electric power supply for a large chemical plant

7
Electric Power Supply for a Larse Chemical Plant A . C. FRIEL MEMBER AIEE T HE a-c electric power generation and distribution system of the Dow Chem- ical Company at Midland, Mich., may be of interest to power engineers for two reasons. First, it represents the ex- perience of a plant wide a-c system that has grown from small beginnings in a period of 23 years and has encountered and solved the problems that go with rapid growth. Second, being a chemi- cal plant, many special problems peculiar to the chemical industry were solved in the process, yielding techniques that may be of interest to others in the chemical and petroleum industry. Generation System Generation at the Midland plant today is provided by several generating units. These are supplemented by a connection with Consumers Power Company, the whole scheme being a miniature of a pubHc utiHty system. Growth of this system is shown by Figin-e 1. In 1927, the first major a-c units, a pair of 6,250 kva machines, served a 125-acre plant at 2,400 volts. The longest feeder was about 3,600 feet. In 1930, the next unit went into opera- tion with a 10,000-kva rating. This new unit was for 13,800 volts. At this time the electric system served a plant area of about 230 acres. The longest 2,400-volt feeder was now 6,200 feet. Additional units were added as plant requirements for steam and electric energy grew until in 1948 the load was over six times what it was in 1927. The South Power House went into operation in 1950 with a 37,500-kva unit. A duplicate unit is now on order. The present plant covers approximately 630 J. P. SMITH MEMBER AIEE acres and through the use of a system of substation distribution, the length of the longest 2,400-volt feeder was reduced to 3,000 feet. Note that in 23 years, plant area increased five times, but the genera- tion kilovolt-amperes increased over eight times. Two outlying 5,000-kva units complete the present picture of the Dow generating system, these two being located by reason of steam requirements. The Consumers Power Company sup- plies power required above our generating capacity which at present is a relatively small portion of the total. These power sources add up to a total installed capacity for the system of over 150,000 kva. With the next unit at South Power House this will grow to al- most 200,000 kva. Machines Number 6 a n d 14 are each grounded through a 5V3 -ohm resistor and machine Number 15 through a 4-ohm re- sistor. These resistors will keep ground fault current down to 5,000 amperes, sufficient for rapid relay tripping but in- sufficient to cause excessive burning of machine laminations. Steam-Electric Balance With Dow, as presumably it is with most industrials who generate electric power, the process steam demand governs the amount of electric power which is generated. The steam is generated at a higher pressiu-e and temperature than the process requires and is then run through turbines on its way to the process steam loads. Electric power is thereby stripped out of this steam by the turbogenerators. It has been found that where a demand for substantial quantities of process steam and electric power exist within the same plant or within relatively close proximity of each other, this method of operation re- sults in reduced total cost of steam plus electric power. Electric power generated in an indus- trial plant in this manner is a by-product of process steam use and accordingly the quantity of power generated is governed by the amount of process steam used. This method of electric power genera- tion contrasts with the usual pubhc utility power generation wherein the elec- tric power is the end product and the steam, after having gone through the tur- bines, then goes to condensers where 55 to 60 per cent of the energy supplied by the fuel is lost. Consideration of these facts makes it apparent that it is desirable under the conditions outlined to maintain as close a balance as possible between steam de- mands and electric power demands in order to keep requirements for the more expensive purchased power as low as pos- sible. Figure 1 also shows the growth of elec- trical load against steam load. The elec- trical load has developed faster than the steam load and as a result the steam gen- eration temperatures and pressures have been increased and the distribution pres- stu-es to process have been reduced to the lowest possible in order to get more elec- tric power out of the steam required by our processes. In spite of considerable effort to increase process steam demand versus power use, purchased power is still required, which is often referred to as con- densing power at Dow. Recent studies indicate that Dow could probably make its own condensing power for nearly the same cost as purchased power, but a chemical manufacturer finds it more profitable to invest capital in new process equipment rather than in power-generat- ing equipment on that basis. Paper 52-80, recommended by the AIEE Industrial Power. Systems Committee and approved by the AIEE Technical Program Committee for presenta- tion at the AIEE Winter General Meeting, New York, N. Y., January 21-25, 1952. Manuscript submitted October 22, 1951; made available for printing December 18, 1951. A. C. FRIEL is with the Dow Chemical Company, Midland, Mich., and J. P. SMITH is with the General Electric Company, Detroit, Mich. JANUARY 1952 Friel, Smith—Electric Power Supply for a Large Chemical Plant

Upload: j-p

Post on 09-Feb-2017

213 views

Category:

Documents


1 download

TRANSCRIPT

Electric Power Supply for a Larse

Chemical Plant

A. C. FRIEL MEMBER AIEE

TH E a-c e l e c t r i c p o w e r g e n e r a t i o n a n d d i s t r i b u t i o n s y s t e m of t h e D o w C h e m ­

ical C o m p a n y a t M i d l a n d , M i c h . , m a y be of i n t e r e s t t o p o w e r e n g i n e e r s for t w o r e a s o n s . F i r s t , i t r e p r e s e n t s t h e e x ­pe r i ence of a p l a n t w i d e a -c s y s t e m t h a t has g r o w n f r o m s m a l l b e g i n n i n g s in a pe r iod of 2 3 y e a r s a n d h a s e n c o u n t e r e d a n d s o l v e d t h e p r o b l e m s t h a t g o w i t h r ap id g r o w t h . S e c o n d , b e i n g a c h e m i ­cal p l a n t , m a n y s p e c i a l p r o b l e m s p e c u l i a r to t h e c h e m i c a l i n d u s t r y w e r e s o l v e d in t he p r o c e s s , y i e l d i n g t e c h n i q u e s t h a t m a y b e of i n t e r e s t t o o t h e r s in t h e chemica l a n d p e t r o l e u m i n d u s t r y .

Generation System

G e n e r a t i o n a t t h e M i d l a n d p l a n t t o d a y is p r o v i d e d b y s e v e r a l g e n e r a t i n g u n i t s . T h e s e a r e s u p p l e m e n t e d b y a c o n n e c t i o n wi th C o n s u m e r s P o w e r C o m p a n y , t h e whole s c h e m e b e i n g a m i n i a t u r e of a pubHc u t i H t y s y s t e m . G r o w t h of t h i s s y s t e m is s h o w n b y Figin-e 1.

I n 1927, t h e f i rs t m a j o r a - c u n i t s , a p a i r of 6 ,250 k v a m a c h i n e s , s e r v e d a 1 2 5 - a c r e p l a n t a t 2 ,400 v o l t s . T h e l o n g e s t f e e d e r was a b o u t 3 ,600 f ee t .

I n 1930, t h e n e x t u n i t w e n t i n t o o p e r a ­t ion w i t h a 1 0 , 0 0 0 - k v a r a t i n g . T h i s n e w u n i t w a s fo r 13 ,800 v o l t s . A t t h i s t i m e the e l e c t r i c s y s t e m s e r v e d a p l a n t a r e a of a b o u t 2 3 0 a c r e s . T h e l o n g e s t 2 , 4 0 0 - v o l t feeder w a s n o w 6 ,200 fee t .

A d d i t i o n a l u n i t s w e r e a d d e d a s p l a n t r e q u i r e m e n t s for s t e a m a n d e l e c t r i c e n e r g y grew u n t i l i n 1948 t h e l o a d w a s o v e r s ix t i m e s w h a t i t w a s i n 1927 .

T h e S o u t h P o w e r H o u s e w e n t i n t o o p e r a t i o n i n 1950 w i t h a 3 7 , 5 0 0 - k v a u n i t . A d u p l i c a t e u n i t i s n o w o n o r d e r . T h e p r e s e n t p l a n t c o v e r s a p p r o x i m a t e l y 6 3 0

J. P. SMITH MEMBER AIEE

a c r e s a n d t h r o u g h t h e u s e of a s y s t e m of s u b s t a t i o n d i s t r i b u t i o n , t h e l e n g t h of t h e l o n g e s t 2 , 4 0 0 - v o l t f e e d e r w a s r e d u c e d t o 3 ,000 fee t . N o t e t h a t i n 2 3 y e a r s , p l a n t a r e a i n c r e a s e d five t i m e s , b u t t h e g e n e r a ­t i o n k i l o v o l t - a m p e r e s i n c r e a s e d o v e r e i g h t t i m e s .

T w o o u t l y i n g 5 , 0 0 0 - k v a u n i t s c o m p l e t e t h e p r e s e n t p i c t u r e of t h e D o w g e n e r a t i n g s y s t e m , t h e s e t w o b e i n g l o c a t e d b y r e a s o n of s t e a m r e q u i r e m e n t s .

T h e C o n s u m e r s P o w e r C o m p a n y s u p ­p l i e s p o w e r r e q u i r e d a b o v e o u r g e n e r a t i n g c a p a c i t y w h i c h a t p r e s e n t i s a r e l a t i v e l y s m a l l p o r t i o n of t h e t o t a l .

T h e s e p o w e r s o u r c e s a d d u p t o a t o t a l i n s t a l l e d c a p a c i t y for t h e s y s t e m of o v e r 150 ,000 k v a . W i t h t h e n e x t u n i t a t S o u t h P o w e r H o u s e t h i s wi l l g r o w t o a l ­m o s t 2 0 0 , 0 0 0 k v a .

M a c h i n e s N u m b e r 6 a n d 14 a r e e a c h g r o u n d e d t h r o u g h a 5V3-ohm r e s i s t o r a n d m a c h i n e N u m b e r 15 t h r o u g h a 4 - o h m r e ­s i s t o r . T h e s e r e s i s t o r s will k e e p g r o u n d f a u l t c u r r e n t d o w n t o 5 ,000 a m p e r e s , suff ic ient for r a p i d r e l a y t r i p p i n g b u t i n ­suff ic ient t o c a u s e e x c e s s i v e b u r n i n g of m a c h i n e l a m i n a t i o n s .

Steam-Electric Balance

W i t h D o w , a s p r e s u m a b l y i t is w i t h m o s t i n d u s t r i a l s w h o g e n e r a t e e l e c t r i c p o w e r , t h e p r o c e s s s t e a m d e m a n d g o v e r n s t h e a m o u n t of e l e c t r i c p o w e r w h i c h i s g e n e r a t e d . T h e s t e a m is g e n e r a t e d a t a h i g h e r press iu-e a n d t e m p e r a t u r e t h a n t h e p r o c e s s r e q u i r e s a n d is t h e n r u n t h r o u g h t u r b i n e s o n i t s w a y t o t h e p r o c e s s s t e a m l o a d s . E l e c t r i c p o w e r is t h e r e b y s t r i p p e d o u t of t h i s s t e a m b y t h e t u r b o g e n e r a t o r s . I t h a s b e e n f o u n d t h a t w h e r e a d e m a n d for s u b s t a n t i a l q u a n t i t i e s of p r o c e s s s t e a m a n d e l e c t r i c p o w e r e x i s t w i t h i n t h e s a m e

p l a n t o r w i t h i n r e l a t i v e l y c lose p r o x i m i t y of e a c h o t h e r , t h i s m e t h o d of o p e r a t i o n r e ­s u l t s in r e d u c e d t o t a l c o s t of s t e a m p l u s e l e c t r i c p o w e r .

E l e c t r i c p o w e r g e n e r a t e d in a n i n d u s ­t r i a l p l a n t in t h i s m a n n e r is a b y - p r o d u c t of p r o c e s s s t e a m u s e a n d a c c o r d i n g l y t h e q u a n t i t y of p o w e r g e n e r a t e d is g o v e r n e d b y t h e a m o u n t of p r o c e s s s t e a m u s e d .

T h i s m e t h o d of e l e c t r i c p o w e r g e n e r a ­t i o n c o n t r a s t s w i t h t h e u s u a l p u b h c u t i l i t y p o w e r g e n e r a t i o n w h e r e i n t h e e lec­t r i c p o w e r is t h e e n d p r o d u c t a n d t h e s t e a m , a f t e r h a v i n g g o n e t h r o u g h t h e t u r ­b i n e s , t h e n goes t o c o n d e n s e r s w h e r e 5 5 t o 6 0 p e r c e n t of t h e e n e r g y s u p p l i e d b y t h e fuel i s l o s t .

C o n s i d e r a t i o n of t h e s e f a c t s m a k e s i t a p p a r e n t t h a t i t is d e s i r a b l e u n d e r t h e c o n d i t i o n s o u t l i n e d t o m a i n t a i n a s c lose a b a l a n c e a s p o s s i b l e b e t w e e n s t e a m d e ­m a n d s a n d e l e c t r i c p o w e r d e m a n d s in o r d e r t o k e e p r e q u i r e m e n t s for t h e m o r e e x p e n s i v e p u r c h a s e d p o w e r a s l o w a s p o s ­s ib le .

F i g u r e 1 a l s o s h o w s t h e g r o w t h of e lec­t r i c a l l o a d a g a i n s t s t e a m l o a d . T h e e lec­t r i c a l l o a d h a s d e v e l o p e d f a s t e r t h a n t h e s t e a m l o a d a n d a s a r e s u l t t h e s t e a m g e n ­e r a t i o n t e m p e r a t u r e s a n d p r e s s u r e s h a v e b e e n i n c r e a s e d a n d t h e d i s t r i b u t i o n p r e s -stu-es t o p r o c e s s h a v e b e e n r e d u c e d t o t h e l o w e s t p o s s i b l e in o r d e r t o g e t m o r e e lec­t r i c p o w e r o u t of t h e s t e a m r e q u i r e d b y o u r p r o c e s s e s . I n s p i t e of c o n s i d e r a b l e effor t t o i n c r e a s e p r o c e s s s t e a m d e m a n d v e r s u s p o w e r u s e , p u r c h a s e d p o w e r is s t i l l r e q u i r e d , w h i c h is o f t e n r e f e r r e d t o a s c o n ­d e n s i n g p o w e r a t D o w . R e c e n t s t u d i e s i n d i c a t e t h a t D o w c o u l d p r o b a b l y m a k e i t s o w n c o n d e n s i n g p o w e r for n e a r l y t h e s a m e c o s t a s p u r c h a s e d p o w e r , b u t a c h e m i c a l m a n u f a c t u r e r finds i t m o r e p r o f i t a b l e t o i n v e s t c a p i t a l i n n e w p r o c e s s e q u i p m e n t r a t h e r t h a n in p o w e r - g e n e r a t ­i n g e q u i p m e n t o n t h a t b a s i s .

Paper 5 2 - 8 0 , recommended b y the A I E E Industrial Power. Sys tems Committee and approved by the A I E E Technical Program Committee for presenta­t ion at the A I E E Winter General Meet ing, N e w York, N . Y., January 2 1 - 2 5 , 1952. Manuscript submit ted October 22, 1951; made available for printing December 18, 1951.

A. C. F R I E L is with the D o w Chemical Company , Midland, Mich. , and J. P. S M I T H is with the General Electric Company , Detroit , Mich.

JANUARY 1 9 5 2 Friel, Smith—Electric Power Supply for a Large Chemical Plant

9 0 0

8 0 0

S 7 0 0 ο

ω 6 0 0 α.

ο 5 0 0

Ο 4 0 0

α> EVJ 2 3 0 0

2 0 0

1 0 0

I

— 7

ί — 7

f EL - E C T R I C / f f ' O W E R i

/ / 1 Λ

> \ \ T E A M

1928 ' 3 0 ' 3 2 ' 3 4 ' 3 6 ' 3 8 ' 4 0 ' 4 2 ' 4 4 ' 4 6 Y E A R

Figure 1 . Rate of system load srowth

' 4 8 ' 5 0 Figure 3 . South Power H o u s e circuit breaker

assembly

W i t h g e n e r a t i o n of t h e e n t i r e p o w e r r e ­q u i r e m e n t , D o w w o u l d i n c u r t h e e x p e n s e a n d o p e r a t i o n of f r e q u e n c y r e g u l a t i n g e q u i p m e n t , w h i c h i s n o w le f t t o t h e p u b l i c u t i l i t y . F u r t h e r , i t m i g h t b e c o n s i d e r e d t h a t p u r c h a s e d p o w e r i s m o r e firm t h a n t h e M i d l a n d p l a n t g e n e r a t e d p o w e r s i n c e i t i s b a c k e d u p b y a l a r g e r s y s t e m a n d t h e r e f o r e , p r e s u m a b l y a m o r e s t a b l e s o u r c e . H o w e v e r , t h e r e l i a b i l i t y a n d e c o n o m y of p u r c h a s e d v e r s u s h o m e - g e n ­e r a t e d c o n d e n s i n g p o w e r i s a l a r g e s u b j e c t a n d o n e w h i c h wil l n o t b e s e t t l e d h e r e .

Getting Power to the Load

VOLTAGE SELECTION

T h e p o w e r s y s t e m a t D o w h a s g o n e t h r o u g h s e v e r a l s t a g e s i n i t s e v o l u t i o n . O r i g i n a l l y , 2 , 400 v o l t s w a s s e l e c t e d for g e n e r a t i o n a n d d i s t r i b u t i o n . G e n e r a t o r s w e r e s m a l l i n s ize , l o a d s w e r e n e a r b y , t h e p o w e r c o m p a n y w a s a b l e t o f u r n i s h 2 , 4 0 0 - v o l t p o w e r , a n d t h i s v o l t a g e w a s we l l s u i t e d t o m o t o r - g e n e r a t o r s e t s a n d r o t a r y c o n v e r t e r l o a d s .

L a t e r , o t h e r u n i t s w e r e l o c a t e d f a r t h e r

GENERATOR Νδ |5 3 7 , 5 0 0 kvo 1 3 , 8 0 0 V

f r o m t h e l o a d c e n t e r . T h e t u r b i n e s i n ­s t a l l e d w e r e 9 ,375 k v a , q u i t e l a r g e fo r 2 ,400 v o l t s . I t w a s a t t h i s t i m e t h a t 13 ,800 v o l t s w a s s e l e c t e d for a l l f u t u r e ex ­p a n s i o n . T h i s v o l t a g e h a s p r o v e n s a t i s ­f a c t o r y w i t h c o n t i n u e d p l a n t g r o w t h . I t t o d a y p e r m i t s a d i s t r i b u t i o n p a t t e r n of 7 ,000- t o 1 0 , 0 0 0 - k v a l o a d s s e r v e d b y s i n g l e 3 - c o n d u c t o r 5 0 0 , 0 0 0 c i r c u l a r m i l c a b l e s .

SYNCHRONIZING BUS SYSTEM

T h e r e is a n i m p o r t a n t f a c t o r w h i c h is well k n o w n b u t o f t e n n o t c o n s i d e r e d ; s h o r t c i r c u i t c a p a c i t y . A t o n e l o c a t i o n t h e r e a r e foiu* t u r b o g e n e r a t o r s , b u t o n l y o n e m a c h i n e is c o n n e c t e d t o a b u s s e c t i o n . T h r e e of t h e s e g e n e r a t o r s a r e 6 , 2 5 0 - k v a u n i t s . W i t h o n e m a c h i n e o n a b u s s e c ­t i on , a n d a s s u m i n g a 10 p e r c e n t r e a c t a n c e g e n e r a t o r , t h e m a c h i n e w o u l d s u p p l y 6 2 , 5 0 0 k v a t o a b u s o r f e e d e r f a u l t . A d d ­i n g t h e c o n t r i b u t i o n f r o m c o n n e c t e d l o a d s a n d t h e c o n t r i b u t i o n f r o m t i e s w i t h c u r r e n t - l i m i t i n g r e a c t o r s , 1 0 0 , 0 0 0 - k v a s h p r t c i r c u i t c a p a c i t y i s v e r y q u i c k l y r e a c h e d .

GENERATOR NQ I6 37,500kvo 13 ,800V

S Y N C H R O N I Z I N G BUS

1 — Γ BUS S E C T I O N N 9 I

Ί \ 1 Γ

-τ-

( ( B U S S E C T I O N N ? 2

. — I — Γ — 1 — I — I

( ( ( ( ( Ί h h h a

6KR DISC 1.500 mva AIR BLAST BREAKER BKR DISC

-:.( ( i ( ( I (% Γι

TRANSFER SW.

FDR DISC

FDR GND, SW

POTHEAl

Figure 2 . South Power H o u s e 1- l ine diagram

POTHEAOS 5 0 0 0 kvo EACH

A\'hen i t i s r e m e m b e r e d t h a t t h e largest s t a n d a r d c i r c u i t b r e a k e r s h a v e a n inter­r u p t i n g c a p a c i t y of o n l y 150 ,000 k v a at 2 ,400 v o l t s , i t is o b v i o u s t h a t t w o gener­a t o r s of t h i s s ize c a n n o t b e c o n n e c t e d to a c o m m o n b u s , s i n c e t h e s h o r t circuit c a p a c i t y w o u l d r e a c h n e a r l y 200,000 k v a .

A s y n c h r o n i z i n g b u s s y s t e m h a s been a d o p t e d . O n e g e n e r a t o r s e r v e s e a c h of t h e f o u r b u s s e c t i o n s . A r e a c t o r con­n e c t s e a c h b u s s e c t i o n t o a m a i n syn­c h r o n i z i n g b u s , w h i c h af fords m e a n s for p o w e r t r a n s f e r b e t w e e n b u s s e c t i o n s in the p o w e r p l a n t .

E a c h b u s s e c t i o n s e r v e s f eede r s whose n o r m a l l o a d wi l l t o t a l a p p r o x i m a t e l y the n o r m a l g e n e r a t e d k i lo v o l t - a m p e r e s of that b u s s e c t i o n . I n t h i s w a y , p o w e r transfer t h r o u g h r e a c t o r s a n d t h e synchroniz ing b u s wi l l b e k e p t t o a m i n i m u m , s o that r e a c t o r losses a r e s m a l l , a n d t h e r e is very l i t t l e v o l t a g e d i f fe rence b e t w e e n t h e vari­o u s b u s s e s .

T h e s y n c h r o n i z i n g b u s t o g e t h e r with c h a n g e s t o b e m a d e s o o n wil l m a k e i t pos­s ib le t o s h u t d o w n a n y m a c h i n e , which m a y b e n e c e s s a r y d u e t o v a r i a t i o n s in s t e a m d e m a n d w i t h o u t i n t e r r u p t i n g serv­ice t o a n y l o a d . F o r e x a m p l e , if one m a c h i n e w e r e s h u t d o w n , p o w e r s u p p l y to t h e l o a d o n t h a t b u s s e c t i o n w o u l d n o t be i n t e r r u p t e d , s i n c e t h e t h r e e o t h e r ma­c h i n e s w o u l d i m m e d i a t e l y s u p p l y power t h r o u g h t h e i r r e s p e c t i v e b u s section r e a c t o r s t o t h e s y n c h r o n i z i n g b u s , and t h e n t h r o u g h a r e a c t o r t o t h e b u s section in t r o u b l e , o r p o w e r c o u l d b e imported f r o m o t h e r s o u r c e s b y t i e l ines . Power n e v e r f lows t h r o u g h m o r e t h a n t w o leac-t o r s b e t w e e n a n y g e n e r a t o r a n d a n y load w i t h t h i s s y s t e m .

D o w ' s o t h e r p o w e r h o u s e s a l so use s y n c h r o n i z i n g b u s s y s t e m s . I n o n e case i t h a s b e e n p o s s i b l e t o c o n n e c t 30 ,000 kva of g e n e r a t i o n t o o n e s e c t i o n , a n d 35,000

84 Friel, Smith—Electric Power Supply for a Large Chemical Plant JANUARY 1952

Fisuie 4 (left). South Power House transfer

bus

kva of utility power to another section since the 13.8-kv circuit breakers have an interrupting capacity of GOO megavolt-amperes. (Circuit breakers on those sec­tions have recently been rebuilt to pro­vide 960-megavolt-ampere capacity, since new tie lines have raised the short circuit contribution from the synchronizing bus.)

vSouth Power House, with 37,500-kva generators at 13.8 kv, has been provided with 1,500-megavolt-ampere switchgear which will be discussed later.

Experience gained from short circuit studies of this system leads to the con­clusion that with a synchronizing bus system, the short circuit capacity of a generator switchgear bus section should be at least 16 times the total name plate kilovolt-amperes of generation connected to that bus (assuming a generator sub-transient reactance of approximately 10 per cent).

The synchronizing bus system at the powerhouses also helps to solve a tie-line problem which has been trcublesome.

Tie Lines Between Power Stations

Between a pair of Dow powerhouses which shall be called X and Y, a 4,687-kva

Fisure 6 (risht). East Side sub­station number 3

line ties bus section Number 10 of power­house X to section Number 1 of power­house F. A second tie of 8,000-kva capacity connects powerhouse X syn­chronizing bus with powerhouse Y section Number 1.

It has never been possible to operate these tie lines at rated capacity. At a time when power must be transferred from X to F, there will be flow through Num­ber 10 section reactor at X. This causes a voltage difi'erence between section Number 10 and the synchronizing bus, the synchronizing bus being at the lower voltage. Thus despite the difi'erence in tie line ratings, they actually carry about the same power, so that actual tie capacity is only 74 per cent of the rated capacity.

The system is being arranged so that both tie lines will terminate at the syn­chronizing bus at both powerhouses.

There is another pair of ties each of 16,000-kva capacity, terminating at sec­tion busses. With present reactances and under certain conditions 70 per cent of the kilovolt-amperes transferred over these ties is carried by line A ; 30 per cent by fine B. Thus instead of 32,000-kva tie

capacity, we have only an effective 23,000 kva. Here also, the system is being ar­ranged with tie lines terminating at sta­tion synchronizing busses, which will make the entire 32,000-k\^a capacity available.

With the system rearranged in this manner, the synchronizing busses and the tie lines will afford a solid backbone for the system. Each section bus will form a practically self-sufficient system with generation equal to load. Upon loss oF generation, or under excess load condi­tions, the power deficiency of any section bus will be made up by power flowing from the synchronizing bus through the section reactor. With this system, there will be only two reactors between any generator and any load in the entire Dow system.

Power House Distribution Busses

At each of the powerhouses, radial feeders carry power directly from the generator bus to the load area. As far as possible, these feeders are so arranged that loads nearest a given powerhouse are

Fisure 5. Reactors and bus duct Figure 7. N T switch house

85 JANUARY 1952 Friel, Smith—Electric Power Supply for a Large Chemical Plant

Figure 8 . Typica l transformer bank

s e r v e d f r o m t h a t s t a t i o n , a n d t h e f e e d e r k i l o v o l t - a m p e r e s o n a g i v e n b u s a r e k e p t t o t h e n o r m a l g e n e r a t e d k i l o v o l t - a m p e r e s c o n n e c t e d t o t h a t b u s .

I n o n e i n s t a n c e , t h e s e t w o r e q u i r e ­m e n t s w e r e in conf l ic t . A 5 , 0 0 0 - k v a s u b ­s t a t i o n l o c a t e d n e a r p o w e r h o u s e A w o u l d l og i ca l l y b e s e r v e d f r o m t h a t p o w e r h o u s e , b u t g e n e r a t i o n fo r t h i s l o a d w a s l o c a t e d a t p o w e r h o u s e B. i t p r o v e d b e t t e r e c o n o m ­ics t o i n s t a l l a r a d i a l f e e d e r t h e l o n g e r d i s t a n c e f r o m p o w e r h o u s e Β t o t h i s s u b ­s t a t i o n , s i n c e c o n n e c t i n g t h i s l o a d t o p o w e r h o u s e A w o u l d i m p o s e a n o r m a l 5 , 0 0 0 - k v a l o a d o n t h e 3 2 , 0 0 0 - k v a t i e l i ne s , t h u s r e d u c i n g t h e i r a b i l i t y t o t r a n s ­fer p o w e r b e t w e e n s t a t i o n s d u r i n g e m e r ­g e n c i e s o r m a c h i n e o u t a g e s . T h e s w i t c h ­i n g e q u i p m e n t a t t h e o l d e r p o w e r h o u s e s is of o p e n t y p e c o n s t r u c t i o n . I n o r d e r t o g a i n t h e a d v a n t a g e s of i n d o o r p r o t e c t e d c o n s t r u c t i o n , m e t a l - c l a d s w i t c h g e a r of 1 , 5 0 0 - m e g a v o l t - a m p e r e s h o r t c i r c u i t c a ­p a c i t y i s u s e d a t S o u t h P o w e r H o u s e , w h i c h is t h e n e w e s t o n e .

F i g u r e 2 s h o w s t h e m a n n e r i n w h i c h t h e m a c h i n e s wi l l b e c o n n e c t e d t o b u s s e c t i o n s a n d a l s o h o w t h e b u s s e c t i o n s a r e c o n ­n e c t e d t h r o u g h r e a c t o r s t o t h e s y n c h r o n i z ­i n g b u s a t S o u t h P o w e r H o u s e . I t wi l l b e n o t e d t h a t t h e r e i s a t r a n s f e r b u s w h i c h , b y p r o p e r m a n i p u l a t i o n of d i s c o n n e c t s w i t c h e s a n d c i r c u i t b r e a k e r s , c a n b e u s e d

t o t r a n s f e r a n y f e e d e r f r o m i t s b u s s e c t i o n t o t h e t r a n s f e r b u s w i t h o u t d r o p p i n g l o a d o n t h e f eede r . I n t h i s w a y , a f e e d e r c i r ­c u i t b r e a k e r c a n b e r e m o v e d f r o m s e r v i c e fo r m a i n t e n a n c e w h e n r e q u i r e d . T h e t r a n s f e r b u s c a n a l s o b e u s e d t o r e d u c e l o a d o n a b u s s e c t i o n w h e n a b n o r m a l c o n ­d i t i o n s r e q u i r e . T h i s a r r a n g e m e n t is s i m i l a r t o t h a t u s e d a t a n y of t h e D o w p o w e r h o u s e s .

F i g u r e 3 s h o w s t h e i n s t a l l a t i o n of 1,500-m e g a v o l t - a m p e r e c i r c u i t b r e a k e r c u b i c l e s a t S o u t h P o w e r H o u s e . T h e a d d i t i o n of n e w f e e d e r s i s b e i n g a c c o m p l i s h e d b y e x ­t e n d i n g t h i s a s s e m b l y o n t h e f a r e n d . T h e s e a r e s t a t i o n t y p e s t a t i o n a r y a i r b l a s t c i r c u i t b r e a k e r s of 1 ,500 -megavo l t -a m p e r e c a p a c i t y i n s e g r e g a t e d p h a s e m e t a l - c l a d c o n s t r u c t i o n .

F i g u r e 4 s h o w s t h e r e a r of t h e c i r c u i t b r e a k e r c u b i c l e s , w i t h o p e r a t i n g m e c h a ­n i s m for c i r c u i t b r e a k e r d i s c o n n e c t s , a n d o n t h e o p p o s i t e s i d e of t h e a i s l e t h e t r a n s ­fe r b u s , w i t h i t s d i s c o n n e c t i n g s w i t c h m e c h a n i s m s .

F i g u r e 5 s h o w s t h e floor b e l o w t h e c i r ­c u i t b r e a k e r . T h e b u s d u c t c o n n e c t i n g t h e c i r c u i t b r e a k e r s w i t h t h e t r a n s f e r b u s a r e o n t h e ce i l ing of t h i s r o o m . T h e s y n ­c h r o n i z i n g b u s r e a c t o r s a n d t h e s y n ­c h r o n i z i n g b u s a r e a l s o o n t h i s floor. O u t ­g o i n g c a b l e s e n t e r p o t h e a d s i n t h e c u b i c l e s a t t h e f a r s i d e of t h e r o o m .

I t i s i n t e r e s t i n g t o n o t e t h a t e a c h f e e d e r c i r c u i t b r e a k e r wi l l s u p p l y t w o c i r -

Figure 9 . Three-phase transformer

c u i t s e x t e n d i n g t o d i f fe ren t p l a n t areas. T h e n o r m a l l o a d o n e a c h f eede r cab l e is 5 ,000 k v a , s o t h i s wil l p e r m i t e a c h circuit b r e a k e r t o s e r v e a l o a d of a p p r o x i m a t e l y 10 ,000 k v a . W i t h a t o t a l g e n e r a t i o n of 3 7 , 5 0 0 k v a p e r b u s s e c t i o n , fotu* feeder c i r c u i t b r e a k e r s a r e n e c e s s a r y for each b u s s e c t i o n . T h e f eede r s a r e so a r ranged t h a t u p o n o p e n i n g of a n y feede r circuit b r e a k e r , t h e e n t i r e 1 0 , 0 0 0 - k v a l o a d c a n be s e r v e d f r o m o t h e r s o u r c e s a s d e s c r i b e d in t h e n e x t d i s c u s s i o n .

Power Distribution System

O u r p l a n t d i s t r i b u t i o n s y s t e m a s it s t a n d s t o d a y a n d a s i t is e x p e c t e d t o be for y e a r s t o c o m e is r a d i a l . T h e p lan t e l e c t r i c a l l o a d is of t w o t y p e s : p o w e r for e l e c t r o l y t i c s e r v i c e , ( l a r g e l y c h l o r i n e pro­d u c t i o n ) a n d p o w e r for p l a n t process d r i v e s , l i g h t i n g , a n d o t h e r p u r p o s e s . The t w o t y p e s of l o a d a r e a p p r o x i m a t e l y e q u a l i n k i l o v o l t - a m p e r e d e m a n d .

T h e e l e c t r o l y t i c l o a d s a r e s e r v e d at 13 ,800 v o l t s b y r a d i a l f e ede r s directly, f r o m p o w e r h o u s e b u s s e c t i o n s . T h i s in­c l u d e s rec t i f i e r s , m o t o r - g e n e r a t o r s e t sub­s t a t i o n s , a n d r o t a r y c o n v e r t e r subs ta ­t i o n s .

P l a n t a n d p r o c e s s l o a d w a s originally fed b y 2 , 4 0 0 - v o l t c i r c u i t s f r o m o n e power­h o u s e b u t a s l o a d s b e c a m e h e a v i e r and

8 6 Friel, Smith—Electric Power Supply for a Large Chemical Plant JANUARY 1952

feeders b e c o m e l o n g e r , a s y s t e m of s u b ­s t a t i o n d i s t r i b u t i o n w a s a d o p t e d .

A 5 0 0 , 0 0 0 c i r c u l a r mi l l a e r i a l c a b l e a t 13,800 v o l t s c a r r i e s p o w e r f r o m t h e p o w e r ­h o u s e t o t h e c e n t e r of a p a r t i c u l a r l o a d a r e a . A 2 , 4 0 0 - v o l t l o a d c e n t e r is i n ­s t a l l ed a t t h i s p o i n t , c o n s i s t i n g of a 6 , 0 0 0 / -7 ,500-kva 3 - p h a s e oil filled o u t d o o r t r a n s ­fer b a n k c o n n e c t e d t o a n i n d o o r 2 , 4 0 0 -vo l t s w i t c h g e a r a s s e m b l y . F i g u r e 6 shows s u b s t a t i o n N u m b e r 3 .

A c o m p a r i s o n of c o s t i n 1950 b e t w e e n an i n d o o r a n d o u t d o o r s u b s t a t i o n s h o w e d t h a t c o s t s r a n $ 1 5 , 0 0 0 p e r c i r c u i t p o s i t i o n for t h e i n d o o r s u b s t a t i o n a n d $ 1 4 , 5 0 0 p e r c i rcu i t p o s i t i o n for t h e o u t d o o r s u b s t a ­t ion . I t w a s d e c i d e d t h a t i n v i e w of t h e r e l a t i v e l y s e v e r e w i n t e r c l i m a t e , a n d t h e chemica l s i n t h e a t m o s p h e r e t h e i n d o o r s u b s t a t i o n w i t h i t s i n c r e a s e d o p e r a t i n g c o n v e n i e n c e a n d r e d u c e d m a i n t e n a n c e r e ­q u i r e m e n t s w o u l d d e f i n i t e l y j u s t i f y t h e inc rea sed first c o s t .

S e v e r a l of t h e s e s u b s t a t i o n s a r e n o w i n service , t h e first h a v i n g b e e n i n s t a l l e d in 1942, a n d s e v e r a l m o r e a r e n o w in t h e process of b e i n g i n s t a l l e d . W o r k i n g l o a d per s u b s t a t i o n wi l l b e k e p t d o w n t o 5 ,000 kva s o t h e r e wi l l b e m a r g i n for l o a d g r o w t h t h a t m i g h t o c c u r f a s t e r t h a n w e a n t i c i p a t e , a n d a l s o t o m e e t e m e r g e n c y c o n d i t i o n s w h i c h m a y a r i s e .

LOW-VOLTAGE TIES

T h e s y s t e m a s e x p l a i n e d s o f a r is a pure ly r a d i a l s y s t e m . H o w e v e r , s i n c e m a n y of t h e p r o c e s s e s s e r v e d f r o m t h e 2,400-vol t s u b s t a t i o n s a r e c r i t i c a l a n d c a n n o t b e i n t e r r u p t e d , a s e c o n d a r y s e l e c ­t ive f e a t u r e is p r o v i d e d b y n o r m a l l y o p e n 2,400-vol t t i e s b e t w e e n p a i r s of s u b s t a ­t ions . B y s i z ing t h e 1 3 . 8 - k v c a b l e for 10,000 k v a , a n d b y u s i n g t r a n s f o r m e r s r a t e d 7 ,500 k v a c o n t i n u o u s w i t h f a n coo l ­ing p r o v i s i o n h a s b e e n m a d e for e m e r ­gency o p e r a t i o n of t w o s u b s t a t i o n s f r o m a single 1 3 . 8 - k v f e e d e r a n d t r a n s f o r m e r . T h u s , in c a s e o n e s u b s t a t i o n is l o s t d u e t o

a p r i m a r y f a i l t u e , i t c a n b e s e r v e d for a s h o r t t i m e a t fu l l c a p a c i t y , o r fo r a n e x ­t e n d e d p e r i o d a t r e d u c e d c a p a c i t y , b y c l o s i n g o u t t h e s e c o n d a r y t i e .

I n s e t t i n g u p t h e s e s e c o n d a r y t i e s o n e of t h e l i m i t a t i o n s of 2 , 4 0 0 - v o l t d i s t r i b u ­t i o n m u s t b e f a c e d . T h e t r a n s f o r m e r c i r ­c u i t b r e a k e r s a r e r a t e d 2 ,000 a m p e r e s , t h e l a r g e s t d r a w - o u t t y p e 2 , 4 0 0 - v o l t c i r c u i t b r e a k e r a v a i l a b l e . T h i s p l a c e s a n a m e p l a t e ce i l i ng of 8 ,000 k v a o n t h e i n p u t t o a s u b s t a t i o n w h e r e a s a l l o t h e r e q u i p m e n t a n d c a b l e i s s i z e d for 10 ,000 k v a u n d e r e m e r g e n c y c o n d i t i o n s . W e r e 4 , 1 6 0 v o l t s b e i n g u s e d , t h i s l i m i t a t i o n w o u l d n o t ex ­i s t .

U s e of 4 , 1 6 0 - v o l t d i s t r i b u t i o n i n c e r t a i n a r e a s h a s b e e n c o n s i d e r e d , b u t a c h a n g e a t t h i s t i m e w o u l d l e a d t o m u c h c o n f u s i o n , w o u l d r e q u i r e r e a r r a n g e m e n t of c i r c u i t s , a n d m i g h t r e q u i r e r e w i n d i n g of s o m e 2 , 3 0 0 - v o l t m a c h i n e s .

I t i s i n t e r e s t i n g t o c o m p a r e t h e o l d w i t h t h e n e w . F i g u r e 7 s h o w s t h e t y p e of c o n ­s t r u c t i o n u s e d a t a n o l d 2 , 4 0 0 - v o l t s w i t c h h o u s e , w h i c h h a s m a i n b u s s e c t i o n s , s y n ­c h r o n i z i n g b u s , t r a n s f e r b u s , a n d r e a c t o r s . A t o n e t i m e a l l 2 , 4 0 0 - v o l t f e e d e r s o r ig i ­n a t e d i n t h i s s w i t c h h o u s e . O n e f e e d e r w a s 4 , 8 0 0 f ee t l o n g a n d a n o t h e r w a s 6 ,100 f ee t l o n g . A s m a y b e s u s p e c t e d , v o l t a g e p r o b l e m s a r o s e w h i c h l e d t o u s e of s t e p -t y p e v o l t a g e r e g u l a t o r s .

T o d a y , w i t h s u b s t a t i o n s s e r v i n g t h e s e c i r c u i t s , t h e a v e r a g e 2 , 4 0 0 - v o l t f e e d e r i s 9 5 0 fee t l o n g . C a r r y i n g p o w e r t o t h e l o a d a r e a a t 13 .8 k v i n o v e r s i z e d c a b l e , k e e p i n g l o a d w e l l w i t h i n t h e r a t i n g of t h e 6 ,000 -k v a s u b s t a t i o n t r a n s f o r m e r , a n d k e e p i n g 2 , 4 0 0 - v o l t f e e d e r s s h o r t a l l c o n t r i b u t e t o h o l d i n g e x c e l l e n t v o l t a g e a t t h e l o a d w i t h ­o u t t h e u s e of r e g u l a t o r s .

LOW-VOLTAGE DISTRIBUTION

L o w - v o l t a g e l o a d is a t 4 8 0 v o l t s , 3 -p h a s e a n d 1 2 0 / 2 4 0 v o l t s , s i n g l e p h a s e . A t p r e s e n t m o s t of t h i s l o a d is s e r v e d b y o p e n o u t d o o r t r a n s f o r m e r b a n k s a s s h o w n

b y F i g u r e 8, c o n s i s t i n g of 3 2 0 0 - k v a t r a n s f o r m e r s i n c l o s e d d e l t a p l u s a f o u r t h t r a n s f o r m e r for s i n g l e - p h a s e l o a d , s u c h a s l i g h t i n g . S i n g l e - p h a s e t r a n s f o r m e r s for­m e r l y w e r e i n s t a l l e d for t h e c lass ica l r e a s o n ; w h e n a f a i l u r e o c c u r r e d o n o n e of t h e s i n g l e - p h a s e t r a n s f o r m e r s , i t c o u l d b e c u t o u t of s e r v i c e a n d 5 8 p e r c e n t of t h e l o a d c o u l d b e c a r r i e d b y a n o p e n d e l t a b a n k u n t i l t h e f a u l t e d t r a n s f o r m e r w a s r e m o v e d a n d r e p l a c e d b y a s p a r e .

T h e M i d l a n d p l a n t h a s r e c e n t l y g o n e t o t h e u s e of 3 - p h a s e t r a n s f o r m e r s , a s s h o w n b y F i g u r e 9 , a n d is i n s t a l l i n g 500- , 750- , a n d 1 ,000-kva u n i t s for o u r n e w e s t b a n k s . I t wi l l b e n o t e d t h a t t h e s i ng l e -p h a s e t r a n s f o r m e r s a r e r e t a i n e d for l i g h t ­i n g . A s c a n b e r e a d i l y s e e n , t h i s m a k e s a m u c h c l e a n e r l o o k i n g a n d s i m p l e r i n ­s t a l l a t i o n . A n d w h e r e i n s t a l l a t i o n is s i m p l e r , i t i s p r e t t y s a f e t o s a y t h a t c o s t s wi l l b e l o w e r . I t i s r e c o g n i z e d t h a t i n c a s e of f a i l u r e of a 3 - p h a s e t r a n s f o r m e r , t h e w h o l e l o a d is d o w n w h i l e t h e t r a n s f o r m e r is r e m o v e d a n d r e p l a c e d b y a s p a r e . H o w ­e v e r , t h e r e l i a b i l i t y of a m o d e r n t r a n s ­f o r m e r is s u c h t h a t t h e n u m b e r of failiu-es d o e s n o t w a r r a n t t h e h i g h e r c o s t of t h e s i n g l e - p h a s e t r a n s f o r m e r c o n s t r u c t i o n .

Open Circuit Insulation

T h e s u c c e s s of o u r 1 3 , 8 0 0 - v o l t d i s t r i b u ­t i o n h a s b e e n p a r t i a l l y d u e t o c a r e i n o v e r -i n s u l a t i o n of o p e n c i r c u i t s . T h e fly a s h a n d c h e m i c a l s i n t h e a t m o s p h e r e h a v e l e d t o u s e of 3 4 . 5 - k v c i r c u i t b r e a k e r b u s h i n g s a n d b u s i n s u l a t o r s a t t h e o u t d o o r s u b s t a ­t i o n , a n d for a n y o t h e r o p e n 1 3 , 8 0 0 - v o l t c o n s t r u c t i o n . E v e n w i t h t h i s i n s u l a t i o n , i t i s n e c e s s a r y t o w a s h i n s u l a t o r s a n d b u s h i n g s p e r i o d i c a l l y .

T h e 2 , 4 0 0 - v o l t l i n e s a r e a l m o s t a l l of o p e n , o v e r h e a d c o n s t r u c t i o n , as s h o w n b y F i g u r e 10 . T h e s e l i k e w i s e a r e o v e r i n -s u l a t e d . W h e r e t h e a t m o s p h e r e is r e l a ­t i v e l y f r e e f r o m c o n t a m i n a t i o n , 1 5 - k v in­s u l a t o r s a r e u s e d ; i n c o n t a m i n a t e d a t -

Table I . Cost Comparison ior Three Types of a 1 3 , 8 0 0 - V o l t Plant Power Transmission,

Based on 5 0 0 , 0 0 0 - C i r c u l a r - M i l Cab le

Max. Kva Instal led for Cost Cost

3 / C per per 500 F o o t / F o o t /

M e m Circuit Mva

Figure 1 0 . Typica l 2 , 4 0 0 - v o l t l ine

One Circuit Overhead Open 1 6 , 8 0 0 . . $ 7 . 0 0 . . $ 0 . 4 2 Overhead Aerial Cable . . 1 0 , 0 0 0 . . 1 2 . 5 0 . . 1 .25 Underground Cable in

D u c t 9 . 5 0 0 . . 1 5 . 0 0 . . 1 .58 Four Circuits

Overhead Open 1 6 , 8 0 0 . . 3 . 5 0 . . .21 Overhead Aerial Cable . . 1 0 , 0 0 0 . . 1 0 . 0 0 . . 1 .00 Underground Cable in

Duct 7 , 4 0 0 . . 8 . 5 0 . . 1 .15

JANUARY 1 9 5 2 FrieU Smith—Electric Power Supply for a Large Chemical Plant 87

Figure 11 ( le f t ) . Tower J showing o p e n construc­

t ion

Figure 1 3 (right). Cable risers at

South Power H o u s e

m o s p h e r e s , 2 2 - k v i n s u l a t o r s a r e u s e d . F i g u r e 11 s h o w s t h e t e r m i n a t i o n of a

g r o u p of o v e r h e a d l i n e s l e a v i n g NT s w i t c h -h o u s e . I t m a y b e n o t e d t h a t t h e l i n e s in t o w e r J a r e c o n s i d e r a b l y o v e r i n s u l a t e d . I n t h e w i n t e r of 1 9 4 2 - 4 3 t h e r e w a s a d r i z ­z l i ng r a i n f o l l o w e d b y s l e e t o n e n i g h t , w h i c h a l o n g w i t h c h e m i c a l c o n t a m i n a t i o n of t h e a t m o s p h e r e in t h i s a r e a c a u s e d s e v e r e flashovers of t h e i n s u l a t o r s o n e v e r y c i r c u i t e x c e p t o n e d u r i n g t h a t n i g h t . T h e s e l i ne s h a d a l w a y s b e e n o v e r i n s u ­l a t e d a s h a v e a l l o t h e r o p e n l i n e s in t h e p l a n t . H o w e v e r , s i n c e t h a t t i m e t h e s e p a r t i c u l a r l i n e s h a v e b e e n d o u b l y o v e r i n ­s u l a t e d a n d in a d d i t i o n t h e y a r e p e r i o d i ­c a l l y w a s h e d h o t b y m e a n s of a fire h o s e

w i t h p r o p e r p r e c a u t i o n s t a k e n a g a i n s t h a z a r d t o p e r s o n n e l .

F a i l u r e s of o p e n 1 3 . 8 - k v l i ne s h a s b e e n r e d u c e d in r e c e n t y e a r s b y a t r i c k . I n t h e p a s t t h e r e w e r e q u i t e a few c r o s s a r m a n d p o l e fires d u e t o c u r r e n t l e a k a g e o v e r t h e i n s u l a t o r s , d o w n t h e p i n s t o t h e a r m s , a n d a c r o s s t h e a r m s t o t h e p o l e s , t h e n c e , p r e ­s u m a b l y t o g r o u n d . T h i s c u r r e n t w o u l d c a u s e h e a t i n g of t h e w o o d a n d e v e n t u a l l y a fire. B o n d i n g t o g e t h e r t h e p i n s a n d o t h e r h a r d w a r e o n t h e p o l e a n d c o n n e c t ­i n g t h e m t o a l a g s c r e w d r i v e n i n t o t h e h e a r t of t h e p o l e h a s a l m o s t e n t i r e l y e l i m i n a t e d t h i s p r o b l e m . T h e c u r r e n t p r e s u m a b l y t r a v e l s f r o m t h e b o n d i n g c i r ­c u i t d o w n t h e h e a r t of t h e p o l e t o g r o u n d .

Aerial Cable Versus Open Wire Versus underground Ducts

T h e s e l e c t i o n of t h e b e s t l ine con­s t r u c t i o n for a c h e m i c a l p l a n t h a s rece ived m u c h s t u d y , a n d a b r ie f r e v i e w of the D o w findings m a y b e of i n t e r e s t . In o r d e r of e x p e n s e , o p e n c o n s t r u c t i o n is r a t e d l o w e s t i n c o s t , f o l l o w e d b y aerial c a b l e , a n d t h e n b y u n d e r g r o u n d duct w h i c h is m o s t e x p e n s i v e .

AERIAL INTERLOCKED ARMOR CABLE

T h e M i d l a n d p l a n t o r i g i n a l l y u s e d only o p e n o v e r h e a d c o n s t r u c t i o n b u t later t u r n e d t o ae r i a l c a b l e . T h e first aerial c a b l e i n s t a l l a t i o n w a s a 1 5 - k v va rn i shed c a m b r i c r u b b e r h o s e j a c k e t e d 500,000 c i r c u l a r m i l 3 - c o n d u c t o r c a b l e w i t h an

Figure 1 2 ( lef t ) . A e r i a l interlocked armor cable

Figure 1 4 ( b e l o w ) . A e r i a l cable installation

8 8 FrieU Smith—Electric Power Supply for a Large Chemical Plant JANUARY 1952

mierlocked bronze armor overall. This cable is a generator lead, connecting a 13.8-kv machine which is physically located at one powerhouse to a bus sec­tion of another powerhouse, a distance of 2,500 feet. It was installed in 1941, and to date there have been no failures.

It is interesting to note that a lead covered 600-volt multiconductor control cable with performance grade insulation which was installed at the same time as the generator cable and followed the same route failed last spring at several places where cable rings supported it from the messenger wire.

An aerial cable was selected, see Figure 12, since extreme reliability was wanted for this relatively long run. The aerial cable is, of course, not subject to attack by the chemical atmosphere as long as the bronze armor and rubber hose are intact. In addition, aerial cable is less vulnerable to lightning than open overhead lines.

UNDERGROUND DUCT LINE

At Midland there is a large amount of underground piping which requires fre­quent excavation with power shovels. The relatively high water table might pre­sent a problem in keeping manholes from flooding. There is a feeling on the part of some of the personnel that the soil in the plant is more or less saturated with chem­icals which might have a deleterious ef­fect on the cable. These factors, and the higher cost of underground cable have limited its application to the very few situations where there is no room over­head, where it is desirable to eliminate ex­posure to lightning, or mechanical dam­age, or where appearance requirements dictate.

COST FACTORS

It is estimated that a 13.8-kv open overhead line of 3 500,000-circular-mil triple-braided-weatherproof wire costs about $7.00 per foot installed on 50-foot poles with spans averaging 100 feet or less. For aerial cable, 3-con­ductor 500,000-circular-mil cable alone costs about $6.00 to $7.00 per foot, de­pending on the type of aerial cable used, and installed costs are estimated at $12.00 to $13.00 per foot. These figures are for a pole line carrying one circuit only. Where there is more than one cir­cuit on a pole, the cost per foot, per cir­cuit goes down.

A 500,000-circular-mil aerial cable does not, of coin-se, have the same ciu-rent carrying capacity as three open triple-braided-weatherproof wires. Therefore the cost per kilovolt-ampere transmitted is still greater with aerial cable.

For an underground circuit of one 500,000-circular-mil 3-conductor cable it is estimated the cost would be about $15.00 per foot installed. A comparison of cost of the three types of construction is shown in Table 1.

Another advantage of aerial cable is saving in space. Figure 11 shows the space required to handle nine 2,400-volt open overhead circuits. Compare this with the space required to get eight cir­cuits away from South Power House, Figure 13. Incidentally, all of the 13.8-kv circuits taking power away from South Power House are 3-conductor, varnished cambric, interlocked bronze armored aerial cable.

A few words on the reliability of aerial cable may be of interest. In the plant there are now approximately 25,000 feet of aerial cable. On this cable there have been three failtnes which gives a record 0.185 failure per mile per year. There is no similar record for open overhead lines but it can be reported that the number of failiu-es for the open overhead lines per foot per year is considerably in excess of that for aerial cable.

Figure 14 shows the 3-conductor 600,000-circular-mil self-supporting aerial cable in which one of the three aerial cable failures occurred. The contractor had some diffi­culty getting this cable to hang properly from its messenger since the messenger apparently had a tendency to kink and twist. The installation was difficult be­cause of the somewhat tortuous route the cable had to follow. The route is ap­proximately 800 feet long and has about eight right angle bends as well as a few off­sets. Although not noticed at the time of installation, it now appears that this cable had been manhandled somewhat dtning installation.

Dow has since been advised by two dif­ferent cable manufacturers that an in­stallation over this route would be con­sidered fairly difficult for any self-sup­porting type of aerial cable of this size. It is believed that the principal difficulty lies in the tendency of the messenger to twist and turn as the cable comes off the reel. It is passed along to the reader as one experience with larger size self-sup­porting aerial cable, in the belief that any­one contemplating such an installation should make proper allowances in their planning for it.

Experience With Corrosion of Aluminum Alloys

Pin-ely aside from discussion of the Midland generation and distribution sys­tem, the following is a discussion of some experience Dow Chemical Company has

had with corrosion of aluminum alloys. In 1946 it was noticed that the metal

rings with which the circuit breaker bush­ings were held in place at the outdoor sub­station were severely corroded, some to the extent that a bushing could be ex­pected to pop out of the circuit breaker with resulting fireworks any time one was closed.

An analysis of the metal showed it to be an aluminum alloy having about 4.3 per cent copper. Dow was advised that such corrosion could be expected with this high copper content; and that there were several other alloys with only a trace of copper which would reduce considerably the susceptibility of the alloy to corrosion. The rings in question were replaced with rings of low-copper content and no further trouble has been experienced.

Conclusions

In summary, there are several things that have become apparent from Dow's experience at Midland, and they are passed along to other engineers who may have similar problems in planning their power distribution systems.

1. A purely radial system is simple, easy to operate, and dependable.

2. The total name plate rating of genera­tion connected to a bus section should not exceed 1/16 the short circuit interrupting capacity of that bus.

3. Where several bus sections are found necessary, each section should be tied to the system synchronizing bus by reactors of suitable capacity.

4. A system having generation and loads spread over a considerable area needs a "stiff backbone." Dow is going to build one by means of tie lines between station synchronizing busses.

5. The normal load connected to a bus section should approximately equal the generation and other sources on that sec­tion, to avoid carrying power through re­actors and tie lines during normal conditions. This keeps tie capacity available for han­dling emergencies. 6. In laying out a station, provide for enough feeders to take away the power generation connected to that bus.

7. Where the atmosphere bears chemicals and fly ash, build indoor substations, metal enclose, over insulate liberally and use aluminum w ith low copper content.

8. Geography and availability of equip­ment are important, but for best results following the preceeding rules for good clean electrical system design is usually more im­portant in planning system changes.

N o Discussion

JANUARY 1 9 5 2 Friel, Smith—Electric Power Supply for a Large Chemical Plant 8 9