e-vlbi over transpac masaki hirabarudavid lapsleyyasuhiro koyamaalan whitney communications research...

20
e-VLBI over TransPAC Masaki Hirabaru David Lapsley Yasuhiro Koyama Alan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications Research Laboratory, Japan MIT Haystack Observatory, USA [email protected] [email protected]. edu [email protected] [email protected]. edu

Upload: bryce-randall

Post on 01-Jan-2016

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

e-VLBI over TransPAC

Masaki Hirabaru David Lapsley Yasuhiro Koyama Alan Whitney

Communications Research Laboratory,

Japan

MIT Haystack Observatory, USA

Communications Research Laboratory,

Japan

MIT Haystack Observatory, USA

[email protected] [email protected] [email protected] [email protected]

Page 2: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

• Introduction– Overview of e-VLBI

– Advantages of e-VLBI

– Typical e-VLBI data requirements

• e-VLBI Experiments to date• Future e-VLBI experiments over TransPAC• Summary of impact of e-VLBI

Outline

Page 3: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

Traditional VLBIThe Very-Long Baseline Interferometry (VLBI) Technique(with traditional data recording on magnetic tape or disk)

The Global VLBI Array(up to ~20 stations can be used simultaneously)

Page 4: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

Chautauqua 2001

Quasars, hotspots, polarization

VLBI astronomy example

ASTRONOMY• Highest resolution technique available to

astronomers – tens of microarcseconds• Allows detailed studies of the most distant

objects

GEODESY• Highest precision (few mm) technique

available for global tectonic measurements• Highest spatial and time resolution of

Earth’s motion in space for the study of Earth’s interior

•Earth-rotation measurements important for military/civilian navigation•Fundamental calibration for GPS constellation within Celestial Ref Frame

VLBI Science

Plate-tectonic motions from VLBI measurements

Page 5: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

• Traditional VLBI– Data is recorded onto magnetic media (e.g. tape or hard

disk) - currently at 1 Gbps/station

– Data shipped to central site

– Data correlated - result published 4d - 15 weeks later

• e-VLBI– Use the network instead of storage media

– Transmit data in real-time or near-real-time from instrument (telescope) to processing center

– Many advantages...

e-VLBI

Page 6: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

Advantages

• Scientific:– Bandwidth growth potential for higher sensitivity

– Rapid processing turnaround

• Practical– Real-time diagnostics

– Increased reliability

– Lower cost

Page 7: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

Typical e-VLBI Data Requirements

Description Geodesy Astronomy

Duration(hours) 24/weekBlocks of several contiguous days

Telescopes 7 (nominal) Up to 20

% Observation Time 30-50 50-75

Data rate(Mbps) 256 1024

Total data collected (/station/day)

~ 1 TB ~ 7 TB

Page 8: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

Typical e-VLBI Data Requirements

e-VLBI Data Requirements(per-Telescope)

0

50

100

150

200

1 10 100 1000 10000

Average Transfer Rate (Mbps)

Total Transfer Time (h)

Intensive Geodesy Astronomy (1 day)

IntensiveCRL/Haystack

June 2003

T2023CRL/Haystack/MPI

November 2003

Wetzell, Germany Haystack, USAKashima, Japan (2004)NASA GGAO, USA

Onsala, SwedenWestford, USA

Westerbork, The Netherlands

Kashima, Japan (2003)

Haystack, USA(2004)

Physical shipping of media

CRF22/23CRL/Haystack/USNO

October/November 2003

TestGGAO/Westford

October 2002

Arecibo, USAKokee Park, USA

Page 9: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

Typical e-VLBI Data Requirements

e-VLBI Data Requirements(Correlator)

0

50

100

150

200

1 10 100 1000 10000

Average Transfer Rate (Mbps)

Total Transfer Time (h)

Intensive Geodesy Astronomy (1 day)

Physical shipping of media

Wetzell, Germany Haystack, USAKashima, Japan (2004)NASA GGAO, USA

Onsala, SwedenWestford, USA

Westerbork, The Netherlands

Kashima, Japan (2003)

Haystack, USA(2004)

Arecibo, USAKokee Park, USA

Page 10: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

e-VLBI Experiments to Date

• Westford-GGAO e-VLBI results– First near-real-time e-VLBI experiment conducted on 6 Oct 02– GGAO disk-to-disk transfer at average 788 Mbps transfer rate

• Several US to Japan demonstrations– Support of Geodetic e-VLBI experiments:

• Up to ~ 100 Mbps sustained for near Real-time data transfer– Sub-24 hour UT1 estimate

– Network performance characterization and protocol testing• ~ 600 Mbps transfer rate in Tokyo to US experiment

• Recent 500 TB data transfers of real experimental data paving the way for “operationalization” of VLBI transfers

– CRF22, CRF23, T2023, T2024 part of IVS schedule

• Internet2 Demonstration - October 2003– ~644 Mbps using FAST TCP– ~400 Mbps using High Speed TCP (HSTCP)

Page 11: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

High Performance Transfer Protocols

• Tsunami– Rate-based flow control– Data over UDP– Control over TCP– Mark Meiss, Steve Wallace - Indiana University

• UDT– Rate-based flow control– Data and Control over UDP– Yunhong Gu, Robert Grossman - University of Illinois

• FAST TCP– Windowed, delay-based high performance TCP– Steven Low, et. al– Netlab, Caltech

Page 12: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

Tsunami: JapanUS(disc-to-disc)

Page 13: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

Tsunami: ThroughputTSUNAMI Throughput v. Target rate: Japan to USA

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200

Target Rate (Mbps)

Throughput (Mbps)

Perf5->Turtle(disc2disc) Perf5->Enterprise(disc2disc) Perf5->Enterprise (mem2mem)Turtle (write) Enterprise (write) Perf5 (read)

Page 14: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

UDT: JapanUS

Page 15: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

UDT ThroughputUDT Throughput: Japan to USA

0

100

200

300

400

500

600

700

1 2 3 4 5

Trial Number

Bandwidth (Mbps)

Perf5->Enterprise(mem2mem) Perf5->Enterprise(disc2disc)

Average=545 Mbps

Average=356 Mbps

Page 16: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

                                       

Tokyo XP

Kashima

1G

2.5G

TransPAC

9,000km

4,000kmLos Angeles

Chicago

New York

MIT Haystack

10G

1GAbilene

1G

100km

e-VLBI servertest server

1G x2

Koganei

2004 e-VLBI experimental plan between MIT Haystack and CRL Kashima at

1Gbps

– Continued experiments using commodity Internet connectivity at Kashima

– Experiments using 1 Gigabit per second Internet connectivity at Kashima

– Experiments using real-time correlation

– Planned 1 Gbps upgrade at Kashima

– Planned 2.5 Gbps upgrade at Haystack

Page 17: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

References

• TSUNAMI– http://www.indiana.edu/~anml/anmlresearch.html

• UDT– https://sourceforge.net/projects/lambdaftp/

• FAST TCP– http://netlab.caltech.edu/FAST/index.html

Page 18: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

Summary of Impact of e-VLBI Program

• Opens new doors for national and international astronomical and geophysical research.

• Represents an excellent match between modern Information Technology and a real science need.

• Motivates the development of a new shared-network protocols that will benefit other similar applications.

• Drives an innovative IT research application and fosters a strong international science collaboration.

Page 19: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

http://www.haystack.mit.edu

Thank you

David Lapsley

[email protected]

Page 20: E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications

http://www.haystack.mit.edu

Backup