Transcript

A. Melloni, Progress in photonics, Firenze 2015

Photonic Devices

(The control of…)

Andrea Melloni

F. Morichetti, S. Grillanda, D. Melati, N. Peserico, M. Carminati, A. Annoni, P. Ciccarella, G. Ferrari, M. Sampietro, M. Sorel

Politecnico di Milano, Italy

http://photonics.deib.polimi.it

A. Melloni, Progress in photonics, Firenze 2015

400 m2

Politecnico di Milano (Italy) - Photonic Devices Lab

http://photonics.deib.polimi.it

A. Melloni, Progress in photonics, Firenze 2015

1969: 46 years of integrated optics …

3

A. Melloni, Progress in photonics, Firenze 2015

Integrated photonics: ubiquitousness and complexity

4

A. Melloni, Progress in photonics, Firenze 2015 5

http://www.photonics21.org/download/Brochures/Photonics_Roadmap_final_lowres.pdf

Market: 350 B€ (650 B€ in 2020)

A. Melloni, Progress in photonics, Firenze 2015

Technologies and Waveguides

Dn Ge:SiO2

0.5…3 %

SiON

2…8 %

Si3N4

38 %

SOI

140%

As2S3

60…100 %

InP

3 / 70 %

Mach-Zehnder D. Couplers, Y, MMI, Star couplers

Ring Resonators

Gratings

6

A. Melloni, Progress in photonics, Firenze 2015

BPSG

SiO2

SiON

2.2

mm

2.2 mm

480 nm

220 n

m

HSQ / SiO2

SiO2

Si

Waveguides

Silicon Oxynitride Silicon Nitride Silicon (SOI)

<0.3 mm

2-5 mm

SiO2

SiN

Photonic crystal wg Segmented waveguide Waveguide for sensing

A. Melloni, Progress in photonics, Firenze 2015 8

Dielectric (SiO2…SiON…Si3N4, polymers)

Beam forming network

Arrayed Waveguide grating

A. Melloni, Progress in photonics, Firenze 2015

Courtesy of TU/e

Indium Phosphide

9

A. Melloni, Progress in photonics, Firenze 2015

Silicon photonics

Slow light, trap light

Delay lines

CMOS silicon modulators

Resonant Router

Filter

Biochip 10

A. Melloni, Progress in photonics, Firenze 2015

The (potential) market forecast

Ind

ium

Ph

osp

hid

e

JePPIX Roadmap Using Generic Integrated Photonics

* * *

* *

Silicon Photonics

100

200

300

400

500

600

700

[M$

]

2012 2013 ------------------------------------------------- 2024

0

800

11

A. Melloni, Progress in photonics, Firenze 2015

A Moore law for photonics (?)

T. Baehr-Jones et al., “Myths and rumours of silicon photonics,” Nat. Photonics, vol. 6, Apr. 2012.

12

M. Smit et al., “An introduction to InP-based generic integration technology”, 2014 Semicond. Sci. Technol.

A. Melloni, Progress in photonics, Firenze 2015

• Moore law in photonics… No scaling in photonics !

• Photonics as electronics…. Photonics is analog !

• Plasmonic, graphene, carbon nanotubes …

• CMOS compatibility… Mendeleev on chip !

• More Moore or More than Moore? … Integration, synergy

• Everyone does their job! … generic foundry scheme

• Control & feedback, toward “system-on-a-chip” paradigm

It’s a long way (in my view) …

13

A. Melloni, Progress in photonics, Firenze 2015

Control & Feedback: motivations

Benefits of photonic integration lies in

the aggregation of several components

Technology can squeeze many devices

in small chips

Complex photonic systems-on-chip

are still struggling to emerge...

MINIATURIZATION

INTEGRATION

MIT

14

A. Melloni, Progress in photonics, Firenze 2015

Control & Feedback: motivations

Benefits of photonic integration lies in

the aggregation of several components

Technology can squeeze many devices

in small chips

Complex photonic systems-on-chip

are still struggling to emerge...

MINIATURIZATION

INTEGRATION

MIT

Technology is critical…

(Interferometric) devices suffer from

temperature drifts, xtalk, fabrication

tolerances, nonlinearities, aging…

High Index contrast technologies

ΔT = 1 K → Δf = 10 GHz

Δn = 10-4 → Δf = 10 GHz

Δw = 1 nm → Δf = 100 GHz

TE/TM and λ dependence…

15

A. Melloni, Progress in photonics, Firenze 2015

Technology is critical

(Interferometric) devices suffer from

temperature drifts, xtalk, fabrication

tolerances, nonlinearities, aging…

Benefits of photonic integration lies in the

aggregation of several components

Technology can squeeze many devices

in small chips

Complex photonic systems-on-chip are

still struggling to emerge...

MINIATURIZATION

INTEGRATION

MIT

Silicon Photonics:

ΔT = 1 K → Δf = 10 GHz

Δn = 10-4 → Δf = 10 GHz

Δw = 1 nm → Δf = 100 GHz

TE/TM and λ dependent ≠

Gri

dLE

SS

FormatLESS

ContentsLESS

DirectionLESS C

olo

rLES

S

Less energy Less space

Less

co

sts

Less

Lat

ency

Toward a “LESS” world

Control & Feedback: motivations

16

A. Melloni, Progress in photonics, Firenze 2015

physical

effect physical

effect

actuation

command

working point

estimation

Sensors

Actuators

Definition of “System”

Supervisory

Inputs Control & Calibration

17

A. Melloni, Progress in photonics, Firenze 2015

physical

effect physical

effect

actuation

command

working point

estimation

Actuators

Photonics needs feedback and control

Definition of “System”

Supervisory

Inputs Control & Calibration Feedback…

Sensors

18

A. Melloni, Progress in photonics, Firenze 2015

Au+NiCr+Ti

Heater: “The” actuator

SiO2 Silicon

Length 1-3 mm 10-50 mm

p shift 300-400 mW 10-20 mW

Dneff / DT 110-5 °C-1 210-4 °C-1

Response time 1 ms 10 ms

Crosstalk high low

19 S. Zanotto, Laser Photonics Rev., 2015

A. Melloni, Progress in photonics, Firenze 2015

(Non Perturbative) Probes

Monitor to detect light level in waveguides

and provide feedback (test pin)

Hitless (transparent), small, low power…

20

A. Melloni, Progress in photonics, Firenze 2015

Light-waveguide interaction

Band bending

Si

SiO2

Valence band

Traps

Energ

y

hn

hn

Conduction band

SSA process

Interface

Surface State Absorption

Surface states are located

typically within the first two/three

silicon atomic layers (≈ 1 nm)

Intra-gap energy states create a

free carrier and a corresponding

recombination center

21 S. Grillanda, F. Morichetti, Nature Comm., Sept. 2015

A. Melloni, Progress in photonics, Firenze 2015

Measuring the SSA induced waveguide conductance change DG through an ultrasensitive electric detection circuit

Si

SiO2

DG CA CA SiO2

metal metal L

ContacLess Integrated Photonic Probe (CLIPP)

SiO2

SiO2

Metal

Si

100 nm

The CLIPP concept

1 mm

longitudinal view

Contactless capacitive access to the waveguide

Light in

Light out

A Si waveguide cross section L CLIPP length DNs surface free-carrier density ms carrier mobility

Light dependent conductance variation Free carriers

generated on the

surface by SSA

Carrier mobility is typically

lower on the surface

compared to the bulk

Si conductivity change

induced by light

22

A. Melloni, Progress in photonics, Firenze 2015

Measuring the SSA induced waveguide conductance change DG through an ultrasensitive electric detection circuit

Si

SiO2

DG CA CA SiO2

metal metal L

ContacLess Integrated Photonic Probe (CLIPP)

SiO2

SiO2

Metal

Si

100 nm

The CLIPP concept

1 mm

longitudinal view

Contactless capacitive access to the waveguide

Light in

Light out

Ve ~ 1V

fe ~ 1MHz

ie

90 °

Re[Ywg]

Lock-In Amplifier

100 kW V, f0

Im[Ywg]

+

Transimpedance

Amplifier (TIA)

Pate

nte

d

“Silicon Photonics: Stalking Light,”

Nature Photonics 8, 266 (2014) 23

A. Melloni, Progress in photonics, Firenze 2015

CLIPP performance

CLIPP concept demonstrated for:

- single mode/multimode wgs

- compact size (L down to 25 mm)

- TE/TM polarizations

- sensitivity down to -30 dBm

- 40 dB dynamic range

- speed > 20 ms (limited by TIA noise)

Waveguide

100 mm

-25 -20 -15 -10 -5 010

-1

100

101

102

Local power [dBm]

Con

du

cta

nce

va

ria

tio

nD

G [

nS

]

TE

TM

L

Top view of the CLIPP

-30 -20 -10 0 1010

-1

100

101

102

Conducta

nce

variation

DG

[nS

]

Local power P [dBm]

w = 480 nm

w = 1 mm

Ve = 1Vfe = 1 MHz

Ve = 1 V fe = 1 MHZ

L = 100 mm

CLIPP electrodes

Wire bonding pads

L = 100 mm

24

A. Melloni, Progress in photonics, Firenze 2015

CLIPP 1

CLIPP 2 Light

In

100 µm

CLIPP 2

OSA

CLIPP 3 To

OSA

Through

Thermal

Actuator

1555.8 1555.9 1556.0-250

-200

-150

-100

-50

0

1555.8 1555.9 1556.00

50

100

150

200

250

1555.8 1555.9 1556.00.0

0.5

1.0

1.5

2.0

Estim

ate

d O

ptica

l P

ow

er

[mW

]

Ele

ctr

ica

l S

ign

al V

ariatio

n [p

pm

]

Wavelength [nm]Wavelength [nm]

InsideDrop

Ele

ctr

ica

l S

ign

al V

ariatio

n [p

pm

]

Wavelength [nm]

Through

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Op

tica

l T

ran

sm

issio

n

Op

tica

l T

ran

sm

issio

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Through port

Multipoint on-chip monitoring

25

A. Melloni, Progress in photonics, Firenze 2015

1555.8 1555.9 1556.0-250

-200

-150

-100

-50

0

1555.8 1555.9 1556.00

50

100

150

200

250

1555.8 1555.9 1556.00.0

0.5

1.0

1.5

2.0

Estim

ate

d O

ptica

l P

ow

er

[mW

]

Ele

ctr

ica

l S

ign

al V

ariatio

n [p

pm

]

Wavelength [nm]Wavelength [nm]

InsideDrop

Ele

ctr

ica

l S

ign

al V

ariatio

n [p

pm

]

Wavelength [nm]

Through

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Op

tica

l T

ran

sm

issio

n

Op

tica

l T

ran

sm

issio

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CLIPP 1

CLIPP 2 Light

In

100 µm

CLIPP 2

OSA

CLIPP 3

CLIPP 3

To

OSA

Through

Multipoint on-chip monitoring

Thermal

Actuator

Inside the cavity

1555.8 1555.9 1556.0-250

-200

-150

-100

-50

0

1555.8 1555.9 1556.00

50

100

150

200

250

1555.8 1555.9 1556.00.0

0.5

1.0

1.5

2.0

Estim

ate

d O

ptica

l P

ow

er

[mW

]

Ele

ctr

ica

l S

ign

al V

ariatio

n [p

pm

]

Wavelength [nm]Wavelength [nm]

InsideDrop

Ele

ctr

ica

l S

ign

al V

ariatio

n [p

pm

]

Wavelength [nm]

Through

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Op

tica

l T

ran

sm

issio

n

Op

tica

l T

ran

sm

issio

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Through port

26

A. Melloni, Progress in photonics, Firenze 2015

Control Layer: applications

27

A. Melloni, Progress in photonics, Firenze 2015

Wavelength Locking (dithering approach)

CLIPP read-

out (fe)

In Out Heater

80 µm

CLIPP

Ve

ie

Integral

controller

ε Vd

Vh

Lock-in d

ete

cto

r

Dithering

fd

Err

or

sig

na

l ε

[µV

]

Intr

a-c

avity

Op

tica

l in

ten

sity

Wavelength detuning [pm]

Wavelength detuning [pm]

Vd = 100 mV

(0.14 K)

fd = 160 Hz

-100 -50 0 50 100 0

0.5

1

-100 -50 0 50 100 -300

0

300

Response to a 50 pm (= ring bandwidth) detuning

Wavelength locking in 150 ms

Loop response can be speeded up with

faster CLIPP response

optimized control laws (P, PI) Time [s]

Op

tica

l in

ten

sity FEEDBACK LOOP ON

FEEDBACK LOOP OFF

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Ve = 1 V

fe = 1 MHz

A. Melloni, Progress in photonics, Firenze 2015

V, f0

CLIPP demod. @ fe

CLIPP

demodulation

Heater

Heater

voltage Two input channels at different wavelengths

λ1 = 1549.59 nm

λ2 = λ1 + 120 pm

0 1 2 3 4 5 6 0

0.5

1

CLIPP demod. @ fe

λ2 λ1 ?

? No signal discrimination

? Heater

Heater power [mW]

Wavelength monitoring

λ2 λ1

CLIP

P s

ignal

29

A. Melloni, Progress in photonics, Firenze 2015

CLIPP demod. @ fe

CLIPP demod.

@ fe + f1

The CLIPP discriminates and monitors

simultaneosuly different channels

resonating in the microring!

0 1 2 3 4 5 6 0

0.5

1

0 1 2 3 4 5 6 0

0.5

1

CLIPP @ fe + f1

Heater power [mW]

automatic tuning and locking on l1

λ1

Wavelength monitoring

The channels are labeled with a weak

modulation tone (depth 2%):

f1 = 10 kHz @ λ1 = 1549.59 nm

f2 = 11 kHz @ λ2 = λ1 + 120 pm V, f0

CLIPP

demodulation

Heater

Heater

voltage λ2 λ1

Heater

λ2 λ1

λ1

λ2 C

LIP

P s

ignal

30

A. Melloni, Progress in photonics, Firenze 2015 Heater power [mW]

CLIP

P s

ignal

CLIPP demod. @ fe

CLIPP demod.

@ fe + f2

CLIPP @ fe + f2

0 1 2 3 4 5 6 0

0.5

1

0 1 2 3 4 5 6 0

0.5

1 0 1 2 3 4 5 6

0

0.5

1

CLIPP @ fe + f1

automatic tuning and locking on l2

SWAP !

Wavelength swapping

The CLIPP discriminates and monitors

simultaneosuly different channels

resonating in the microring!

The channels are labeled with a weak

modulation tone (depth 2%):

f1 = 10 kHz @ λ1 = 1549.59 nm

f2 = 11 kHz @ λ2 = λ1 + 120 pm V, f0

CLIPP

demodulation

Heater

Heater

voltage λ2 λ1

Heater

λ2 λ1

λ2

λ1 λ2

31

A. Melloni, Progress in photonics, Firenze 2015 32

• generate the CLIPPs driving signal Ve (fast DAC);

• provide the I/Q clock signals to the lock-ins in the ASIC;

• drive the heaters integrated onto the photonic chip (slow DACs);

• FPGA-based digital processing ;

• control of up to 16 independent feedback control-loops;

Multichannel feedback control

Motherboard

Motherboard ASIC

Photonic chip

ASIC

Photonic chip

Motherboard:

32

A. Melloni, Progress in photonics, Firenze 2015 33

2 x 12 CLIPPs

Ai Bi Ci

Stage A Stage B Stage CI1

I2

I3

I4

I5

I6

I7

I8

O1

O2

O3

O4

O5

O6

O7

O8

CLIPP MZI switch

PHOTONI C

CHI P

O7

O8 Vh CLIPP

signals +

- Controller

Set point

Lightpath tracking and feedback control routing

A. Melloni et al, IPR Conference, July 2015

12 heaters

A. Melloni, Progress in photonics, Firenze 2015 -22 -20 -18 -16

10-10

10-8

10-6

10-4

Power [dBm]

BE

R

Ch A

Ch A + tone

-16 -15 -14 -13

10-10

10-8

10-6

10-4

Power [dBm]

BE

R

Ch B

Ch B + tone

-22 -20 -18 -16

10-10

10-8

10-6

10-4

Power [dBm]

BE

R

Ch A

Ch A + tone

-16 -15 -14 -13

10-10

10-8

10-6

10-4

Power [dBm]

BE

R

Ch B

Ch B + tone

Pilot tone OFF Pilot tone ON

Out 8 – Ch. A Out 8 – Ch. B Out 6 – Ch. A Out 6 – Ch. B

Routing with pilot tones

MOD

MOD

MOD

MOD

Pilot tones 50 mV (3% modulation)

B C

Ve=1V, 613 KHz

10 KHz 7 KHz

10G CISCO XFP modules 1545.5 nm (Ch A) 1558.26 nm (Ch B)

C5

C6

C7

C8

I8

I7

I6

I5

O8

O7

O6

O5

0 2 4 6 8 10 120.00.20.40.60.81.0

0 2 4 6 8 10 120.00.20.40.60.81.0

0 2 4 6 8 10 12

-40-36-32-28-24-20-16

C8

C7

C6

C5

CLIP

P S

ignal

B8

B7

A8

A7

CLIP

P S

ignal

O8

O7

O6

PD

[dB

m]

Time [s]

A. Melloni, Progress in photonics, Firenze 2015 -22 -20 -18 -16

10-10

10-8

10-6

10-4

Power [dBm]

BE

R

Ch A

Ch A + tone

-16 -15 -14 -13

10-10

10-8

10-6

10-4

Power [dBm]

BE

R

Ch B

Ch B + tone

-22 -20 -18 -16

10-10

10-8

10-6

10-4

Power [dBm]

BE

R

Ch A

Ch A + tone

-16 -15 -14 -13

10-10

10-8

10-6

10-4

Power [dBm]

BE

R

Ch B

Ch B + tone

Pilot tone OFF Pilot tone ON

Out 8 – Ch. A Out 8 – Ch. B Out 6 – Ch. A Out 6 – Ch. B

Routing with pilot tones

MOD

MOD

MOD

MOD

Pilot tones 50 mV (3% modulation)

B C

Ve=1V, 613 KHz

10 KHz 7 KHz

10G CISCO XFP modules 1545.5 nm (Ch A) 1558.26 nm (Ch B)

C5

C6

C7

C8

I8

I7

I6

I5

O8

O7

O6

O5

A. Melloni, Progress in photonics, Firenze 2015

λ1=1544.2 nm

λ2=1558.8 nm

Hitless monitoring of 4x10 Gb/s WDM-MDM channels

Receiver power [dBm]

BE

R

-20 -15 -1010

-8

10-7

10-6

10-5

-20 -15 -1010

-8

10-7

10-6

10-5

-25 -20 -1510

-9

10-8

10-7

10-6

10-5

-25 -20 -1510

-9

10-8

10-7

10-6

10-5

λ1,TE λ1,TM λ2,TE λ2,TM

50% 50% CLIPP

ie

CLIPP readout

and pilot tones

demodulation

90°

10 Gbit/s

OOK

l 1,TE l 1,TM l 2,TE l 2,TM

Pilot tones f1, f2, f3, f4

PBS BER-T

l 2,TM

l 1,TM

l 2,TE

l 1,TE

DEMUX

f1

f2

f3

f4

Channel monitoring OFF

Channel monitoring ON

Si photonic chip

Ve Decorrelation

fiber coil

36

A. Melloni, Progress in photonics, Firenze 2015

TU

NIN

G Adaptive

PROBE

Programming FEEDBACK

Conclusions, the keywords

Generic Foundry

More than Moore

37

A. Melloni, Progress in photonics, Firenze 2015

Eu Project – ICT/FET (2013-2016) Breaking the barriers of Optical Integration www.bboi.eu

Acknowledgments

We acknowledge financial support from:

Italian National Research Project SAPPHIRE

Shared Access Platform to PHotonic Integrated Resources

Prof. Marc Sorel & Dr. Michael J. Strain

James Watt Nanofabrication Center at University of Glasgow

for support in the fabrication of the silicon photonic devices

We are grateful to:


Top Related