Transcript
Page 1: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

PRECISE MAGNETOMETERS

ON BASE OF PULSED NMR TECHIQUES

G.Karpov, A.Medvedko, E.Shubin,

Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.

Budker INP, Novosibirsk RUPAC 2006

Page 2: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Budker INP, Novosibirsk RUPAC 2006

Precise Magnetometers on base of pulsed NMR techniques

In 1999-2006 a new generation of precise Magnetometers on base of pulsed NMR techniques

has been developed and fabricated at BINP.

Main features:

1) High precision: field measurement error less than 10-5, resolution is of order

10-7 (for homogeneous fields)

2) Wide field range: 0.025÷13 T

3) Large field range provided with one probe: BMAX/BMIN is up to 30

4)  Acceptable field gradients: grad(B)/B up to 5×10-4/mm

5)  Multichannel measurements

6) Small probe dimensions: minimal probe thickness is ~1 mm

7) Small probe sensitive volume – up to 1 mm3

8) Capability of measurements at liquid helium temperature

9) VME standard

Page 3: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

PULSED NMR TECHNIQUE USED IN BINP MAGNETOMETERS

"Спиновое эхо"

90 180

ССИ

BL

Т Т

Spin echo signalFID signal

Larmor frequency of nuclear precession , where γ – gyromagnetic ratio

Fourier-transformation

-20 -15 -10 -5 0 5 10 15 20Frequency

F NМR

Signal spectrum

FNMR = ωL0 /(2π),

где ωL0 – precession frequency in

the centre of probe sensitive volume

If RF pulses frequency FRF is close to precession frequency FL (FRF - FL < 1/T90) free induction decay (FID) signal and spin echo signal with precession frequency are appeared.

B – magnetic field value

Page 4: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Functional diagram of NMR Magnetometers

Probe headelectronics 1 Probe 1

Probe headelectronics 2 Probe 2

Probe headelectronics N Probe N

ProbeMultiplexer

VGA

Mixer 1LPF 1

LPF 2

ADC 1

ADC 2

VMEController

Mixer 2

Receiver circuit

Sw itch

Controlcircuit

FrequencySynthesizer

RF pulseGenerator

0 π/2

L = 0.5 - 300 m

Page 5: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Digital signal processing

Obtained in the magnet

ЕМ3.S of VEPP-4М

NMR waveform

envelope and

“weighting” function

Purpose: finding of the module and sign of difference frequency FD = FNМR – FSYNТ

NSF SENS )(Signal-to-noise ratio in frequency domain:

where ES – signal energy, SN – noise spectral density

Matched filtering: signal array before Fourier transformation is multiplied on matched

“weighting” function.

0

0,2

0,4

0,6

0,8

1

1,2

Time 3 ms

No

rma

lize

d

sig

na

l a

nd

w

eig

hti

ng

fu

nc

tio

n

"weighting"function

waveformenvelope

Page 6: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Two modes of operation

1) Search mode: scanning with Synthesizer frequency in specifying range and

finding of coarse value of NMR frequency

2) Measurement mode: precise measurement of NMR frequency; Synthesizer

frequency is close to NMR frequency and follows to it

Page 7: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

During the measurement cycle signal accumulation is performed: summing of N registered

NMR signals (digit arrays). It follows to signal-to-noise ratio increasing in times.

Simultaneously with signal accumulation digital signal processing is performed. During the

cycle M digital processing of the signal accumulated in cycle M-1 is performed.

Measurement cycle structure

N

NMR signalN

Cycle M

Time

NMR signal1

NMR signal2

NMR signalN

NMR signal1

Cycle M -1 Cycle M +1

Signal accumulation

Digital processing of the signalaccumulated in Cycle M-1

Digital processing of the signalaccumulated in Cycle M

NMR signal2

Field measurement results

Field measured during the cycle M-2 Field measured during the cycle M-1

Time duration of the elementary cycle TC = 20÷100 ms

Number of accumulated signals N = 10÷100

Page 8: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Structure of the Magnetometer’s Control System

VME crate controller

Magnetometer’s microcontroller

VME bus

ETHERNET

Magnetometer’s functional parts

OS: LINUX or VxWorksHigh level

Low level

Page 9: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

NMR probes

L L

C

C2

C1

L

wide range

NMR probeResonant NMR probes

Miniature NMR probes – with thickness up to

1 mm.

Probes with small sensitive volume – up to 1

mm3.

Probe Head electronics

One of NMR Probe design

Page 10: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Parameters of working substances

Working substance

Working nuclei

Gyromagnetic ratio

(with “chemical shift”)

γ/(2π), МHz/Т

Spin-lattice relaxation

time

Т1 , ms

Spin-spin relaxation

time

Т2 , ms

water protons 42.576396 53000 53000

rubber protons 42.576268 ~20 (В=0.5Т) ~0.7

Lithium salts solution

7Li nuclei and protons

16.54646 ~1000 ~1000

“heavy” water deiterium 6.53569 ~1000 ~1000

Metal aluminium

powder

27Al nuclei

11.112 ~30 (T=4.2K) ~0.04

Teflon 19F nuclei 40.0546 ~40 ~0.09

Page 11: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

“Dead” time of the Magnetometer’s receiver circuit.

Two modifications of NMR Magnetometers:

0

5,5

t

NMR probe signal

signal at the output of receiver circuit

"Dead time" TD

Modification “Dead time” TD Range of NMR signal duration

1 ~100 μs 0.5÷100 ms

2 3÷5 μs 10÷1000 μs

The problem of “dead time” decreasing is connected with large difference between RF pulses amplitude (~20V) and NMR signal amplitude (a few µV).

Page 12: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Receiver module

Page 13: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

12-channel Probe Multiplexer

Page 14: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

12-channel Magnetometer in VME standard

Page 15: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Error of absolute field measurements

Error of relative field measurements

Error due to space

uncertainty of

measurement point

(~10-1ΔB/B)

Error due to uncertainty of the gyromagnetic

ratio and field distortions caused by

diamagnetism or paramagnetism of the

working substance ~(2÷10)×10-6

Error caused by instability of the signal

spectrum shape

(~10-3ΔB/B)

Random error caused by noise

of the Receiver circuit (defines Resolution of meas.)

Error caused by instability

of the Synthesizer

frequency

(~510-8/°C)

Page 16: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

 

RMS frequency measurement error, caused by noise

Width of the signal spectrum: BTBFFS

20 /1

where ΔF0 – working substance NMR linewidth

T2 – spin-spin relaxation time of working substance

ΔB – field dispersion within probe sensitive volume

γ – gyromagnetic ratio

where – signal-to-noise ratio in frequency domain,

ΔFS – width of the signal spectrum.

FNS )(

FS

F NS

F

)(

Page 17: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Dependence of σF on the width of NMR signal spectrum

Spectrum density of NMR signal.

0

1

2

3

4

5

6

7

8

9

-4 -3 -2 -1 0 1 2 3 4

Frequency offset from NMR, kHz

Sp

ec

tru

m d

en

sit

y

S1

S2

Spectrum widthS1 - 0.2kHz (40mGs)S2 - 2.1kHz (500mGs)

Minimizing of the signal spectrum width:

1) NMR probe has to be set in the region with most homogenous field

2) In some cases – using of the compensating coils

3) Optimal probe sensitive volume ( corresponds to condition: 1/T2 k·ΔB·γ/π )

Resolution of measurements of the field with grad(B)/B less than 10-5/mm in the range

0.1÷13 T is of order 10-7/√Hz (for the probes on base of aluminium is of order 10-6/√Hz )

NMR signal spectrums

obtained with the same

probe at the fields with

different gradient

Grad(B)1 ≈ 0.1·grad(B)2

Page 18: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

NMR Magnetometer for electron-positron storage ring VEPP-4 (BINP)

Magnetometer is used for field measurements of four different bending magnets in the ring

and one additional magnet (magnet “H”) connected in series with main bending magnets

of the ring.

Magnet H NEM.1 SEM.1 SIM.3 EM3.S

Field range, Т 0.10.6 0.15 0.8

0.15 0.8 0.15 0.8 0.15 0.9

Field range of VEPP-4 magnets

Page 19: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

FID signal in time and frequency

domain obtained in magnet “H” on

the field 0.167 Т ( beam energy -

1840 МeV).

FID signal in time domain

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

Time, ms

US,

V

0 7

UCOS

USIN

B = 0.167 TFNМR = 7.1 МHz

Relative width of signal spectrum:

ΔFS /F ≈ 310-5

Signal-to-noise ratio in frequency

domain for measurement time 1 s:

S/N ≈ 500

Resolution of measurements σF /FNМR 10-7/√Hz

NMR signal spectrum in magnet "H"

0

1

2

3

4

5

6

FNMR - FSYNT, kHz

Sp

ec

tra

l de

ns

ity

0 10 –10

B = 0.167 TFNМR = 7.1 МHz

Page 20: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Results of field monitoring of the magnet “H” (VEPP-4)

Field of the magnet “H” before

experiments

1768,985

1768,99

1768,995

1769

1769,005

1769,01

1769,015

1769,02

0 5 10 15 20

Time, hours

Fie

ld,

G

1710,992

1710,9931710,994

1710,995

1710,996

1710,9971710,998

1710,999

17111711,001

1711,002

0 2 4 6 8 10

Time, hours

Fie

ld, G

Time of one measurement ~2 sec

σF /FNМR 5×10-8

Field of the magnet “H” during

experiments

Page 21: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Fast NMR measurements at VEPP-4

1770,38

1770,382

1770,384

1770,386

1770,388

1770,39

1770,392

1770,394

1770,396

1770,398

1770,4

0 1,6 3,2 4,8Time, sec

Fie

ld,

G

Time of one measurement ~50 ms (without signal accumulation)

Field measurement results of magnet “H”

σF /FNМR 4×10-7

Page 22: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

NMR Magnetometer for electron-positron collider

VEPP-2000 (BINP)

NMR probes are set at all eight bending magnets of the ring.

Main problem: Large field gradient within the probe volume – up to 120 G/cm at

maximal field ~2.4 T (Beam energy ~1 GeV).

Position of NMR probe in the gap of

VEPP-2000 bending magnet:

1 – magnet coil,

2 – vacuum chamber,

3 – NMR probe.

NMR probe with rubber

working substance sample

0.3×1.2×3 mm

Width of the signal spectrum in the field range 0.3÷2.4 T is (1÷2)×10-4

Resolution is better than 10-5/√Hz

Page 23: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

NMR Magnetometer for electron cooling facility (Fermilab, USA)

Layout of electron cooling

facility

NMR Magnetometer is used for field stabilization of ten bending magnets of

electron transport system.

Parameter Units Value

Magnet type – 45-degree 90-degree

Number – 8 2

Nominal field G 320 450

Field range G 270370 400500

Layout of the electron cooling facility

Bending magnets of the electron transport system

Page 24: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

NMR signal spectrum in the

field 320 G of the 45-degree

magnet (FNМR = 1.36 МHz)

Parameters of the signal spectrum:

• Relative width ~10-4

• Signal-to-noise ratio (measurement time is 1 sec) ~ 250

Resolution: σF /FNMR

310-7/√Hz.

Maximal error of relative field measurements:

210-6 – for year

-3 -2 -1 0 1 2 3

FNMR - FSYNT, kHz

Sig

na

l sp

ec

tru

m m

od

ule

Page 25: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Field stabilization on base of NMR magnetometer

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8Time, h

Fie

ld d

ev

iati

on

, p

pm

B = 320 G

Results of field stabilization of

45-degree bending magnet

(obtained with another NMR

Magnetometer)

At present all 10 bending magnets of the transport system are stabilized.

Long-time field stability is ~10-5 and limited by 16-bit Power Supplies DACs.

Page 26: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Position of NMR Magnetometer at MI-31 (Fermilab)

VME crate with NMR

Page 27: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Field measurements with NMR magnetometer

at liquid helium temperature

One of the tasks is magnetic field measurements in the superconducting 3-pole Wave

Length Shifters (WLS).

Task: measurements of the WLS central pole field with precision of order 10-5.

-0,6 -0,4 -0,2 0,0 0,2 0,4 0,6

-20000

0

20000

40000

60000

80000

Magnetic fiel profile at 7 Tesla levelalong main axis

B, G

au

ss

S, m

Field along WLS central axis

measured with Hall probesPosition of NMR probes inside the WLS.

Field range: 3÷7 T for BESSY-2 WLS and 5÷10 T for SpRing-8 WLS.

Page 28: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

NMR Probes for WLS

Design of NMR probes

assembling.Assembling of the pair of

NMR probes.

Probe working substance – aluminium powder, sensitive volume ~2 mm3.

Assembling of pair NMR probes is set in the central pole axis in the hole of 6mm

diameter.

Probe 2

Probe 1

Cable 1

Cable 2

2,5 mm

5,8 mm

Page 29: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

NMR signal at the WLS central pole field ~6 Т (FNМR ≈ 58 МГц )

Signal-to-noise ratio ~ 600

Relative width of the signal spectrum 610-4

Resolution of measurements ~(1÷2)×10-6/√Hz

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

Time, µs

NM

R s

ign

al e

nv

elo

pe

, V Measurement time = 3 sec

Nuclear magnetization MN is proportional to 1/kT, where T – is temperature.

At liquid helium temperature (T≈4.1K) MN is increased in 70 times compare with

room temperature.

Resolution of measurements of WLS field

Page 30: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

In 1999-2006 ten NMR Magnetometers on base of pulsed techniques have

been fabricated and applied at charge particles storage rings and field

measurements stands at:

• BINP (Russia)

• Fermilab (USA)

• Duke University (USA)

• BESSY-2 (Germany)

• SpRing-8 (Japan)

Conclusion

At present new NMR Magnetometer in VME standard is developing:

- one-channel magnetometer will occupy one VME module

- all digital signal processing will be performed by this module

Page 31: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

The end

Page 32: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
Page 33: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

ЯМР магнитометры, разработанные в России и за рубежом Изготовитель

Параметр

Диап. полей,

Т

Миним. толщ.

датчика мм3

Темпе-

ратура

Ср.кв.погр.(σF)1/F

Неста-

бильн.

част.

за сутки

Макс.град.

G/B

ИЯФ СО РАН 0.02513

0.55 мм 40 1 Комн.,

4 К

10-7 10-8

510-8/

С410-7 510-3/

см

Metrolab Instrument,

Швейцария

0.04314

~3 мм 3 10 Комн. 310-7 Т

510-9/

С10-7 210-3/

см

Drusch, Германия 0.029 ~5 мм 5 20 Комн. 10-7 Т 10-6/

год

10-7 –

Virginia Scientific Instrument, США

10-6 2.2

~2 мм 2106 10 Комн. 10-7 210-8/

год

310-7 –

ОИЯИ, Дубна 0.046 – 2 – Комн. – – 10-6 510-3/

см

Лаборатория PTB,

Германия

0.052 – – – Комн. 10-7 10-8

– – –

Университет Гейдельберга,

Германия1.51.

7~5 мм

– –Комн. 310-9

10-10/

год 10-8

Швейцарский Федеральный Институт

Технологии0.77 ~1 мм 10 1 Комн. 10-7

– – –

min

max

B

BminV ОТН

Page 34: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
Page 35: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Максимальная погрешность относительных измерений поля

(за сутки) для двух случаев

где ТИ – полное время одного измерения.

)103105(10531031 8898 OИОТН TT

С учетом нестабильности частоты Синтезатора: δОТН 510-7 , (ΔТО = 10°C).

Без учета нестабильности частоты Синтезатора: δОТН (12)10-8 .

2) Измерения поля сверхпроводящего соленоида при температуре жидкого гелия

датчиком с объемом рабочего вещества (порошка алюминия) около 2 мм3. В

диапазоне полей 513Т :

)103105(10421015.0 8876 OИОТН TT

δОТН (12)10-6 (ΔТО = 10гр.).

1) Измерения поля калибровочного магнита стенда магнитных измерений ИЯФ

нерезонансным датчиком с объемом рабочего вещества (воды) около 4 мм3. В

диапазоне полей 0.51.8 Т :

δШ δСП δCИНТ

Page 36: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Максимальная погрешность относительных измерений поля

калибровочного магнита

где ТИ – полное время одного измерения,

ΔТО – изменение температуры окружающей среды.

)103105(10531031 8898 OИОТН TT

При использовании нерезонансного датчика с объемом рабочего вещества (воды)

около 4 мм3 в диапазоне полей 0.51.8 Т величина δОТН (за сутки) :

δШ δСП δCИНТ

При времени одного измерения ТИ = 2 сек:

Без учета нестабильности частоты Синтезатора: δОТН (1÷2)10-8 .

С учетом нестабильности частоты Синтезатора:

δОТН 0.510-7 + 510-8 × ΔТО – за сутки;

δОТН 10-6 + 510-8 × ΔТО – за год

Page 37: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

5,94

5,9405

5,941

5,9415

5,942

5,9425

5,943

5,9435

5,944

5,9445

12 часов

По

ле

це

нтр

ал

ьн

ого

п

ол

юс

а,

Т

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

12 часов

Ош

иб

ка,

pp

mРезультаты измерения

естественного спада поля

центрального полюса

вигглера в режиме

Persistent Current Mode.

Всего выполнено около 1000

измерений за 12 часов

Постоянная времени спада

поля – около одного года

Погрешность измерения

поля,вызванная шумами,

для каждого из

выполненных измерений.

σF /F ≈ 0.710-6

Page 38: PRECISE MAGNETOMETERS ON BASE OF PULSED NMR TECHIQUES G.Karpov, A.Medvedko, E.Shubin, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia

Two methods of the Resolution value measurement

A few thousands field measurements are performed. Resolution is calculated on base of

differences of two Magnetometers results.

1) Indirect method – on base of measured values of the NMR signal and noise

2) Direct method – by using of two NMR Magnetometers

Magnetometer 1

Magnetometer 2

Start

S

N

Probe 1

Probe 2Magnet


Top Related