taking place in geology and engineering schools. This field reorganization created a need for new textbooks with an emphasis on examining soil and water as natural resources. In my view, we have not succeeded in introducing an appropriate textbook on the subject of soil and water chemistry to cover the needs of this new type of student. This book is designed to serve as a beginning textbook for college seniors and beginning graduate students in environmental sciences, and is tailored specifically to the disciplines of soil science, environmental science, agricultural engineering, environmental engineering, and environmental geology. The textbook contains reviews of all the necessary fundamental principles of chemistry required for understanding soil-water chemistry and quality and soil-water treatments of chemically polluted soils and waters, for example, heavy-metal contaminated soil-water, acid drainage, and restoration of sodic soils and brackish waters. The purpose of the book is to educate college seniors and beginning graduate students about the toxicity, chemistry, and control of pollutants in the soil-water environment and about the application of such knowledge to environmental restoratio...

Recommended

View more >