dynamic behavior of shallow rectangular underground ...tunnelseis.pdf · 1 dynamic behavior of...

74
1 Dynamic Behavior of Shallow Rectangular Underground Structures in Soft Soils SERIES Concluding Workshop – Joint with US-NEES "Earthquake Engineering Research Infrastructures" Ispra, May 28-30, 2013 TA Project: DRESBUS II Investigation of the Seismic Behaviour of Shallow Rectangular Underground Structures in Soft Soils Using Centrifuge Experiments Tsinidis G., Rovithis E., Pitilakis K., Chazelas J.L. TA Project: TUNNELSEIS Investigation of Several Aspects Affecting the Seismic Behaviour of Shallow Rectangular Underground Structures in Soft Soils Tsinidis G., Heron C., Madabhushi S.P.G., Pitilakis K., Stringer M.

Upload: vantu

Post on 05-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

1

Dynamic Behavior of Shallow Rectangular Underground Structures in Soft Soils

SERIES Concluding Workshop –Joint with US-NEES "Earthquake Engineering Research Infrastructures"

Ispra, May 28-30, 2013

TA Project: DRESBUS IIInvestigation of the Seismic Behaviour of Shallow Rectangular Underground Structures in Soft Soils Using Centrifuge Experiments

Tsinidis G., Rovithis E., Pitilakis K., Chazelas J.‐L.

TA Project: TUNNELSEISInvestigation of Several Aspects Affecting the Seismic Behaviour of Shallow Rectangular Underground Structures in Soft Soils

Tsinidis G., Heron C., Madabhushi S.P.G., Pitilakis K., Stringer M.

2

Scope

• Seismic behavior of shallow rectangular underground structures in soft soils in transversal direction

• Racking deformations

• Dynamic earth pressures

• Seismic shear stresses – soil‐tunnel interface characteristics

• Dynamic internal forces

• Soil‐structure relative flexibility

3

• Several cases of extensive damage and collapses 

• Daikai station, Kobe Earthquake, 1995 – 1st embedded structure to be collapsed under seismic shaking

1.72m 2.19m

Column 10

Vs

ds

Seismic performance

4

• Imposed seismic ground deformations rather than inertial forces dominate the structure’s seismic response

• Crucial parameters controlling the soil – structure system behavior: • Soil to structure flexural stiffness (flexibility ratio)• Soil – tunnel interface conditions (rough or smooth interface ‐ separation) 

Mmax=683kNm αmax==0.37gαmax=0.62gMmax=444kNm

αmax=0.20g αmax=0.20g

Seismic behavior

5

Important “Open” Issues

• Input motion intensity and characteristics• Transversal seismic behavior and analysis

• Complex deformation modes (i.e. rocking, inward deformations)• Estimation of seismic earth pressures • Estimation of seismic shear stresses along the perimeter• Estimation of impedance functions • Effect of the soil‐structure relative flexibility• Effect of the soil‐structure interface characteristics 

• Longitudinal seismic behavior and analysis• Estimation of the asynchronous seismic motion • Estimation of impedance functions

• Several other issues coming from the design and construction point of view• Joints performance, design and construction, in case of segmented underground 

structures (e.g. immersed tunnels)

6

Experimental research within SERIES

• A substantial advancement to the above topics may be accomplished by means of well‐constrained experimental data allowing investigation of crucial response parameters 

• SERIES TA projects: DRESBUS II ‐ Investigation of the seismic behavior of shallow rectangular underground 

structures in soft soils using centrifuge experiments – IFSTTAR, Nantes, FR

TUNNELSEIS ‐ Investigation of several aspects affecting the seismic behavior of shallow rectangular underground structures in soft soils – Schofield Centre, University of 

Cambridge, UK

7

TA Project: DRESBUS II

8

Project partners and research team

TA User team

• Manos Rovithis (Researcher, EPPO‐ITSAK) – Lead User

• Grigoris Tsinidis (Civil Engineer MSc, PhD candidate AUTH)  • Kyriazis Pitilakis (Professor, AUTH)• Emmanouil Kirtas (Assistant Professor, TEI SERRES)• Dimitris Pitilakis (Assistant Professor, AUTH)• Anastasios Anastasiadis (Assistant  Professor, AUTH)• Konstantia Makra (Researcher, EPPO‐ITSAK)• Roberto Paolucci (Professor, POLITECNICO DI MILANO)

Access Provider: IFSTTAR, Nantes, FR 

• Jean‐Louis Chazelas (Researcher, IFSTTAR)

9

• Dynamic centrifuge tests on rectangular tunnels embedded in dry and saturated sands, under centrifuge acceleration of 40g

• The program extends the DRESBUS program (METU) posing a series of original issues

• Investigation of salient parameters affecting the tunnel response 

• Tunnel flexibility 

• Tunnel external face rugosity

• Soil saturation

• Input motion

Dynamic centrifuge tests

10

• IFSTTAR geotechnical centrifuge

• Actidyn QS80 actuator (sine wavelets, real records)

• Large Equivalent Shear Box (ESB) container

Centrifuge facility

11

Sand• Fontainebleau sand NE34 D50 = 0.2 mm, of relative density of about 70% 

Tunnel models• Material: 2017 A aluminum alloy 

• 2 pairs of models: flexible and rigid tunnels

• 2 levels of rugosity: smooth and rough tunnels

Materials

6mm

6mm 1.5mm

1.5mm50mm

47mmModel 1

50mm

Model 254mm

6mm

5mm

6mm

5mm

flexible rigid

tw / ts 0.25 0.83

Flexibility ratio 10 ‐ 12 0.4 ‐ 0.6

smooth Rough

δ δalum. φ

AR

R

AR

R

AR

R

12

• Automatic pluvation device 

• During the construction, the tunnel and all the embedded transducers are positioned in the model

Models preparation

13

• Saturation liquid of increased viscosity (N times)  ‐ similitude laws

• Water + Hydroxy‐methyl‐propylcellulose (HPMC)

Models preparation – saturated tests

14

• Provide sufficient support and waterproof without jeopardizing the plane strain behavior of the tunnel 

Tunnel boundaries

Tunnel

Soft  rubberfoam

Aluminum plate

Teflon plateESB container

 aluminum frame

 ESB containerrubber  layer

(a)

Dry tests Saturated tests

Tunnel

Soft  rubberfoam

Aluminum plate

Tef lon  plateESB container

 aluminum frame

 ESB containerrubber layer

PVC cap

Waterproof rubbermembrane

Soft silicon joint

(c)

15

• Accelerometers

• Displacement sensors

• Extensometers 

• Pore pressure cells

Models layout – instrumentation scheme

250mm

400mm240mm

360mm

180mm326mm

360m

m

A2

A1

A3

A4

A20

A12

A9 A6 A13A7

A10A11

A8  A5

130m

m130m

m

A14A15

20mm

100m

m

F5

F1F6

F10

D1 D2D3

D4

S1 S3

800mm

Dry Fontainebleau Sand(Dr=70%)

Model

14mm

y

x

z

S2

Accelerometer Laser displacement sensor

Diagonal extensiometer

Transversal "fork"extensiometer

50mm

5.0mm6.0mm54mm

A23

A24

A21

A22A25A26

A16

A17

A18A19

Pore pressuresensor

A27

P3P1

P2 P4 P5

P6

16

• “Fork” system of extensometers  to measure the lateral displacement profiles of the tunnels walls with respect to the invert slab

• Diagonal extensometers to check the diagonal distortions along the tunnel longitudinal axis 

Extensometers 

17

• Consolidation – stabilization circles (1g, 40g, 1g…)

• CPT test (dry tests)

• Shakes (EQ1 – EQ4)

• DAS acquisition system (sampling frequency 12.8 kHz)

Experimental procedure

Tunnel

CPT

~ 37 cm

22 cm

13 cm

18

• Real record from the 1994 Northridge EQ scaled up to 0.1g, 0.2g, 0.3g

Input motions

25.60.640.3012.0Pseudo‐Harmonic (85Hz) EQ4

401.00.3012.0EQ3

401.00.208.0EQ2

401.00.104.0

Northridge record

EQ1

Prototype scale

Model scale

Prototype scale

Model scale

Nominal Duration (s)Nominal amplitude (g)Input type

t (sec)

a (g)

‐0.2

‐0.1

0

0.1

0.2

0 10 20 30 40

0.1g

Fourier a

mplitu

de

f (Hz)

0

0.005

0.01

0.015

0.02

0.025

0 1 2 3 4 5 6 7 8

fo,soil + sine wave (0.3g, f = 2.125Hz)

19

• 7 tests x 4 “earthquakes”: more than 1200 records of the dynamic response

Testing Program

October 2012RoughSaturatedRigidDresbus2 7 18

October 2012SmoothSaturated RigidDresbus2 6 17

August 2012SmoothDryRigidDresbus2 5 16

December 2012RoughSaturated RigidDresbus2 4 25**

July 2012RoughSaturated RigidDresbus2 4 14*

July 2012RoughDry RigidDresbus2 3 13

May 2012SmoothDry FlexibleDresbus2 2 12

April 2012RoughDry 

70

Flexible Dresbus2 1 11

Test monthCulvert surface

Soil saturation

SoilDr (%)

Structure flexibilityTest nameTest case

#

* Failed** Repetition of Drebus2 7 1

20

• Acceleration time histories• Band pass filtering (20 ‐ 400 Hz)

• Displacement time histories (double integration)

• Transfer functions (frequency domain analysis)

• Stress‐strain loops – soil shear modulus (Zeghal and Elgamal, 1994, Brennan et al., 2005)

• Tunnels deformation time histories• Band pass filtering (20 ‐ 400 Hz) 

• Low pass filtering (400 Hz) 

• Pore pressures time histories• Low pass filtering (400 Hz) 

Experimental data processing

21

• Acceleration time histories – Flexible‐smooth tunnel in dry sand (Dresbus2 2 1 EQ1)

Representative experimental data

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A/4

0g

A1 − Input

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A2

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A3

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A4

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A5

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A6

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A/4

0g

A7

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A8

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A9

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A10

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A11

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A12

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A/4

0g

A13

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A14

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A15

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A16

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A17

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A18

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A/4

0g

A19

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

A20

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

t(s)

A21

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

t(s)

A22

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

t(s)

A23

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

t(s)

A24

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

t(s)

A/4

0g

A25

0 0.25 0.5 0.75 1−0.4−0.2

00.20.4

t(s)

A26

22

• Maximum horizontal acceleration – Flexible‐smooth tunnel in dry sand  (Dresbus2 2 1 EQ1)

0 0.07 0.14 0.21 0.280

0.09

0.18

0.27

0.36

Array 2 − A/40g

0

0

0

0

A2A3

A4

A20

A12

A9 A6 A13A7

A10A11

A8  A5

A14A15

Array 1

Array 2

Array 3

Array 4

Array 5

A16

A17

A18A19

A1

0 0.07 0.14 0.21 0.280

0.09

0.18

0.27

0.36

Array 5 − A/40g8 0 0.07 0.14 0.21 0.28

0

0.09

0.18

0.27

0.36

Array 4 − A/40g

Dep

th(m

)

8 0 0.07 0.14 0.21 0.280

0.09

0.18

0.27

0.36

Array 3 − A/40g

0

0

0

0

23

• Maximum horizontal acceleration – Flexible‐smooth tunnel in dry sand (Dresbus2 2 1 EQ1)0.36 0.36

0.1 0.15 0.2 0.250.05

0.06

0.07

0.08

0.09

0.1

Dep

th(m

)

A/40g @ tunnel depth

Array 1Array 2Array 3Array 4Array 5

A2A3

A4

A20

A12

A9 A6 A13A7

A10A11

A8  A5

A14A15

Array 1

Array 2

Array 3

Array 4

Array 5

A16

A17

A18A19

A1

24

• Stress strain loops – Flexible‐rough tunnel in dry sand (Dresbus2 1 1 EQ1 EQ4)

−0.08 −0.04 0 0.04 0.08−20

−10

0

10

20

stre

ss (

kPa)

A12−A13

−0.08 −0.04 0 0.04 0.08−20

−10

0

10

20A13−A14

−0.08 −0.04 0 0.04 0.08−20

−10

0

10

20A14−A15

−0.08 −0.04 0 0.04 0.08−20

−10

0

10

20

strain (%)

A6−A7

−0.08 −0.04 0 0.04 0.08−20

−10

0

10

20

strain (%)

stre

ss (

kPa)

A7−A8

−0.08 −0.04 0 0.04 0.08−20

−10

0

10

20

strain (%)

A9−A10

−0.08 −0.04 0 0.04 0.08−20

−10

0

10

20

strain (%)

A10−A11

−0.6 −0.3 0 0.3 0.6−60

−30

0

30

60

stre

ss (

kPa)

A12−A13

−0.6 −0.3 0 0.3 0.6−60

−30

0

30

60A13−A14

−0.6 −0.3 0 0.3 0.6−60

−30

0

30

60A14−A15

−0.6 −0.3 0 0.3 0.6−60

−30

0

30

60

strain (%)

A6−A7

−0.6 −0.3 0 0.3 0.6−60

−30

0

30

60

strain (%)

stre

ss (

kPa)

A7−A8

−0.6 −0.3 0 0.3 0.6−60

−30

0

30

60

strain (%)

A9−A10

−0.6 −0.3 0 0.3 0.6−60

−30

0

30

60

strain (%)

A10−A11

Northridge, 0.1g

Sine wave, 0.3g

25

• Soil Vs – Dry sand, flexible‐smooth tunnel (Dresbus2 2 1)

0 100 200 300 4000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Dep

th(m

)

Vs(m/s)

Array 2Array 4Array 5Hardin & Drenvich, 1972

0 100 200 300 4000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Dep

th(m

)

Vs(m/s)

Array 2Array 4Array 5Hardin & Drenvich, 1972

0 100 200 300 4000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Dep

th(m

)

Vs(m/s)

Array 2Array 4Array 5Hardin & Drenvich, 1972

0 100 200 300 4000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Dep

th(m

)

Vs(m/s)

Array 2Array 4Array 5Hardin & Drenvich, 1972

EQ1 EQ2

EQ3 EQ4

26

• Walls deformations ‐ Flexible‐rough tunnel in dry sand (Dresbus2 1 1 EQ1)

0 0.25 0.5 0.75 1−0.05

−0.025

0

0.025

0.05

D(m

m)

F1

0 0.25 0.5 0.75 1−0.05

−0.025

0

0.025

0.05F6

0.25 0.3 0.35−0.05

−0.025

0

0.025

0.05F1−F6

0 0.25 0.5 0.75 1−0.05

−0.025

0

0.025

0.05

D(m

m)

F2

0 0.25 0.5 0.75 1−0.05

−0.025

0

0.025

0.05F7

0.25 0.3 0.35−0.05

−0.025

0

0.025

0.05F2−F7

0 0.25 0.5 0.75 1−0.05

−0.025

0

0.025

0.05

D(m

m)

F3

0 0.25 0.5 0.75 1−0.05

−0.025

0

0.025

0.05F8

0.25 0.3 0.35−0.05

−0.025

0

0.025

0.05F3−F8

0 0.25 0.5 0.75 1−0.05

−0.025

0

0.025

0.05

D(m

m)

F4

0 0.25 0.5 0.75 1−0.05

−0.025

0

0.025

0.05F9

0.25 0.3 0.35−0.05

−0.025

0

0.025

0.05F4−F9

0 0.25 0.5 0.75 1−0.05

−0.025

0

0.025

0.05

t(s)

D(m

m)

F5

0 0.25 0.5 0.75 1−0.05

−0.025

0

0.025

0.05

t(s)

F10

0.25 0.3 0.35−0.05

−0.025

0

0.025

0.05

t(s)

F5−F10

F5

F4

F3

F2

F1

F10

F9

F8

F7

F6

One signal reversed

Low pass filtered data

Invert slab

Roof slab

27

• Walls deformations ‐ Rigid‐rough tunnel in dry sand (Dresbus2 3 1 EQ4)

F5

F4

F3

F2

F1

F10

F9

F8

F7

F6

One signal reversed

band pass filtered data

0 0.16 0.32 0.48 0.64−0.03

−0.015

0

0.015

0.03

D(m

m)

F1

0 0.16 0.32 0.48 0.64−0.03

−0.015

0

0.015

0.03F6

0.25 0.3 0.35−0.03

−0.015

0

0.015

0.03F1−F6

0 0.16 0.32 0.48 0.64−0.03

−0.015

0

0.015

0.03

D(m

m)

F2

0 0.16 0.32 0.48 0.64−0.03

−0.015

0

0.015

0.03F7

0.25 0.3 0.35−0.03

−0.015

0

0.015

0.03F2−F7

0 0.16 0.32 0.48 0.64−0.03

−0.015

0

0.015

0.03

D(m

m)

F3

0 0.16 0.32 0.48 0.64−0.03

−0.015

0

0.015

0.03F8

0.25 0.3 0.35−0.03

−0.015

0

0.015

0.03F3−F8

0 0.16 0.32 0.48 0.64−0.03

−0.015

0

0.015

0.03

D(m

m)

F4

0 0.16 0.32 0.48 0.64−0.03

−0.015

0

0.015

0.03F9

0.25 0.3 0.35−0.03

−0.015

0

0.015

0.03F4−F9

0 0.16 0.32 0.48 0.64−0.03

−0.015

0

0.015

0.03

t(s)

D(m

m)

F5

0 0.16 0.32 0.48 0.64−0.03

−0.015

0

0.015

0.03

t(s)

F10

0.25 0.3 0.35−0.03

−0.015

0

0.015

0.03

t(s)

F5−F10

Invert slab

Roof slab

28

• Maximum walls deformations – Flexible‐rough tunnel in dry sand (Dresbus2 1 1)

Band pass filtered data

0 0.075 0.150

9.5

19

28.5

38

Deformation (mm)

Dep

th(m

m)

Left side wallRight side wall

0 0.075 0.150

9.5

19

28.5

38

Deformation (mm)

Dep

th(m

m)

Left side wallRight side wall

0 0.075 0.150

9.5

19

28.5

38

Deformation (mm)

Dep

th(m

m)

Left side wallRight side wall

0 0.075 0.150

9.5

19

28.5

38

Deformation (mm)

Dep

th(m

m)

Left side wallRight side wall

EQ1 EQ2

EQ3 EQ4

29

• Maximum walls deformations – Rigid‐rough tunnel in dry sand (Dresbus2 3 1)

Band pass filtered data

0 0.025 0.050

9.5

19

28.5

38

Deformation (mm)

Dep

th(m

m)

Left side wallRight side wall

0 0.025 0.050

9.5

19

28.5

38

Deformation (mm)

Dep

th(m

m)

Left side wallRight side wall

0 0.025 0.050

9.5

19

28.5

38

Deformation (mm)

Dep

th(m

m)

Left side wallRight side wall

0 0.025 0.050

9.5

19

28.5

38

Deformation (mm)

Dep

th(m

m)

Left side wallRight side wall

EQ1 EQ2

EQ3 EQ4

30

• Diagonal deformations – Flexible‐smooth tunnel in dry sand (Dresbus2 2 1, EQ4)

0 0.16 0.32 0.48 0.64−0.15

−0.075

0

0.075

0.15

t(s)

D(m

m)

D1

0 0.16 0.32 0.48 0.64−0.15

−0.075

0

0.075

0.15

t(s)

D2

0 0.16 0.32 0.48 0.64−0.15

−0.075

0

0.075

0.15

t(s)

D3

0 0.16 0.32 0.48 0.64−0.15

−0.075

0

0.075

0.15

t(s)

D4

0.2 0.25 0.3−0.15

−0.075

0

0.075

0.15

t(s)

D(m

m)

Comparisons

D1 D2 D3 D4

In phase response

D1

D4D3

D2

31

• Soil surface settlements – Rigid‐rough tunnel in dry sand (Dresbus2 3 1)

S1 S2 S3

0 200 400 600 800 1000 12000

1

2

3

4

5

6

7

8

Sampling point

Set

tlem

ent(

mm

)

S1S2S3

Stabilization ‐ consolidation circles

Northridge 0.1g to 0.3g

Sine wavelet

32

• Horizontal acceleration @ soil free‐field 

0 0.1125 0.225 0.3375 0.450

0.09

0.18

0.27

0.36

Dep

th(m

)

A/40g − EQ10 0.1125 0.225 0.3375 0.45

0

0.09

0.18

0.27

0.36

Dep

th(m

)

A/40g − EQ2

DRESBUS 2 4 2DRESBUS 2 6 1DRESBUS 2 7 1

0 0.15 0.3 0.45 0.60

0.09

0.18

0.27

0.36

Dep

th(m

)

A/40g − EQ10 0.15 0.3 0.45 0.6

0

0.09

0.18

0.27

0.36

Dep

th(m

)

A/40g − EQ2

EQ1 (0.1g) EQ2 (0.2g)

DRESBUS 2 1 1DRESBUS 2 2 1DRESBUS 2 3 1DRESBUS 2 5 1

EQ1 (0.1g) EQ2 (0.2g)

Dry 

tests

Saturated 

tests

Preliminary interpretation of data

33

• Maximum walls deformations – input motion amplitude – tunnel stiffness

0 0.05 0.1 0.150

9.5

19

28.5

38

Dep

th(m

m)

0 0.05 0.1 0.15 0.2

EQ1EQ2EQ3EQ4

D(mm)

lsw rsw

Flexible‐rough tunnel in dry sand

(max deformation: 0.12mm)

0 0.0063 0.0125 0.01880

9.5

19

28.5

38

Dep

th(m

m)

0 0.0063 0.0125 0.0188 0.025

EQ1EQ2EQ3EQ4

D(mm)

lsw rsw

Rigid‐rough tunnel in dry sand

(max deformation: 0.02mm)

0.1g 0.2g 0.3g 0.3g

34

• Tunnel rugosity effect (dry tests)

0 0.0375 0.075 0.11250

9.5

19

28.5

38D

epth

(mm

)

0 0.0375 0.075 0.1125 0.15

EQ2 − D(mm)

EQ3 − D(mm)Flexible tunnel in 

dry sand

0 0.0375 0.075 0.11250

9.5

19

28.5

38

Dep

th(m

m)

0 0.0375 0.075 0.1125 0.15

38

RoughSmooth

EQ4 − D(mm)

lsw rsw

35

• Tunnel rugosity effect (saturated tests)

Rigid tunnel in saturated sand

0 0.005 0.01 0.0150

9.5

19

28.5

38D

epth

(mm

)

0 0.005 0.01 0.015 0.02

38EQ2 − D(mm)

EQ3 − D(mm)

0 0.005 0.01 0.0150

9.5

19

28.5

38

Dep

th(m

m)

0 0.005 0.01 0.015 0.02

38

RoughSmooth

EQ4 − D(mm)

lsw rsw

36

• Sand saturation effect

Rigid‐rough tunnel

0 0.0075 0.015 0.02250

9.5

19

28.5

38

Dep

th(m

m)

0 0.0075 0.015 0.0225 0.03

38

DrySaturated

EQ4 − D(mm)

lsw rsw

0 0.0075 0.015 0.02250

9.5

19

28.5

38D

epth

(mm

)

0 0.0075 0.015 0.0225 0.03

38EQ2 − D(mm)

EQ3 − D(mm)

37

• Full dynamic time history analyses of the coupled soil‐tunnel systems

• Analyses in prototype scale using ABAQUS

• No slip (solid connection) vs. Full slip conditions for the soil‐tunnel interface

Preliminary numerical analysis

38

• The soil mechanical properties are adopted according to the strain levels introduced by the each earthquake

• Gmax estimation and appropriate G‐γ‐D curves?

0

2

4

6

8

10

12

14

16

100 150 200 250 300

Vs(m/s)

Depth(m

)

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

γ (%)

G/Go

0714

21283542

495663

0.0001 0.001 0.01 0.1 1

γ (%)

D (%

)

Hardin and Drenvich, 1972

39

Tunnel – roof slab

Soil ‐ surface

‐0.3‐0.2‐0.1

00.10.20.3

6 8 10 12 14 16

t (s)

A (g)

• Acceleration time histories – EQL Full slip analysis

Soil ‐ base

Tunnel – invert slab

40

• Tunnel response – EQL No slip analysis

Diagonal extension

-1.5-1

-0.50

0.51

1.5

Dis

plac

emen

t (m

m)

-1.5-1

-0.50

0.51

1.5

Dis

plac

emen

t (m

m)

F4

F2

-1.5

-1

-0.5

0

0.5

1

1.5

Dis

plac

emen

t (m

m)

41

TA Project: TUNNELSEIS

42

Project partners and research team

TA User team

• Kyriazis Pitilakis (Professor, AUTH) – Lead user

• Grigoris Tsinidis (Civil Engineer MSc, PhD candidate AUTH)  • Anastasios Anastasiadis (Assistant Professor, AUTH)• Dimitris Pitilakis (Assistant Professor, AUTH)• Roberto Paolucci (Professor, POLITECNICO DI MILANO)

Access Provider: Schofield Centre, UCAM, UK

• Gopal Madabhushi (Professor, UCAM)• Charles Heron (PhD candidate, UCAM)• Mark Stringer (Dr Civil Engineer, UCAM)

43

• Dynamic centrifuge tests on square tunnels embedded in dry sand, under centrifuge acceleration of 50g

• Larger models than DRESBUS II  

• Investigation of tunnel flexibility at extreme ends

Dynamic centrifuge tests 

44

• Turner beam centrifuge – Schofield Centre UCAM

• SAM actuator (fixed amplitude and frequency inputs or sine sweeps) 

• Large Equivalent Shear Box (ESB) container

Centrifuge facility

45

Sand• Hostun HN31 sand , of relative density of about 50% and 90%

Tunnel models• “Rigid” tunnel

• Extruded section – 6063A aluminum alloy• 100 x 100 x 220 (mm) – walls thickness: 2 mm 

• “Flexible” tunnel• 33 swg soft alumimum foil – wrapped to form the section • 100 x 100 x 210 (mm) – walls thickness: 0.5 mm

• Flexibility ratios >>1  (flexible tunnels compared to the soil)

Materials

weld

46

• Automatic pluvation device • During the construction, the tunnel and all the embedded transducers positioned in 

the model

Models preparation

Trial poors for 

calibration

47

• Avoid sand entrance inside the model without affecting the tunnel plane strain behavior

• PVC plates 110 x 110 x 10 (mm)

Tunnel boundaries

48

Models layout – instrumentation scheme

• Accelerometers

• Pressures cells

• Position sensors (POTs)

• LVDTs

• Strain gauges

• Air hammer

g

ACC10

ACC1160 Air hammer 10mm

POT1 POT2LVDT2

AH5

LVDT1

AH4

AH3

AH2

AH1

ACC12

ACC14ACC15 ACC16

ACC13

ACC9 ACC4

ACC5

ACC6

ACC7

ACC8

PC1

PC2

110

100

85Accelerometer Pressure cell LVDT POT Strain gauge

(Dimensions in mm)

ACC1

ACC3

ACC2

Rough*

Rough*

Smooth

Soil‐tunnel interface

250Rigid1

250Flexible2

90

Soil Dr (%)

Rigid

Tunnel

23

Number of flights

Test #

* Stuck sand

SG‐A2

SG‐A1 SG‐B2

SG‐A3CC1

ACC3

ACC2

SG‐B1

Rigid tunnel

Flexible tunnel

SG‐A3SG‐B2

SG‐A4SG‐B3

SG‐B1 SG‐A2

SG‐A1

SG‐B4

Stain gauges set ups

49

• Calibration factors are derived for simple static loading patterns

• ABAQUS static analysis to estimate internal forces at each strain gauge position and to establish Internal force‐Voltage calibration curves – calibration factors

Strain gauges calibration

qq

fixity

fixityfixity

fixity

fixity

box withsand

supportingframe

supportingframe

SG B1Gauge Factor K=1.5

0

1

2

3

0 1 2 3 4M (Nmm/mm)

Volta

ge(V)SG B1

0

1

2

3

0 3 6 9 12Weigh (kg)

Volta

ge(V)

LC1a

LC1b

(a)

(b)

(c)

(d) (e)

50

• Spin up in steps (1g  50g) 

• Air hammer testing during swing up and before each shake 

• Shakes – pseudo‐sine or sine sweep motions

• Acquisition systems 

• Swing up: CDAQS (sampling frequency: 4 Hz)

• Dynamic tests: CDAQS (sampling frequency: 4 kHz)

• Air hammer testing: DasyLab (sampling frequency: 50 kHz)

Experimental procedure 

51

Input motions

0.5 0.75−15

−7.5

0

7.5

15

A(g

)

EQ5

0 0.2 0.4

EQ6

0 0.35

EQ7

0 0.2 0.4 0.6

EQ8

t(s)

*PH: pseudo harmonic, SS: sine sweep

TestID

Tunnel Depth(mm)

Dr

(%)EQID

Flight Input type* Frequency(Hz)

Amplitude(g)

Nominal Duration(s)

EQ1 1 PH 60 (1.2) 10.5 (0.21) 0.4 (20)EQ2 1 PH 60 (1.2) 12.9 (0.26) 0.4 (20)EQ3 1 PH 60 (1.2) 15.7 (0.31) 0.4 (20)

Test 1 Rigid – smooth external face 60 51

EQ4 1 PH 60 (1.2) 18.32 (0.37) 0.4 (20)EQ1 1 PH 30 (0.6) 1.29 (0.026) 0.4 (20)EQ2 1 PH 45 (0.9) 4.0 (0.08) 0.4 (20)Test 2 Flexible – rough external face 60 50EQ3 2 PH 45 (0.9) 4.0 (0.08) 0.4 (20)EQ1 1 PH 30 (0.6) 1.0 (0.02) 0.4 (20)EQ2 1 PH 45 (0.9) 4.0 (0.08) 0.4 (20)EQ3 1 PH 50 (1) 6.5 (0.13) 0.4 (20)EQ4 1 PH 50 (1) 12.0 (0.24) 0.4 (20)EQ5 1 SS 60 (1.2) 12.0 (0.24) 3.0 (150)EQ6 2 PH 50 (1) 5.8 (0.116) 0.4 (20)EQ7 2 PH 50 (1) 6.0 (0.12) 0.6 (30)

Test 3 Rigid – rough external face 100 89

EQ8 2 PH 50 (1) 11.0 (0.22) 0.5 (25)

52

• Acceleration time histories• Band pass filtering (20 ‐ 400 Hz)

• Displacement time histories (double integration)

• Racking distortions (from displacement time histories)

• Transfer functions (frequency domain analysis)

• Stress‐strain loops – soil shear modulus (Zeghal and Elgamal, 1994, Brennan et al., 2005)

• Earth pressures, displacements, internal forces time histories• Low pass filtering (400 Hz)

Experimental data processing

53

• Air hammer testing – Vs profiles – Test 3, second flight

• Comparisons with an empirical formulation (Hardin and Drenvich, 1972)

Representative experimental data

−1

0

1Time histories

0

−1

0

1

Rec

ord

(V

)

0

5.534 5.5345 5.535 5.5355 5.536 5.5365 5.537−1

0

1

t(s)

AH1

AH2

AH3

AH4

AH5

t1

t2

t3

t4

t5

0 100 200 300 4000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Dep

th(m

)

Vs(m/s)

Post EQ1

Post EQ2

Post EQ3

50g

Hardin and Drenvich, 1978

54

• Swing Up (Test 3) 

• Increase of self weight – increase of pressures and internal forces

0 4.25 8.5 12.75 17−0.2

−0.1

0

0.1

0.2D

isp

lace

men

t (m

m)

0 4.25 8.5 12.75 17−80

−60

−40

−20

0

Pre

ssu

re (

kPa)

0 4.25 8.5 12.75 17−16

−12

−8

−4

0

t(min)

Mo

men

t (N

mm

/mm

)

0 4.25 8.5 12.75 17−8

−6

−4

−2

0

t(min)

Axi

al f

orc

e (N

/mm

)

LVDT1LVDT2

PC1PC2

SG−B1SG−B2SG−B4

SG−A1SG−A2SG−A3SG−A4

(a) (b)

(c) (d)

55

• Acceleration time histories (Test 1, EQ4)

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6

A/5

0g

ACC1 − Input

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6ACC2

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6ACC3

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6ACC4

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6

A/5

0g

ACC5

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6ACC6

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6ACC7

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6ACC8

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6

A/5

0g

ACC9

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6ACC10

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6ACC11

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6ACC12

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6

t(s)

A/5

0g

ACC13

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6

t(s)

ACC14

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6

t(s)

ACC15

0 0.125 0.25 0.375 0.5−0.6

−0.3

0

0.3

0.6

t(s)

ACC16

56

• Vertical acceleration on tunnels roof slabs 

• Tests 2 & 3: out of phase records; rocking response? 

• Effect of shear stresses on the walls

6 0.3 0.33 0.36t(s)

Test2−EQ2 (0.08g*)

0.3 0.33 0.36

Test3−EQ4(0.24g*)

ACC15      ACC16

=

+ τyx τyx

τxy

τxyA/5

0g

57

• Soil surface displacements (Test 1)

0 0.5 1 1.5 2−8

−6

−4

−2

0

t(s)

D(m

m)

Dynamic Settlements

LVDT1 LVDT2

D(m

m)

Total settlements

(e)

LVDT1 LVDT2

58

• Earth pressures on the tunnel side wall (Test 3)

• Residual values after shaking (soil densification, soil yielding)

• Similar response reported by Cilingir and Madabhushi (2011)

PC2

PC1

PC1 PC2

0 0.2 0.4 0.6 0.8−150

−75

0

75

t(s)

Pre

ssu

re(k

Pa)

EQ1

0 0.15 0.3 0.45 0.6−150

−75

0

75

t(s)

Pre

ssu

re(k

Pa)

EQ2

0 0.15 0.3 0.45 0.6−150

−75

0

75

t(s)

Pre

ssu

re(k

Pa)

EQ3

0 0.15 0.3 0.45 0.6−150

−75

0

75

t(s)

Pre

ssu

re(k

Pa)

EQ4

0 0.75 1.5 2.25 3−150

−75

0

75

t(s)

Pre

ssu

re(k

Pa)

EQ5

0 0.15 0.3 0.45 0.6−150

−75

0

75

t(s)

Pre

ssu

re(k

Pa)

EQ6

0 0.175 0.35 0.525 0.7−150

−75

0

75

t(s)

Pre

ssu

re(k

Pa)

EQ7

0 0.15 0.3 0.45 0.6−150

−75

0

75

t(s)

Pre

ssu

re(k

Pa)

EQ8

SwingUp−f1 SwingUp−f3 SwingDown−f1 SwingDown−f3

59

• Tunnel bending moments (Tests 2 & 3)

• Residual values after shaking (soil densification, soil yielding)

• Similar results from centrifuge tests on circular tunnels (Lanzano et al., 2012)

M

0 0.45 0.9−0.2

−0.15

−0.1

−0.05

0

0.05

M(N

mm

/mm

)

t(s)

Test2−EQ2 (0.08g*)

0 0.3 0.6−5

−3.75

−2.5

−1.25

0

1.25

t(s)

Test3−EQ2 (0.08g*)

Flexible tunnel Rigid tunnel

Transient stage

Steady‐state stage

Residual stage

60

• Axial forces bending moments (Test 3, EQ3)

• Small Residual values after shaking (soil densification, soil yielding, slippage)

• Out of phase response for the walls: Rocking response for the tunnel 

0 0.2 0.4−2

−1

0

1

2

Axi

al f

orc

e (N

/mm

) SG−A1

0 0.2 0.4

SG−A2

0 0.2 0.4

SG−A3

0 0.2 0.4 0.6

SG−A4

0 0.2 0.4 0.6−2

−1

0

1

2

t(s)

Axi

al f

orc

e (N

/mm

) SG−A1 vs. SG−A3

SG−A1 SG−A3

A3A1

61

• The flexible tunnel collapsed during an earthquake

• Model excavation – tunnel deformed shape

Flexible tunnel collapse

62

• Soil – tunnel deformed shape (settlements up to 2m!) 

370

205.8

98.8

65

205.2

63.2

59.6

41.2

(Dimensions in mm)

6

(b)

Tunnel ‐Deformed shape

from PIVanalysis

95.65

98.8

53.05

38.35

5.5

38.2

(e)

63

• Collapse mechanism:

• Swing up of the centrifuge (increase of the gravity loads): buckling of the roof slab‐right wall corner

• Larger compressive loads on the left side‐wall 

• Buckling of the wall during the subsequent final earthquake

• P‐delta effects also affected the behavior

0 5.625 11.25 16.875 22.5−16

−12

−8

−4

0

D(m

m)

Swing Up

0 0.25 0.5 0.75 1−10

−7.5

−5

−2.5

0

D(m

m)

EQ3

0 5.625 11.25 16.875 22.5−20

−15

−10

−5

0

5

N(N

/mm

)

0 0.25 0.5 0.75 1−3

−1.5

0

1.5

3

N(N

/mm

)

0 5.625 11.25 16.875 22.5−4

−2

0

2

4M

(Nm

m/m

m)

0 0.25 0.5 0.75 1−2

−1

0

1

2

M(N

mm

/mm

)

LVDT1LVDT2

SG−A1SG−A2SG−A3

SG−B1SG−B2

Corner buckling Tunnel collapse

(a)

(b)

(c)

(f)

(g)

(h)

t(min) t(s)

64

• Full dynamic time history analyses of the coupled soil‐tunnel systems – Test 3

• Analyses in prototype scale using ABAQUS

• Interface (Coulomb friction, μ = 0.84)

Preliminary numerical analysis

65

• Soil non‐linear behavior

• Visco‐elastic material (Equivalent linear approximation)

• Combined equivalent linear‐elastoplastic approximation (Mohr‐Coulomb)

0 87.5 175 262.5 3500

0.1

0.2

0.3

0.4

Vs(m/s)

Dep

th(m

)

Hardin and Drenvich,1972Air hammer test

10−4

10−3

10−2

10−1

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

strain(%)

G/G

o

10−4

10−3

10−2

10−1

100

0

5

10

15

20

25

30

35

D (

%)

0 0.1125 0.225 0.3375 0.450

0.1

0.2

0.3

0.4

A/50g

Dep

th(m

)

Experimental dataEERA analysis

66

• Accelerations

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4

A/5

0g

ACC1 − Input

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4ACC2

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4ACC3

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4ACC4

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4

A/5

0g

ACC5

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4ACC6

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4ACC7

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4ACC8

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4

A/5

0g

ACC9

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4ACC10

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4ACC11

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4ACC12

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4

t(s)

A/5

0g

ACC13

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4

t(s)

ACC14

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4

t(s)

ACC15

0.2 0.25 0.3−0.4

−0.2

0

0.2

0.4

t(s)

ACC16

Experimental data

Numerical prediction

67

• Vertical acceleration on roof slab

• Out of phase response  reproduced by the numerical analyses (Visco‐elastic analysis)

0.2 0.25 0.3−0.2

−0.1

0

0.1

0.2

t(s)

A/5

0g

Experimental data

0.2 0.25 0.3−0.2

−0.1

0

0.1

0.2

t(s)

Numerical predictions

ACC15 ACC16

ACC15      ACC16

68

• Tunnel internal forces

• Differences due to the difference between the assumed and the actual in test mechanical properties of the soil, the tunnel and their interface

0 0.15 0.3 0.45 0.6−4

−2

0

2

4

N(N

/mm

)

SG−A1

0 0.15 0.3 0.45 0.6−4

−2

0

2

4SG−A2

0 0.15 0.3 0.45 0.6−4

−2

0

2

4SG−A3

0 0.15 0.3 0.45 0.6−4

−2

0

2

4

t(s)

SG−A4

0 0.15 0.3 0.45 0.6−12

−6

0

6

t(s)

M(N

mm

/mm

)

SG−B1

0 0.15 0.3 0.45 0.6−12

−6

0

6

t(s)

SG−B2

0 0.15 0.3 0.45 0.6−12

−6

0

6

t(s)

SG−B4

Experimental data

Numerical predictionExperimental data

Numerical prediction

69

Conclusions

70

• Maximum soil horizontal accelerations were slightly amplified within the soil deposit, for the dry tests, while for the saturated tests the amplification effects were less important due to the probable higher variation of the soil stiffness

• The side‐walls horizontal deformations developed in a symmetrical manner

• The diagonal extensometers denoted the plane strain behavior of the model sections

• Rigid tunnels were understandably less deformed during shaking compared to the flexible sections

• The effects of the face rugosity and saturation are still under investigation

Conclusions  ‐ DRESBUS II

71

• The horizontal acceleration was generally amplified towards the surface, while the  presence of the tunnel affected this amplification

• Vertical acceleration‐time histories recorded on the sides of the roof slab indicated a “rocking mode” of vibration for the tunnels

• Residual values were reported after each shake for the earth pressures on the side walls and the dynamic bending moments due to soil yielding and/or densification

• Smaller residuals were observed for the dynamic axial forces due to the soil densification, soil yielding and a small amount of sliding at the interface

Conclusions ‐ TUNNELSEIS

72

• The research leading to the presented results has received funding from the European Community’s Seventh Framework Programme [FP7/2007–2013] for access to the Turner Beam Centrifuge, Cambridge, UK, and the IFSTTAR Centrifuge, Nantes, FR under grant agreement no 227887 [SERIES]

• The technical support received by the Technicians of both the facilities is gratefully acknowledged

• DRESBUS II: www.series.upatras.gr/DRESBUS_II• TUNNELSEIS: www.series.upatras.gr/TUNNELSEIS

Acknoledgements

73

• Tsinidis G., Heron C., Pitilakis K., Madabhushi G. (2013) Physical Modeling for the Evaluation of the Seismic Behavior of Square Tunnels. A. Ilki and M.N. Fardis (eds.), Seismic Evaluation and Rehabilitation of Structures, Geotechnical, Geological and Earthquake Engineering 26 (in press)

• Tsinidis G., Pitilakis K., Heron C., Madabhushi G. (2013) Experimental and NumericalInvestigation of the Seismic Behavior of Rectangular Tunnels in Soft Soils. Proceedings of the 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2013), 12‐14 June 2013, Kos Island, Greece

• Tsinidis G., Rovithis E., Pitilakis K., Chazelas J.‐L.(2013) Centrifuge Modeling of the Dynamic Response of Shallow Rectangular Culverts in Sand. SERIES concluding Workshop, Ispra, May 28‐30 (near submission)

• Tsinidis G., Heron C., Pitilakis K., Madabhushi G. (2013) Centrifuge Modeling of the Dynamic Behavior of Square Tunnels in Sand. SERIES concluding Workshop, Ispra, May 28‐30 (near submission)

• Tsinidis G., Heron C., Pitilakis K., Madabhushi G. (2013) Experimental Investigation of the Seismic Behavior of Square Tunnels in Sand. (Journal paper –near submission)

• Tsinidis G., Rovithis E., Pitilakis K., Chazelas J.‐L. (2013) Seismic Behavior of Swallow Rectangular Culverts Embedded in Sand (Journal paper – near submission) 

Publications (Submitted or near submission)

74

Email: [email protected]

Thank you