efectul acaricid al acidului oxalic

8
1. INTRODUCTION Varroa destructor (formerly named Var- roa jacobsoni) (Anderson and Trueman, 2000) is potentially the main parasite of Apis mellifera and it can cause the collapse of untreated colonies in a few years. Colony collapse is due not only to mite infestation, but also to secondary viral infections (Hung et al., 1996). Several chemical substances were used successfully to control mites (Mobus and Bruyn, 1993) and a wide array of chemicals (acrinathrin, flumethrin, fluvalinate, amitraz, coumaphos, cymizole and other) were highly effective, killing more than 99% of the mites present in infested colonies (Ferrer-Dufol et al., 1991). However in consecutive years resistance of mite against these pesticides has been demonstrated (Elzen et al., 1998; Milani, 1995) due to high selection pressure (Milani, 1999). Mite control is imperative in order to maintain the population of honeybee colonies in most beekeeping regions around the world. The use of acaricides should also be minimised in beekeeping because of the Apidologie 32 (2001) 333–340 333 © INRA/DIB-AGIB/EDP Sciences, 2001 * Correspondence and reprints E-mail: GregorAl @mail.vf.uni-lj.si Original article Acaricidal effect of oxalic acid in honeybee (Apis mellifera) colonies Ales l GREGORC a *, Ivo PLANINC b a Veterinary Faculty of the University of Ljubljana, Gerbic l eva 60, 1000 Ljubljana, Slovenia b Animal health centre of Slovenia, Dept. of bee health, Slovenia (Received 30 May 2000; revised 14 March 2001; accepted 2 April 2001) Abstract – Three oxalic acid (OA) solutions were applied to 24 honeybee colonies to test acaricidal effects on Varroa destructor. Daily natural mite drop per colony averaged 0.52. Higher mite mortality (18.33) was found after three August OA treatments. The mean efficacy’s of the three water solutions of OA/sucrose (w/w), 3.4%/47.6%, 3.7%/26.1%, and 2.9%/31.9% applied in the presence of brood, was 52.28%, 40.66% and 39.16% respectively. A significantly higher efficacy was recorded when 3.4%/47.6% was applied in comparison to 2.9%/31.9% solution. There was no difference in effi- cacy between OA solutions administered during a broodless period on October 28. The average effi- cacy in all colonies was 99.44%. The results suggest that OA has limited acaricidal effect in colonies with brood, but it is highly effective in a broodless period. Varroa destructor (jacobsoni) / honeybee / control / oxalic acid /efficacy

Upload: catalin

Post on 04-Jan-2016

214 views

Category:

Documents


1 download

DESCRIPTION

noutati despre acidul oxalic

TRANSCRIPT

1. INTRODUCTION

Varroa destructor (formerly named Var-roa jacobsoni)(Anderson and Trueman,2000) is potentially the main parasite of Apismellifera and it can cause the collapse ofuntreated colonies in a few years. Colonycollapse is due not only to mite infestation,but also to secondary viral infections (Hunget al., 1996). Several chemical substanceswere used successfully to control mites(Mobus and Bruyn, 1993) and a wide arrayof chemicals (acrinathrin, flumethrin,

fluvalinate, amitraz, coumaphos, cymizoleand other) were highly effective, killingmore than 99% of the mites present ininfested colonies (Ferrer-Dufol et al., 1991).However in consecutive years resistance ofmite against these pesticides has beendemonstrated (Elzen et al., 1998; Milani,1995) due to high selection pressure (Milani,1999). Mite control is imperative in orderto maintain the population of honeybeecolonies in most beekeeping regions aroundthe world. The use of acaricides should alsobe minimised in beekeeping because of the

Apidologie 32 (2001) 333–340 333© INRA/DIB-AGIB/EDP Sciences, 2001

* Correspondence and reprintsE-mail: [email protected]

Original article

Acaricidal effect of oxalic acid in honeybee(Apis mellifera) colonies

Ales l GREGORCa*, Ivo PLANINCb

a Veterinary Faculty of the University of Ljubljana, Gerbicleva 60, 1000 Ljubljana, Sloveniab Animal health centre of Slovenia, Dept. of bee health, Slovenia

(Received 30 May 2000; revised 14 March 2001; accepted 2 April 2001)

Abstract – Three oxalic acid (OA) solutions were applied to 24 honeybee colonies to test acaricidaleffects on Varroa destructor. Daily natural mite drop per colony averaged 0.52. Higher mite mortality(18.33) was found after three August OA treatments. The mean efficacy’s of the three water solutionsof OA/sucrose (w/w), 3.4%/47.6%, 3.7%/26.1%, and 2.9%/31.9% applied in the presence of brood,was 52.28%, 40.66% and 39.16% respectively. A significantly higher efficacy was recorded when3.4%/47.6% was applied in comparison to 2.9%/31.9% solution. There was no difference in effi-cacy between OA solutions administered during a broodless period on October 28. The average effi-cacy in all colonies was 99.44%. The results suggest that OA has limited acaricidal effect in colonieswith brood, but it is highly effective in a broodless period.

Varroa destructor (jacobsoni) / honeybee / control / oxalic acid /efficacy

residues and their breakdown products inhoney and wax (Wallner, 1999) and becauseof potential resistance to acaricides (Ruijter,1994). The selection pressure for resistanceagainst “natural acaricides” such as organicacids and essential oils is presently low(Milani, 1999). Accumulation in wax doesnot occur and residues in honey are smalland toxicologically not important (Imdorfet al., 1996).

Acaricide treatment and counting themites drop from the colony on the bottomboard are reliable diagnostic methods (Ritter,1981; Fries et al., 1991; Gregorc and Jelenc,1996; Poklukar, 1999). A relationship wasfound between mites in the hive debris andmite population in a colony (Liebig et al.,1984). Experiments have been conductedto evaluate oxalic acid (OA) for mite controlin colonies with brood and without brood(Imdorf et al., 1996; Brødsgaard et al., 1999;Nanetti and Stradi, 1997; Nanetti, 1999).OA activity tests using a range of OA con-centrations from 2 to 5% in 30 and 60%sucrose solutions (w/v) were tested incolonies without or with brood. Achievedefficacy resulted in high levels of mite mor-tality, estimated as 97.3%, 98.3% and 99.5%respectively during broodless period(Radetzki, 1994; Nanetti et al., 1995; Imdorfet al., 1997). 95% efficacy after three treat-ments of 5% OA (Mutinelli et al., 1997) and24% efficacy after one spring treatment(Brødsgaard et al., 1999) administered bytrickling was achieved, when the cappedbrood was present.

This paper presents data on the naturalmite fall in non treated and OA treatedcolonies. The aim was to establish the com-parative acaricidal effect of 3.4% OA/47.65%sucrose, 3.73% OA/26% sucrose and 2.9%OA/31.95% sucrose in water solution. Theaim of our work was also to establishwhether oxalic acid could be successfullyused as an alternative to acaricide whenbrood is present and whether counting offallen mites on the hive bottom was a reli-able method to determine a rate of mite mor-tality after treatments.

2. MATERIALS AND METHODS

Twenty-four honeybee Apis mellifera L.colonies populated in national standard AZn

“back load” hive type (Zdeslar, 1998), withnine combs (41 × 26 cm) in each brood andhoney compartments, were located at onesite near Vipava, Slovenia with mildMediterranean climate influence. Colonieswere treated with Perizin (Bayer, Germany)the previous winter when no brood was pres-ent. In the spring of 1999, metal sheet withdimensions of 38 cm × 29.8 cm wereinserted on to the hives floor in order torecord natural mite mortality from all beespaces between combs. Wire screens abovethe sheet prevent bees from coming in con-tact with debris. Before the experiment,colonies were equalised to occupy from 5to 7 brood combs. On sampling dates, miteswere recorded and inserts were emptied.Natural mite drop-down was counted incolonies for periods before and after OAtreatments and after treatment with Perizin.These periods were from May 22 to June 5,from June 25 to July 12 and from July 31to August 12 and after August OA treat-ments. Mite drop was monitored also fromSeptember 9 to October 28 and after Octo-ber 28 OA treatment and after Perizin appli-cation on December 29 and January 5respectively.

Treatments were applied to twenty-fourcolonies on August 12 as follows: (1)six colonies received a 3.4% OA and 47.6%sucrose in water solution (w/w) using oxalicacid dihydrate (Riedel-de Haën), sucrose(sugar) and de-mineralised water, (2) sevencolonies received 3.7% OA and 26.1%sucrose (w/w) (Nanetti, 1999), (3) sevencolonies received 2.9% OA and 31.9%sucrose (w/w), (4) four-control coloniesreceived de-mineralised water only. Treat-ments were repeated on August 21, August30, when the brood was present, and onOctober 28 during a broodless period. Dur-ing the October 28 treatment, colonies pre-viously water treated, received a 3.7% OAand 26.1% sucrose solution, the same

A. Gregorc, I. Planinc334

concentration previously applied to the treat-ment 2.

Treatments were applied to each colonyby trickling 50 ml of the treatment solutionover the combs, in situ, and bees in thebrood compartment using a syringe. Dur-ing the treatment the applicator wore respi-ration mask, protective glasses and rubbergloves. During the experimental treatmentsthe outside temperature was between 20 and25 °C, except on the last three treatmentsdates when the outside temperature wereOctober 28, 15 °C December 29, 7 °C Jan-uary 5, 7 °C. Oxalic acids and Perizin solu-tions were approximately 20 °C.

In order to establish the efficacy of dif-ferent oxalic acid concentrations expressed inmite mortality, two standard Perizin treat-ments (Mutinelli et al., 1997; Trouiller, 1998)were applied to all colonies on December29 and January 5. Mite mortality was estab-lished by counting mite drop-down four daysafter each OA and Perizin treatments.

The percent mites killed by treatmentswhen brood was absent (FTNB) was esti-mated using the formula, FTNB = FOA2/(FOA2 + FP) × 100, where FOA2 is thenumber of fallen mites during treatment onOctober 28 and FP is an estimate of the num-ber of mites not killed by OA treatments andwas obtained by counting the mite drop dur-ing treatment with Perizin on December 29and January 5. The percent of mites killed bytreatments when brood was present (FTB)was estimated using the formula,FTB = FOA1 / (FOA1 + FOA2 + FP) × 100,where FOA1 is the total number of mitesdropping during the treatment periodsAugust 12 to 21, from August 21 to 30 andfrom August 30 to September 9.

Treatment efficacy was also estimated bycomparing mite drop before and after treat-ments and mite mortality between consecu-tive OA treatments. Experimental hives wereequipped with dead bee traps (Accorti, 1994)to collect and count dead bees five days aftereach treatment. Colonies strength and behav-iour changes in bees were evaluated and

compared to untreated colonies visual onthe same day of the treatments. Data analy-ses were carried out by ANOVA (analysisof variance) with the aid of the Statgraphic(1991) programme.

3. RESULTS

3.1. Natural mite mortality

Mite levels in colonies were not differentamong the treatment groups prior to theapplication of treatments (F = 1.89; df = 3;P > 0.1) and averaged 0.53 ± 0.45.

3.2. August oxalic acid treatment

Daily mite drop in colonies receiving3.4% OA/47.6% sucrose solution (group 1)increased from less than 1 mite to 28.11(± 12.45) in four days after OA treatmentsconducted on August 12, 21 and 30. Thehighest daily mite mortality per colony,11.60 (± 7.05), was also observed in thesame treated colonies, during prolongedmonitoring time, continuing to September 9.In September and October the mite mortal-ity decreased continuously and the maxi-mal main 1.82 (± 1.09) daily mite drop-down was found in colonies that received3.7% OA/26.1% sucrose solution. In con-trol colonies, daily mite mortality remainedon an average level 0.70 (± 0.68).

Mite drop in all OA treated colonies wassignificantly higher in comparison to naturalmite drop-down before treatments (P < 0.01)and in comparison to untreated colonies dur-ing the experiment (P < 0.01). No significantchange in mite drop-down was observed inwater treated colonies in comparison to pre-treatment, natural mortality (P > 0.05).

Mite drop-down after August treatmentscounted between 9.9 and 28.10 and signifi-cant higher (P < 0.01) compared to naturalmite drop following prior treatments. In thesame period, natural mite drop did not beenin water treated colonies (P > 0.05).

Oxalic acid efficacy 335

3.3. October oxalic acid treatment

Mite drop after OA application in thebroodless colonies on October 28 was sig-nificantly higher (P < 0.01) than in the pre-treated period observed between 9.9. and28.10. One oxalic acid treatment on Octo-ber 28, also resulted in higher mite mortal-ity (P < 0.01) compared to mite mortalitytriggered by three August OA treatmentswhen the brood was present. Mite mortalityduring the experiment is shown in Figure 1.

3.4. The efficacy

The sequence of three OA treatmentsconducted during August resulted in average44.04% (± 7.19) mite reduction of allcounted mites during the season. The rela-tive efficacy of particular OA solutionapplied is shown in Figure 2. Differencesin efficacy between three OA concentrationswere significant (P < 0.001). The applicationof 3.4% OA/47.6% sucrose solution wasfound significantly more effective than 2.9%OA/31.9% sucrose solution applied in

colonies with brood (P < 0.05). There wereno differences in efficacy between 3.7%OA/26.1% sucrose and 2.9% OA/31.9%sucrose (P > 0.05).

The analyses of variance show signifi-cant higher effectiveness of October OAtreatment in comparison to three OA treat-ments during previous August (P < 0.001).The average relative efficacy of final OAapplication in broodless colonies conductedon October 28, was estimated at 99.44%(± 0.54) and differences between colonieswere not significant (P > 0.1). The efficacyof OA solution applied to previouslyuntreated colonies was in the same range99.58% (± 0.81) as colonies of other exper-imental groups.

3.5. Other observations

In OA treated colonies no queenlessnesswas recorded and worker bee mortality(3.25 ± 1.25 bees/day) five days after Augusttreatments were not significantly differentfrom control colonies (2.5 ± 0.58 bees/day,P > 0.1). Mean bee mortality after October

A. Gregorc, I. Planinc336

Figure 1.Natural mite mortality per day observed in three pre-treatment periods (groups A, B, C), mitemortality following three oxalic acid (OA) applications in August (group D), post treatment mitemortality per day (group E), one 3.7% OA/26.1% sucrose application on October 28 (group F) andmite mortality following two Perizin applications to all colonies (group G). Groups D and F give themite mortality per 4 days and group G the total mite mortality. Bars indicate standard deviations.

OA treatment was on average 1.63 (± 1.32)bees/day and was significantly lower thanthat observed after Perizin treatments (11.54± 3.49 bees/day). Over-wintering coloniesand early spring development in the year2000 were normal without visible changes.

4. DISCUSSION

Daily natural mite mortality indicatinginfestation (under 1 mite/day) and colonydevelopment was average for the local nat-ural conditions during the season 1999.Monitoring the natural mite mortality duringthe spring and summer time is an essentialdiagnostic method to obtain estimation ofmite population development (Liebig, 1994;Martin, 1998). Three OA trickling, withinthe period when the brood is present,showed an effectiveness of approximately44% significant difference in mite mortalitycompared to the control. Relatively low effi-cacy of OA is due to mite survival in thesealed brood (Radetzky, 1994). In colonieswith capped brood cells, three OA treat-

ments resulted in 95% mite populationreduction (Mutinelli et al., 1997). Under ourexperimental conditions, OA treatmentsshowed a significant influence on the finalreduction of infestation level. The reduc-tion of mite population with OA when thebrood is present and after honey extractioncould be a positive experience in highlyinfested colonies. A reduction by about halfof the mite population during August seemsto be important for survival of colonies. OAtreatments when the brood was present didnot affect the colony development comparedto the control colonies. The results of thisstudy also indicate that 3.4% OA/47.6%sucrose is significantly more effective than2.9% OA/31.9% sucrose and is of practicalimportance for mite control.

Mite drop after August treatments (observedduring September and October) was signif-icant higher compared to pre-treatment nat-ural mite mortality estimated from May toAugust. Reasons for this could include areinvasion from controls and from coloniesin the neighbourhood (Imdorf et al., 1999),and an yet unstudied residual effect of OA

Oxalic acid efficacy 337

Figure 2.Efficacy of OA treatments expressed in % of drop mites compared to all drope mites dur-ing the experiment. Treatments: Group 1: 3.4% OA / 47.6% sucrose.Group 2: 3.7% OA / 26.1% sucrose.Group 3: 2.9% OA / 31.9% sucrose.Control: 1 = water treatment; 2 = 3.7% OA/ 26.1% sucrose.

on mites in the colony. Autumn natural mitemortality is normally high and thus the effi-cacy of acaricide is often higher thanexpected (Trouiller, 1998). OA efficacy wasunderestimated, when the brood is present,because surviving reproductive mites werekilled and finally counted after October OAand December/January Perizin treatments.

Effectiveness of OA solutions trickled inbroodlees period was over 99% in our stud-ies. Other OA and sucrose concentrationsalso resulted in very high efficacy, in therange of 95% (Imdorf et al., 1999), up to98.6% (Nanetti et al., 1995; Nanetti, 1999). Ina broodless period all applied concentrationsof OA demonstrated effectiveness againstmites. Remarkably, OA effectiveness againstmites in the autumn and winter treatment iscomparable to Perizin effectiveness which isused as a second – control acaricide(Mutinelli et al., 1997; Trouiller, 1998). Thefinding of this study was, that OA solutionconcentrations are highly effective in brood-less period without visible side effects.Adverse effects on bee colonies after OAspraying and trickling were also notobserved when used in March (Brødsgaardet al., 1999). OA side effects have beenreported by Higes et al. (1999) and addi-tional field and lab analyses need to be con-ducted using different OA/sucrose concen-trations in varied climatic and year-seasonconditions. Good efficacy of OA and as yetundeveloped resistance against acaricidesof natural origin (Milani, 1999) suggest thatapplication of OA can be effectively usedas an “alternative Varroa destructorcon-trol”. At a colony infestation expressed inless than 1 fallen mite/day, only autumn OAapplication into broodless colonies ensuresnormal colony development next spring.

ACKNOWLEDGEMENTS

The authors thank Jasna Kralj (BekeepingAssociation) for her comments and helpful dis-cussion and J. Verbic (Agricultural Institute ofSlovenia) for validating some of the statistics.We thank Prof. I.D. Bowen for reading and

correcting the manuscript. We also thank anony-mous reviewers for useful suggestions substan-tially improving the manuscript. This work wasfounded by the Ministry of Science and Tech-nology (Research group No. 502) and the Min-istry of Agriculture Forestry and Food.

Résumé – Action acaricide de l’acide oxa-lique dans les colonies d’abeilles (Apismellifera). Le but de l’étude était de déter-miner si l’acide oxalique (AO) pouvait êtreutilisé comme moyen de lutte alternatifcontre Varroa destructorlorsqu’il y a ounon du couvain dans la colonie. Vingt-quatrecolonies d’abeilles, situées en climat médi-terranéen doux (Slovénie) ont été utiliséespour étudier l’action acaricide des trois solu-tions aqueuses suivantes : (i) 3,4 % d’AOet 47,65 % de saccharose (solution A),(ii) 3,73 % d’AO et 26,1 % de saccharose(solution B), (iii) 2,9 % d’AO et 31,95 % desaccharose (solution C).La mortalité de l’acarien a été enregistréeavant et après les traitements à l’AO et aprèsun traitement final au Perizin. Les solutionsd’AO ont été administrées à trois groupesde colonies le 12 août, avec répétition les21 et 30 août en présence de couvain et le28 octobre en l’absence de couvain. Le trai-tement a consisté à faire couler goutte àgoutte à l’aide d’une seringue 50 mL de solu-tion sur les rayons et les abeilles du nid àcouvain. La température extérieure lors destraitements était entre 20 et 25 °C en août, de15 °C le 28 octobre et de 7 °C les 29 décem-bre et 7 janvier.Le pourcentage d’acariens tués a été estiméen présence (FTB) et en l’absence (FTNB)de couvain. La mortalité totale des acariensde toutes les colonies traitées a été signifi-cativement plus élevée que la mortalité natu-relle avant traitements (P < 0,01). La mor-talité suite aux trois traitements du moisd’août a atteint 44,04 % (± 7,19). La solutionA a été significativement plus efficace que lasolution C (P < 0,05) ; il n’y a pas eu de dif-férence entre les solutions B et C (P > 0,05).Un traitement à l’AO dans les colonies sanscouvain en octobre a provoqué une mortalitéplus élevée (P < 0,01) que celle due aux

A. Gregorc, I. Planinc338

trois traitements d’août (Fig. 1). L’effica-cité relative moyenne du traitement final àl’AO dans les colonies sans couvain a étéestimée à 99,44 % (± 0,54). Les différencesentre colonies n’étaient pas significatives(Fig. 2). Aucune perte de reine n’a été notéeet la mortalité des ouvrières (3,25 ± 1,25/jour) cinq jours après les traitements à l’AOn’a pas été significativement différente decelle des colonies témoins. L’hivernage descolonies et le développement printanier l’an-née suivante se sont déroulés normalementsans changements apparents.L’efficacité relativement faible de l’AO estdue à la survie des acariens dans le couvainoperculé. Le développement des coloniesavec couvain n’a pas été affecté par les trai-tements à l’AO comparé aux coloniestémoins. Les résultats de cette étude mon-trent aussi que la solution A est significati-vement plus efficace que la C, ce qui estimportant du point de vue pratique pour lalutte contre l’acarien. L’efficacité de l’AO enprésence de couvain a été sous-estimée parceque les acariens survivants capables de sereproduire ont été tués et finalement comp-tés après le traitement à l’AO d’octobre etceux au Perizin de décembre et janvier. Enconclusion, l’acide oxalique peut être uti-lisé efficacement comme moyen de luttealternatif contre V. destructor.

Varroa destructor/ lutte chimique / acideoxalique / efficacité

Zusammenfassung – Milbengiftigkeit vonOxalsäure in Honigbienenvölkern (Apismellifera). Eine Untersuchung der Milben-giftigkeit Oxalsäure (OA) in den Formulie-rungen von 3,4 % OA/47,65 % Zucker, 3,73 %OA/26,1 % Zucker und 2,9 % OA/31,95 %Zucker in Wasser wurde an 24 Bienenvöl-kern (Apis mellifera) in einem milden medi-terranen Klima durchgeführt. Hierbei solltefestgestellt werden, ob Oxalsäure bei Anwe-senheit oder Abwesenheit von Brut eineAlternative zu anderen Akariziden seinkönnte. Die Mortalität der Milbe Varroadestructor wurde vor und währendder Behandlung mit OA und nach einer

anschlieβenden Behandlung mit Perizinerfasst. OA-Lösungen kamen zunächstam 12. August bei drei Gruppen von Bie-nenvölkern zur Anwendung. Die Behand-lung wurde am 21. und 30. August wieder-holt, zu diesen Zeitpunkten war in denVölkern Brut vorhanden. Eine weitereBehandlung wurde am 28. Oktober an brut-losen Völkern durchgeführt. Für die Behandlung wurden unter Verwen-dung einer Pipette 50 mL der OA-Lösungenauf die Waben und Bienen des Brutnestsgeträufelt. Die Auβentemperaturen an denBehandlungstagen lagen zwischen 20 und25 °C, am 28. Oktober betrugen sie 15 °Cund am 29. Dezember sowie am 5. Januar7 °C. Der Prozentsatz getöteter Milben beiAnwesenheit von Brut (FTB) und bei Abwe-senheit von Brut (FTNB) wurde abgeschätzt.Der Milbentotenfall war in allen OA-behan-delten Völkern signifikant höher als vor derBehandlung (P < 0,01). Eine OA-Behand-lung in brutlosen Völkern hatte eine höhereMilbensterblichkeit zur Folge als alle 3Behandlungen im August (Abb. 1). Diesebrachten eine Verminderung der Milbenpo-pulation um 44,04 % (± 7,19) während derSaison. Eine 3,4 % OA/47,6 % Zuckerlö-sung war signifikant wirksamer als 2,9 %OA/31,9 % Zuckerlösung (P < 0,05). Zwi-schen der Wirksamkeit einer 3,7 % OA/26,1 %Zuckerlösung und einer 2,9 % OA/31,9 %Zuckerlösung gab es keinen Unterschied(P > 0,05). Die Behandlung im Oktober warsignifikant wirksamer als die drei Behand-lungen im August. Im Mittel wurde die Wir-kung der letzten OA-Behandlung in brutfreienVölkern als 99,44 % (± 0,54) abgeschätzt;Unterschiede zwischen Völkern waren hier-bei nicht signifikant (Abb. 2). Es wurdenkeine Königinnenverluste festgestellt, dieBienensterblichkeit von (3,25 ± 1,25 Bie-nen/Tag) war 5 Tage nach der Behandlungvon der in den Kontrollvölkern nicht unter-schiedlich. Überwinterung der Völker unddie Frühjahrsentwicklung im Jahr 2000waren normal und ohne sichtbare Unter-schiede. Die geringe Wirkung von OA im Sommer istauf das Überleben der Milben in den

Oxalic acid efficacy 339

Brutzellen zurückzuführen, die Behandlungwährend der Brutperiode hatte im Vergleichzu den Kontrollen keine Auswirkungen aufdie Völkerentwicklung. Die Ergebnisse derStudie weisen darauf hin, dass 3,4 %OA/47,6 % Zuckerlösung eine signifikanthöhere Wirksamkeit hat als 2,9 % OA/31,9 %Zuckerlösung, dieses Ergebnis ist für dieMilbenbekämpfung von praktischer Bedeu-tung. Die Wirksamkeit von OA bei Anwe-senheit von Brut wurde unterschätzt, dareproduzierende überlebende Milben bei derOA-Behandlung im Oktober und in denPerizinbehandlungen im Dezember undJanuar getötet und gezählt wurden. OA kannals eine “alternative Varroa Behandlung”eingesetzt werden.

Varroa destructor/ Honigbienen / Behand-lung / Oxalsäure / Wirksamkeit

REFERENCES

Accorti M. (1994) Le api e il monitoraggio ambien-tale. Valutazioni a lungo termine sulle gabbie per laraccolta delle api morte, Apicoltura 9, 19–29.

Anderson D.L., Trueman J.W.H. (2000) Varroa jacob-soni (Acari: Varroidae) is more than one species,Exp. Appl. Acarol. 24, 165–189.

Brødsgaard C.J., Jensen S.E., Hansen C.W., HansenH. (1999) Spring treatment with oxalic acid in hon-eybee colonies as varroa control, Danish Inst. Agric.Sci. report No. 6 Horticulture, 16 p.

Elzen P.J., Eischen F.A., Baxter J.B., Pettis J., ElzenG.W., Wilson W.T. (1998) Fluvalinate resistancein Varroa jacobsonifrom several geographic loca-tions, Am. Bee J. 138, 674–676.

Ferrer-Dufol M., Martinez-Vinuales A.I., Sanchez-AcedoC. (1991) Comparative tests of fluvalinate andflumethrin to control Varroa jacobsoniOudemans,J. Apic. Res. 30, 103–106.

Fries I., Aarhus A., Hansen H., Korpela S. (1991) Com-parison of diagnostic methods for detection of lowinfestation levels of Varroa jacobsoniin honey-bee(Apis mellifera) colonies, Exp. Appl. Acarol. 10,279–287.

Gregorc A., Jelenc J. (1996) Control of Varroa Jacob-soniOud. in honeybee colonies using Apilife-Var,Zb. Vet. Fak. Univ. Ljubljana 33, 231–235.

Higes M., Meana A., Suarez M., Llorente J. (1999)Negative long-term effects on bee colonies treatedwith oxalic acid against Varroa jacobsoniOud.,Apidologie 30, 289–292.

Hung A.C.F., Shimanuki H., Knox D.A. (1996) Therole of viruses in Bee Parasitic Mite Syndrome,Am. Bee J. 136, 731–732.

Imdorf A., Charriere J.D., Bachofen B. (1997) Effi-ciency checking of the Varroa jacobsonicontrolmethods by means of oxalic acid, Apiacta 32,89–91.

Imdorf A., Charriere J.D., Fluri P. (1999) Apimondiacongress 36, Vancouver, Proceedings, 143.

Imdorf A., Charriere J.D., Maquelin C., KilchenmannV., Bachofen B. (1996) Alternative Varroa control,Am. Bee J. 136, 189–193.

Liebig G. (1994) Bedeutung des natürlichen Milben-falls, Dtsch. Bienen J. 1, 14–15.

Liebig G., Schlipf U., Fremuth W., Ludwig W. (1984)Ergebnisse der untersuchungen über die befallsen-twicklung der Varroa-Milbe in Stuttgart-Hohen-heim 1983, Allg. Imkerz. 18, 185–190.

Martin S. (1998) A population model for the ectopara-sitic mite Varroa jacobsoniin honey bee (Apis mel-lifera) colonies, Ecol. Model. 109, 267–281.

Milani N. (1995) The resistance of Varroa jacobsoniOud. To pyrethroids: a laboratory assay, Apidologie26, 415–429.

Milani N. (1999) The resistance of Varroa jacobsoniOud. to acaricides, Apidologie 30, 229–234.

Mobus B., Bruyn C. (1993) The new Varroa hand-book, Northern Bee Books.

Mutinelli F., Baggio A., Capolongo F., Piro R., PrandinL., Biasion L. (1997) A scientific note on oxalicacid by topical application for the control of var-roosis, Apidologie 28, 461–462.

Nanetti A., Stradi G. (1997) Oxalsäure: Zuckerlösungzur Varroabehandlung, Allg. Dtsch. Imkerztg. 11,9–11.

Nanetti A., Stradi G. (1997) Varroasi: trattamento chim-ico con acido ossalico in sciroppo zucherino, ApeNostra Amica 19, 6–14.

Nanetti A., Massi A., Mutinelli F., Cremasco S. (1995)L’acido ossalico nel controllo della varroasi: notepreliminari, Apitalia 22, 29–32.

Poklukar J. (1999) Influence of queen mothers on thehoneybee hive Varroa mite population in the year1998, Zb. Bioteh. Fak., Univ. v Ljubljani 74, 57–63.

Radetzki T. (1994) Oxalsäure eine weitere organischeSäure zur Varroabekämpfung, Allg. Dtsch. Imk-erztg. 12, 11–15.

Ritter W. (1981) Varroa disease of the honeybee Apismellifera,Bee World 62, 141–153.

Ruijter A. (1994) Issues in the control of Varroa infes-tation. New perspectives on Varroa, Matheson A.(Ed.), IBRA Cardiff.

Statgraphics (1991) Statistical graphic system, STSC,Rockville.

Trouiller J. (1998) Monitoring Varroa jacobsoniresist-ance to pyrethroids in western Europe, Apidologie29, 537–546.

Zdeslar P. (1998) Izdelava AZl-panja, in: Poklukar J.(Ed.), Od clebele do medu, Ljubljana, 193–200.

Wallner K. (1999) Varroacides and their residues inbee products, Apidologie 30, 235–248.

A. Gregorc, I. Planinc340