environmental life cycle assessment first life and second ...environmental life cycle assessment...

23
Towards competitive European batteries GC.NMP.2013-1 Grant. 608936 2020 1 Environmental Life Cycle Assessment First Life and Second Life Analysis External Workshop Brussels, 23 rd of May 2016 GC.NMP.2013-1 Grant. 608936 2020 Luis Miguel Oliveira - VUB

Upload: others

Post on 29-Dec-2019

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Towards competitive European batteries

    GC.NMP.2013-1 Grant. 608936

    2020

    1

    Environmental Life Cycle

    Assessment – First Life and Second Life Analysis

    External WorkshopBrussels, 23rd of May 2016

    GC.NMP.2013-1 Grant. 608936

    2020

    Luis Miguel Oliveira - VUB

  • CONTENTS

    • Environmental assessment of project developed cells

    • Manufacturing

    • Use stage in EV

    • Second Life

    • End-of-Life/Recycling

    Task description:

    • System Boundaries and Assumptions

    • Functional Units Choice/Description

    • Life Cycle Inventory

    • Results

    • Discussion and Conclusions

    Highlights:

  • 3

    System Boundaries and AssumptionsM

    anu

    fact

    uri

    ng

    & A

    sse

    mb

    ly

    Stag

    e

    Raw materials Refining and production

    Distribution

    Energy

    Raw materials Production of components

    Assembly and

    distribiution

    Battery pack/cellsU

    se S

    tage

    2n

    dLi

    fe

    Recycling

  • functional unit is a quantified description of the performance of the product systems, for use as a reference unit.

    Bo Weidema, 2004

    Define and quantify the functional unit, in terms of the obligatory product properties required by the market segment.

    What about when we analyze two market segments? EV use and PV backup? Km driven?

    Back to the product’s physical specifities

    1 kWh of delivered energy

    4

    Functional Unit – How to select adequately

    Functional Unit:1 kWh of Energy

    Delivered

  • 5

    Life Cycle Inventory – Battery Structure and Value Chain

    Electrolyte

    Separator

    Positive

    Electrode

    Substrate

    Negative

    Electrode

    Substrate

    Cell

    Container

    Battery

    Management

    System

    Packaging

    Battery at

    Factory Gate

    Positive

    Electrode

    Paste

    Negative

    Electrode

    Paste

    Second Life

    IntegrationVehicle

    Integration

    End-of-Life,

    Recycling

    and Disposal

  • Assumptions:

    - Vehicle battery pack level

    - Pack efficiency of 95%

    - Electrical efficiency at cell level 96,5%

    - 97 cells, 364V at pack level

    - Total pack capacity ~24 kWh

    - Energy consumption 186 Wh/km (real world)

    - 150.000 km (over 10 years)

    - 120 km range +/-10 km

    6

    Life Cycle Inventory & BOM

    Battery/Cell Elements Mass Percentage

    Positive electrode paste 23,2 %

    Negative electrode paste 9,4 %

    Separator 3,3 %

    Substrate, positive electrode 3,6 %

    Substrate, negative electrode 8,3 %

    Electrolyte 12 %

    Cell container, tab and terminals 20,1 %

    Module and battery packaging 17 %

    Battery management system (BMS) 3 %

    Benchmark “G1” Gen 2

    NMC 4:4:2 NMC 6:2:2

    174 Wh/kg 174 Wh/kg*

  • Manufacturing Impact Assessment Results Overview

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

    Climate change Human toxicity Photochemical oxidant formation

    Metal depletion Fossil depletion

    Re

    lati

    ve C

    on

    trib

    uti

    on

    Impact Category

    Transport, assembly energy and infrastructure

    (BMS)

    Module and Battery Packaging

    Cell container, tab and terminals

    Separator

    Electrolyte

    Negative electrode substrate

    Positive electrode substrate

    Negative electrode paste

    Positive electrode paste

    7

  • 8

    Impact Assessment – Manufacturing Stage

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    0,03

    0,035

    0,04

    0,045

    0,05

    G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

    Positive electrode paste

    Negative electrode paste

    Positive electrode substrate

    Negative electrode substrate

    Electrolyte Separator Cell container, tab and

    terminals

    Module and Battery

    Packaging

    (BMS) Transport, assembly

    energy and infrastructure

    kg C

    O2

    Eq

    . / k

    Wh

    Climate change Contributions per kWh deliveredManufacturing of G1 and G2 Cells, Battery pack level

  • 9

    Impact Assessment – Manufacturing Stage

    0

    0,00002

    0,00004

    0,00006

    0,00008

    0,0001

    0,00012

    0,00014

    0,00016

    G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

    Positive electrode paste

    Negative electrode paste

    Positive electrode substrate

    Negative electrode substrate

    Electrolyte Separator Cell container, tab and

    terminals

    Module and Battery

    Packaging

    (BMS) Transport, assembly

    energy and infrastructure

    kg N

    MV

    OC

    / k

    Wh

    Photochemical Oxidant Form. Contributions per kWh deliveredManufacturing of G1 and G2 Cells, Battery pack level

  • 10

    Impact Assessment – Manufacturing Stage

    0

    0,02

    0,04

    0,06

    0,08

    0,1

    0,12

    0,14

    G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

    Positive electrode paste

    Negative electrode paste

    Positive electrode substrate

    Negative electrode substrate

    Electrolyte Separator Cell container, tab and

    terminals

    Module and Battery

    Packaging

    (BMS) Transport, assembly

    energy and infrastructure

    Kg

    1,4

    DB

    eq

    ./ k

    Wh

    Human Toxicity Contributions per kWh deliveredManufacturing of G1 and G2 Cells, Battery pack level

  • 11

    Impact Assessment – Manufacturing Stage

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    0,03

    0,035

    G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

    Positive electrode paste

    Negative electrode paste

    Positive electrode substrate

    Negative electrode substrate

    Electrolyte Separator Cell container, tab and

    terminals

    Module and Battery

    Packaging

    (BMS) Transport, assembly

    energy and infrastructure

    Kg

    Fe E

    q /

    kW

    h

    Metal Resource Depletion Contributions per kWh deliveredManufacturing of G1 and G2 Cells, Battery pack level

  • 12

    Impact Assessment – Manufacturing Stage

    0

    0,001

    0,002

    0,003

    0,004

    0,005

    0,006

    0,007

    G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

    Positive electrode paste

    Negative electrode paste

    Positive electrode substrate

    Negative electrode substrate

    Electrolyte Separator Cell container, tab and

    terminals

    Module and Battery

    Packaging

    (BMS) Transport, assembly

    energy and infrastructure

    Kg

    Oil

    Eq /

    kW

    h

    Fossil Resource Depletion Contributions per kWh deliveredManufacturing of G1 and G2 Cells, Battery pack level

  • 13

    First and Second Life – Use Stage

    First Life, Multiple EU Countries

    0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

    Climate change

    Human toxicity

    Photochemical oxi. formation

    Metal depletion

    Fossil depletion

    Relative Contributions to Impact Categories, per Country

    Belgium Italy Germany Denmark Spain

    Kg CO2 Eq. /kWh

    Kg 1,4 DB Eq. /kWh

    Kg NMVOC / kWh

    Kg Fe Eq. / kWh

    Kg Oil Eq. / kWh

  • 14

    Second Life – Use Stage

    http://www.aladdinsolar.com/pvsystems.html

  • 15

    Second Life – Use Stage

    ES

    DEBE

    IT

    DK

    EC: Joint Research Center, PVGIS DB

  • 16

    Second Life – Use Stage

    EC: Joint Research Center – PVGIS Database

    650 kWh/m2 ≠

  • 17

    First and Second Life Comparative results Use Stage

    0,00

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    0,70

    0,80

    First Life Second Life First Life Second Life First Life Second Life First Life Second Life First Life Second Life

    Belgium Italy Germany Denmark Spain

    Kg

    CO

    2 e

    q /

    kWh

    Use Stage - First and Second Life Climate Change Impacts

    0,00

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    First Life Second Life First Life Second Life First Life Second Life First Life Second Life First Life Second Life

    Belgium Italy Germany Denmark Spain

    Kg1

    ,4 D

    B e

    q /

    kWh

    Use Stage - First and Second Life Human Toxicity Impacts

  • 18

    End of Life – Pyro metallurgical Processing

    Recycling through pyro metallurgy is driven by present market value of recovered materials.Not environmentally driven.

    The main recovered materials from Lithium-ion NMC batteries are:

    SteelCobaltAluminumManganese oxideCopperNickelOthers…

    Umicore. N.d.

  • 19

    End of Life Results – Pyrometallurgicalrecycling

    -0,016 -0,0155 -0,015 -0,0145 -0,014 -0,0135 -0,013 -0,0125

    G1

    G2

    Rec

    yclin

    g P

    yro

    Met

    allu

    rgic

    kg CO2 Eq. \ kWh

    Recycling EOL - CLimate Change Impacts - Pyro Metallurgic Process

    0,0316 0,0318 0,032 0,0322 0,0324 0,0326 0,0328 0,033 0,0332 0,0334

    G1

    G2

    Rec

    yclin

    g P

    yro

    Met

    allu

    rgic

    kg 1,4 DB eq. \ kWh

    Recycling EOL – Human Toxicity- Pyro Metallurgic Process

  • 20

    End of Life Results – Pyrometallurgicalrecycling

    -0,00012 -0,0001 -0,00008 -0,00006 -0,00004 -0,00002 0

    G1

    G2

    Rec

    yclin

    g P

    yro

    Met

    allu

    rgic

    kg NMVOC / kWh

    Recycling EOL – Photochemical Oxidant Formation Impacts

    -0,0182 -0,0181 -0,018 -0,0179 -0,0178 -0,0177 -0,0176 -0,0175 -0,0174

    G1

    G2

    Rec

    yclin

    g P

    yro

    Met

    allu

    rgic

    Kg F2 Eq. /kWh

    Recycling EOL – Metal Depletion Impacts

  • Dominated mostly by the anode material processing, all impact categories;

    BMS has significance regarding Human Toxicity – Mining operations for precious metals;

    The electricity mix production portfolio determines the extent of the impacts;

    Might not be the best “use” for some Li based battery systems;

    Neighborhood applications need less battery manipulation (capacity matches application);

    Repurposing impacts not accounted;

    Recycling is driven by market prices. Still manages to mitigate impacts on all impact categories but human toxicity. Relevance to the role playing in resource security. Lithium not recovered (yet).

    Manufacturing

    Use Stage

    Second Life

    Recycling/EOL

    21

    Conclusions

  • Promote transmaterialization of selective components seen as “traditional”;

    Promote further more second life application scenarios through robust business models while having small/reduced environmental burdens;

    Increased Energy Density tends to dilute environmental impacts;

    Assess the potential for hybrid electricity storage systems through the use of different cell types for added demand response flexibility;

    Reduce the energy intensiveness of the manufacturing processes?

    22

    Suggestions

  • 23

    The End

    [email protected]

    http://mobi.vub.ac.be/