Environmental (Ecological) Risk Assessment for ?· Environmental (Ecological) Risk Assessment for Nanomaterials…

Download Environmental (Ecological) Risk Assessment for ?· Environmental (Ecological) Risk Assessment for Nanomaterials…

Post on 01-Sep-2018




0 download

Embed Size (px)


<ul><li><p>Environmental (Ecological) Risk Assessment for Nanomaterials </p><p> Dana Khnel (UFZ) </p><p>David Rickerby (JRC) </p><p>Summer School, Tallin, </p><p>16.-17.6.2014 </p></li><li><p>Agenda </p><p>1. Fundamentals of ERA </p><p>2. Release of NM </p><p>3. Fate &amp; Exposure of NM </p><p>4. Ecotoxicity / Hazard </p><p>5. Risk management </p><p>6. Regulation (REACh and Co.) </p><p>7. Nano-specific RA tools </p></li><li><p>Perspectives of ERA </p></li><li><p>Fundamental principles of RA </p><p>EFFECT EXPOSURE H</p><p>A</p><p>Z</p><p>A</p><p>R</p><p>D</p><p>RISK </p><p> Release </p><p> Distribution </p><p> Fate </p><p> Degradation </p><p> Bioavailability </p><p> Dose </p><p> Organisms (Algae, </p><p>fish, water flea) </p><p> Endpoints (growth, </p><p>survival, mobility, </p><p>reproduction,) </p><p> Probability </p><p> Protection/Management </p><p> Cost-benefit </p></li><li><p>Fundamental principles of RA </p><p>Key steps in risk assessment: </p><p>1. Problem formulation </p><p>2. Hazard identification </p><p>3. Release assessment </p><p>4. Exposure assessment </p><p>5. Risk estimation </p></li><li><p>Ecological Risk Assessment </p><p>PEC: predicted environmental concentration </p><p>PNEC: predicted no effect concentration </p><p>Exposure assessment PEC </p><p>Effect assessment NOEC PNEC </p><p>(representative species) </p><p>Assessment factors </p><p>NOEC PNEC </p><p>Risk evaluation </p><p>PEC vs. PNEC </p><p>PEC/PNEC &gt; 1 </p><p>Possible risk </p><p>PEC/PNEC &lt; 1 </p><p>No risk </p><p>PEC </p><p>Exposure assessment PEC </p></li><li><p>From ENM to an effect </p><p>ENM </p><p>Release </p><p>Transport Transformation </p><p>Exposure </p><p>Dose </p><p>Effect Toxicology Effect? </p></li><li><p>Risk of Release and Distribution Routes </p><p>8 </p><p>Need to understand the relationship between the local emission routes and the distribution processes for different environmental compartments </p><p>Specific fate and distribution models are applicable for individual compartments </p></li><li><p> production </p><p> transport </p><p> storage </p><p> distribution </p><p> use phase </p><p> final disposal </p><p>Releases into the environment can take place from processes at any stage of the life cycle: </p><p>Technical Guidance Document on Risk Assessment, European Chemical Bureau, 2003 </p><p>Potential Life Cycle Scenarios </p></li><li><p>Page 10 </p><p>Indium tin oxide (ITO) </p><p>Lacquer and plastics additive </p><p>Touch screens </p><p>2.0 </p><p>TiO2 </p><p>Textiles </p><p>Skin care, sun screen </p><p>Anti-fogging agents </p><p>Cobblestones </p><p>Facade and wall colour </p><p>Film </p><p>Photovoltaic cell </p><p>Silver </p><p>Textiles </p><p>Wound dressings </p><p>Free Embedded </p><p>Release of nanomaterials </p></li><li><p>Pathways for Release into the Environment </p><p>11 </p><p>Release may occur during production, transport, storage, distribution, use and final disposal </p><p>S. Friedrichs and J. Schulte, Sci. Technol. Adv. Mater. 8 (2007) 12-18 </p></li><li><p> From textiles equipped with Ag for antibacterial purposes </p><p> Release of nAg or ions? </p><p>Benn et al. (2008) ES&amp;T 42, 41334139. </p><p>Example I: Washing off of nAG </p></li><li><p>Example II: nTiO2 in facade paint </p><p> Release during weathering </p><p> Modified NM reach the environment: paint matrix </p><p> Environmental exposure not to as-produced NM </p><p>Kaegi et al. (2008) Environmental Pollution 156 (2): 233-239 </p></li><li><p>From Release to Exposure Environmental Fate Modelling </p><p>The models calculate concentrations in environmental media and the mass fluxes of the substance between these media </p><p>Need to identify properties of nanomaterials that govern distribution processes to derive input parameters for the models </p><p>M. Scheringer, Nature Nanotechnol. 3 (2008) 322-323 </p></li><li><p> Physical-chemial characteristics of NM will determine their fate (in which compartments an accumulation of NM is observed) </p><p> transport, distribution, accumulation, transformation processes for NM in the different compartments (soil, sediments, surface water, ground water) need to be further studied </p><p> The physical-chemical characteristics differ from that of chemicals and hence the parameters of the models need to be adopted, e.g. log Kow </p><p> Several test guidelines are used to study these processes suitable for NM </p><p>From Release to Exposure Environmental Fate Modelling </p></li><li><p>Sanchis et al. (2012) ES&amp;T 46, 1335-1343. </p><p> Fulleres (C60 and C70) were detected in the Mediterranean atmosphere (ng/m3) </p><p> Occurence can be related to industrial activity, but the release/emission path is unclear </p><p> Probably side products of combustion processes, unintentially produced NM? </p><p>Example : Occurence of fullerens </p></li><li><p>Predicted Environmental Concentrations </p><p>Predictions are based on: </p><p>- production volumes </p><p>- categories of products containing nanomaterials </p><p>- paths of particle release Mueller and Nowack (2008) Environ. Sci. Technol. 42: 4447-4453. </p><p>Sun TY et al. (2014) Environ Pollut 185, 69-76. </p><p>NM Soil Sludge treated soil </p><p>Surface water </p><p>STP effluent </p><p>STP sludge </p><p>sediment air Year </p><p>Nano-TiO2 1.28 89.2 0.015 3.47 136 358 2008 </p><p>0.13 1200 0.53 16 170 1.9 0.001 2014 </p><p>Nano-ZnO 0.093 3.25 0.010 0.432 17.1 2.90 2008 </p><p>0.01 0.01 0.09 2.3 24 0.32 </p></li><li><p>Predicted Environmental Concentrations </p><p>Sun TY et al. (2014) Environ Pollut 185, 69-76. </p><p>Modelled </p><p>concentration NM </p><p>Modelled concentration </p><p>pigments </p><p>Measured </p><p>concentration </p><p>conventional </p><p>material </p></li><li><p>Fate and transformation </p><p> Little knowledge on transformation and degradation of NM </p><p> e.g. dissolution processes / degradation of arganic coating </p><p> Sorption of organic materials present in the environment will influence fate </p></li><li><p>Exposure </p><p> Unsufficient measurement techniques for complex environmental media (especially for water and soil) </p><p> the parameters of importance for the environmental behaviour of NM are not clear yet (e.g. surface modifications are not considered) </p></li><li><p>Ecological Risk Assessment </p><p>PEC: predicted environmental concentration </p><p>PNEC: predicted no effect concentration </p><p>Exposure assessment PEC </p><p>Effect assessment NOEC PNEC </p><p>(representative species) </p><p>Assessment factors </p><p>NOEC PNEC </p><p>Risk evaluation </p><p>PEC vs. PNEC </p><p>PEC/PNEC &gt; 1 </p><p>Possible risk </p><p>PEC/PNEC &lt; 1 </p><p>No risk </p><p>PEC </p><p>Effect assessment NOEC PNEC </p><p>(representative species) </p></li><li><p>Ecotoxicity Testing </p><p> Representative species (for the different compartments) </p><p> According to test guidelines (OECD, ISO) </p><p> Dose-response relationships ( NOEL) </p></li><li><p> High variation in LC50 </p><p> Different types of NM </p><p>and test protocols </p><p> Likewise observed for </p><p>the nAg we worked </p><p>with in NanoValid </p><p>Beispiel aus Supplement: Poynton et al. (2012). ES &amp; T 46, 6288-6296. </p><p>Ranges of toxicity nAg in Daphnia magna </p></li><li><p>Ranges of toxicity CNT Aquatic toxicity classification </p><p>mg/L </p><p>Not toxic &gt; 100 </p><p>Harmful 10-100 </p><p>Toxic 1-10 </p><p>Very toxic 0.1-1 </p><p>Extremely toxic &lt; 0.1 </p></li><li><p>Comparison of CNT studies </p><p>154 studies in total </p><p>78 11 58 </p></li><li><p>Interferences with test systems </p><p> shading (relevant for autotrophic organisms) </p><p>Schwab et al. (2011) ES&amp;T, 45, 61366144. </p></li><li><p>Interferences with test systems </p><p> Binding of components in the test media (e.g. fluorescent dyes) </p><p>Wrle-Knirsch et al, NANO LETTERS, 2006 6(6):1261-1268 </p><p>CNT </p><p>MTT WST-1 </p><p>control </p><p>As prepared </p><p>purified </p></li><li><p>Uncertainties in the Risk Assessment for Nanomaterials </p><p>Quantitative risk assessment depends on exposure limits based on dose-response relationships and the quantitative evaluation of the exposure </p><p>For nanomaterials neither the hazards or the exposure can be quantified </p><p>This leads to major uncertainties and a need for nanospecific risk assessment </p><p>C. Ostiguy et al. J. Phys. Conf. Series 151 (2009) 012037 </p></li><li><p>Towards the improvement of RA procedures </p><p> Are the guidelines, developed for traditional chemicals suitable for the testing of NM? </p><p> Specific NM properties not considered, e.g. agglomeration, sorption </p><p> Amendments necessary? </p><p> OECD-Working Party on Manufactured Nanomaterials (WPMN), expert meetings </p><p>D. Khnel &amp; C. Nickel (2014) Science of The Total Environment, 472, 347353. </p></li><li><p>Scope of the expert meeting </p><p> Discuss suitability of TGs relevant to ecotoxicity and environmental fate testing of NM, compartments water and soil &amp; sediment </p><p> Provide recommendations to WPMN on (1) the need for updating TGs or developing new ones, and (2) guidance needed for NM </p><p> Ecotoxicology Fate &amp; Behaviour </p><p>Aquatic tests </p><p>TG 201 (Freshwater Alga and Cyanobacteria, Growth Inhibition Test) TG 202 (Daphnia sp. Acute Immobilisation Test) TG 211 (Daphnia magna Reproduction Test) TG 225 (Sediment-Water Lumbriculus Toxicity Test Using Spiked Sediment) </p><p>TG 105 (Water solubility) TG 305 (Bioconcentration: Flow-through Fish Test ) (additionally discussed: GD 24 and biodegradation tests in general) </p><p>Soil &amp; sediment tests </p><p>TG 222 (Earthworm Reproduction Test (Eisenia fetida/Eisenia andrei)) TG 225 (Sediment-Water Lumbriculus Toxicity Test Using Spiked Sediment) </p><p>TG 106 (Adsorption) TG 312 (Leaching in Soil Columns) TG 315 (Bioaccumulation in Sediment-dwelling Benthic Oligochates) TG 317 (Bioaccumulation in Terrestrial Oligochaetes) </p></li><li><p>Testing steps to consider </p><p> Dispersion of NM in water or media (e.g. enery input) </p><p> Application of NM to the test </p><p> Physical-chemical characterisation before, during and after the test </p><p> NM behaviour during the tests (e.g. sedimentation), test duration </p><p> Interactions with organisms, media components </p><p> Detection of NM in organisms or environmental matrices </p><p> High variations in existing protocols for the different NM </p><p> Many analytical limitations (e.g. NM charact. in soils) </p><p>D. Khnel &amp; C. Nickel (2014) Science of The Total Environment, 472, 347353. </p></li><li><p>Expert recommendations </p><p> The majority of TGs was considered as generally applicable to NMs </p><p> Suggestions for nano-specific amendments: application of NM to the test, behaviour of NM during the test, data analysis, selection of test media </p><p> For several guidelines, critical points were identified, where current knowledge does not justify a recommendation, but which need future clarification </p><p> The development of new TGs suggested </p></li><li><p>Data gaps and research needs </p><p> Physical-chemical characterisation of NM was considered essential for all subsequent steps of testing </p><p> Many data gaps are due to inappropriate methods for NM </p><p> Chronic tests </p></li><li><p>Page 34 </p><p>LEGISLATION OF NM </p><p> Few regulations specifically apply to NM: </p><p> For chemicals, extensive testing before application is mandatory </p><p> The size of a material alone is so far no basis for RA </p><p> Hence, no specific procedures for NM are compulsory (with the exception of the Biocidal Products Directive 98/8/EEC) </p></li><li><p>REACh (Industrial chemicals) </p><p> no explicit regulation for `nano-size, the need for adoptation of the legislation is under debate </p><p> REACH implementation Project on Nanomaterials (RIPoN) </p><p> `Principle of Similarity` (Use of data derived with similar substances, e.g. bulk material possible) </p><p>LEGISLATION OF NM </p></li><li><p>REACh (Industrial chemicals) </p><p> Amendments in Exposure assessment </p><p>Legislation </p><p>Meesters et al. 2013 Integr Environ Assess Manag 9(3): e15-e26 </p></li><li><p>REACh (Industrial chemicals) </p><p> lower tonnage thresholds for different REACH obligations </p><p> Adaptation of REACh requirements and test performance to different physico-chemical characteristics of different nanoforms of the same substance </p><p>Schwirn et al. Environmental Sciences Europe 2014, 26:4 </p><p>LEGISLATION OF NM </p></li><li><p> EU-Biocidal Products Regulations (came into force by 1. Sep. 2013) </p><p> considers `nano, NM in biocidal products need to under go a special assessment </p><p> More strict demands for approval / permission, labelling required http://echa.europa.eu/regulations/biocidal-products-regulation/understanding-bpr </p><p>http://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/datenblatt_nanoprdukte_textilien_0.pdf </p><p>Labelling in cosmetic products in EU mandatory </p><p>LEGISLATION OF NM </p><p>http://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/datenblatt_nanoprdukte_textilien_0.pdfhttp://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/datenblatt_nanoprdukte_textilien_0.pdf</p></li><li><p>Nano-specific strategies and tools </p><p> Nano Risk Framework </p><p> Precautionary Matrix for Synthetic Nanomaterials (Vorsorgeraster) </p><p> Risk Assessment of Manufactured Nanomaterials </p><p> NanoCommission Assessment Tool </p><p> Precautionary Strategies for Managing Nanomaterials </p><p> SafeNano </p><p> Cenarios </p><p> Work Health &amp; Safety Assessment Tool for Handling Engineered Nanomaterials </p><p> Stoffenmanager Nano </p><p> NanoSafer </p><p> ANSES </p><p>Grieger et al. 2012 Nanotox. 6(2): 196-212. </p></li><li><p> Not implemented in legislation and hence not regulatory binding </p><p> Preliminary assessments, e.g. to deduce occupational safety measures (Aim: Precaution!) </p><p> Many uncertainties (release, exposure, persitence, transport, transformation, ecotoxicology), as these processes are poorly understood for NM </p><p>Nano-specific strategies and tools </p></li><li><p>Nano-specific RA-tools Example 1: Nano Risk Framework </p><p>Traditional risk-assessment paradigm similar to that used by the US EPA </p><p>Complicated to apply - requires data on physical-chemical properties, hazards, exposures, ecotoxicity, and environmental fate </p><p>http://www.nanoriskframework.com </p></li><li><p> Enables assessment of the need for nanospecific precautionary measures and identification of potential risks in production, use and disposal </p><p> Simpler to apply provides an early warning capability enabling the risk potential to be classified to determine what action is appropriate </p><p>http://www.bag.admin.ch/themen/chemikalien/00228/00510/05626 </p><p>Nano-specific RA-tools Example 2: Swiss Precautionary Matrix </p></li><li><p>Risk assessment NM? </p><p>exposure assessment </p><p> Release depends of NM application </p><p> No data on environmental concentrations </p><p> Predicted values </p><p> Development of methods suitable for NM </p><p>hazard assessment </p><p> Several studies, high variance </p><p> Uncertainties </p><p> Amendments in methodology necessary </p></li><li><p>Wrap up: risk assessment nanomaterials? </p><p> Currently low environmental concentrations of NM </p><p> Predicted concentrations below effect concentrations determined in lab experiments </p><p>But: high uncertainties </p><p>Research needs in many areas Release and exposure data for NM </p><p> Nanospecific amendments in test protocols for toxicology </p><p> Adaptation of models (release, QSAR, LCA) </p><p>Amendments in laws &amp; regulations necessary </p></li><li><p>References / Further Reading </p><p> Technical Guidance Document on Risk Assessment (European Chemical Bureau, 2003) </p><p> http://reports.eea.europa.eu/GH-07-97-595-EN-C2/en/riskindex.html </p><p> C. Ostiguy et al. J. Phys. Conf. Series 151 (2009) 012037 </p><p> S. Friedrichs and J. Schulte, Sci. Technol. Adv. Mater. 8 (2007) 12-18 </p><p> M. Scheringer, Nature Nanotechnol. 3 (2008) 322-323 </p><p> Technical Guidance Document on Risk Assessment, European Chemical Bureau, 2003 </p><p> http://www.oecd.org/department/0,3355,en_2649_34373_1_1_1_1_1,00.html </p><p> http://www.nanoriskframework.com </p></li><li><p>Page 46 </p><p>Thank you for your attention! Questions? </p></li><li><p>http://www.oecd.org/department/0,3355,en_2649_34373_1_1_1_1_1,00.html </p><p>International Test Guidelines on </p><p>physical-chemical properties, </p><p>ecotoxicity, environmental fate, </p><p>human health effects developed </p><p>by the OECD </p><p>Environmental Risk Management </p></li></ul>


View more >