Transcript
Page 1: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Jesse Savage Geo-Surveys

Phone: 0425 892 288Email: [email protected]

Electrical Resistivity Survey

Collins Settlement - Sorrento

03/12/2012

Electrical Resistivity Survey – Collins Settlement, Sorrento

Page 2: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey1

PREFACEMy involvement with this project is through the Monash University work placement

program, and in accordance with Alpha Archaeology. I was required to perform a geophysical survey of the first settlement site in Sorrento. The data collected would then be used, along with previous survey knowledge, to locate first-settlers graves with greater precision.

Page 3: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey2

CONTENTS

INTRODUCTION 3

METHODOLOGY 4

RESULTS6

DISCUSSION7

APPENDIX A. Target Area Maps

APPENDIX B. Survey Data

APPENDIX C. Inverted Resistivity Profiles

Page 4: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey3

INTRODUCTION

A Cliffside in Sorrento is the focus of Geophysical and Archaeological examination due to its early-Australian historical importance. The Nepean Historical Society believes that Sorrento was home to the first-settlers in 1803. The settlement was under command of Lieutenant Colonel David Collins and included 300 settlers and convicts. The settlement was forsaken in May 1804 when the settlers transferred to Tasmania. It is believed that graves belonging to some of the first-settlers may be found at the location.

In March 2011, Elorane Geo-Surveys conducted a survey at the first-settlement location in Sorrento. Three grids (1-3) were marked out and were investigated by ground magnetic surveys (GMS) and ground penetrating radar (GPR).

The GMS was used to identify ferrous materials as well as contrasts in soil structure (due to ground chemistry variation), which may be a result of excavated and replaced soil. GPR emits electromagnetic waves (Microwave frequency) and records the reflected waves from ground features to construct sub-surface images. It is used to identify disturbed soil or remains from a burial.

The GMS has located several anomalies with those in Grid 3 of great interest due to their lateral extent and alignment. The GPR anomalies have been identified as correlating with the GMS anomalies on three accounts for Grid 1 and two accounts for Grid 2. The GMS and GPR surveys are limited for they are prone to tree root disruption and having to move the equipment over uneven terrain. This encouraged me to perform an Electrical Resistivity Tomography, or, Electrical Resistivity (ER) survey.

ER surveys measure change in the grounds electrical resistivity and will relate to variable soil properties. Electrodes are fixed eliminating uneven terrain as a deterrent; and tree roots do not affect this survey method, as they do with GMS and GPR.

Page 5: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey4

METHODOLOGYER is a method of geophysical analysis with minimal environmental impact. It is a

measurement of a mediums inability to transmit an electrical current. A medium with a high resistivity has more difficulty transmitting an electrical current and vice versa. The resistivity of a subsurface body depends on porosity, hydration and clay content. The result is a 2D profile depicting depth of stratigraphic anomalies and structures.

This survey was conducted using a SuperSting RI Memory Earth Resistivity Meter. This instrumentation produces measured apparent resistivity pseudosections, which are converted into easy to interpret 2D ground cross-sections (inverted resistivity sections) using the Earth Imager 2D Resistivity Inversion Software.

The ER survey works by setting up a line of electrodes. During the survey an electrical current will be emitted from the first to the second electrodes (known as transmitters). The four subsequent electrodes measure the electrical potential of the ground. The difference between the electrical potential and the current emitted will equate to the ground resistivity. This process is repeated for each subsequent electrode.

The spacing between each electrode will determine the depth of the profile and the resolution. Greater spacing between electrodes shows resistivity at greater depths but is compromised with lower resolution. Conversely, shorter spacing will offer greater resolution, with profiles of shallower depths. The graves are believed to be approximately 1m wide x 2m long x 2m deep. Therefore, electrode spacing of 0.5m was chosen to optimize the chance of identifying graves. Electrodes spaced at 0.5m will ensure that possible graves will not go unseen width-ways and that a high-resolution profile at 2.7m deep is produced. Each line was produced with 1m intervals to prevent missing indications of graves length-ways.

The excavation and refilling of ground during burial creates a contrast in the physical structure of the ground. The replaced soil is much less compacted than the natural soil, allowing for greater electrical transmission. Therefore, we expect graves to exhibit a lower resistivity than the surrounding ground.

Grid 2 was believed to be the best location for possible graves, and so the focus of the ER survey was there. Having two anomalies identified from the GMS and GPR surveys

Page 6: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey5

by Elorane, we coordinated our ER runs to overlie them. If the ER survey would detect any grave-like structures at these anomalies, we may improve our likelihood of finding first-settlers graves.

Page 7: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey6

RESULTS

Technical difficulty during the line 1 survey resulted in corrupted data. However, resistivity in adjacent lines indicate that line 1 is unlikely to be of significance. Line 2 shows three areas of lower resistivity, however the dimensions do not match what we would expect from a grave.

Line 3 shows two areas of low resistivity of <60 at 12.5m and 15m from the origin and approximately 0.5-2m deep (Appendix C). These are overlain by highly resistive ground, <500 (Appendix C).

Line 4 and 5 show anomalies that are repeated at 12.5m from the origin (Appendix A). Anomaly A1 is approximately 1.5m wide and 2m deep (Appendix C). This is consistent with our expected grave dimensions. The maximum resistivity is 200 at <0.7m deep with lower resistivity (<60) 0.7-2m deep (Appendix C). Anomaly A2 exhibits almost the same resistivity pattern as A1. It shows a higher (~200) subsurface resistivity with a lower (<60) resistivity down to 2m deep (Appendix C).

There are two more consecutive anomalies that appear in lines 4 and 5, 14.75m from the origin (Appendix A). Anomaly B1 is approximately 1m wide and 1.5m deep. Anomaly B2 is very similar in width, however is slightly shallower depth (~1.3m). Anomaly B1 has a resistivity of <60 from 0.7-1.5m deep. Anomaly B2 has a resistivity of <60 from 0.7-1.3m deep. Anomalies B1-2 have a subsurface resistivity of ~200 (Appendix C).

The resistivity patterns of the two anomalies B1-2 correspond with A1-2. Anomalies A1-2 and B1-2 extend relatively parallel to one another across lines 4 and 5 (Appendix C).

Line 6 shows two areas of low resistivity that roughly align with the anomalies in lines 4 and 5. However, resistivity patterns do not clearly match those of lines 4 and 5. Lines 7 and 8 show some lower resistivity though they do not resemble the characteristics of a grave.

Page 8: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey7

DISCUSSION

When interpreting the inverted resistivity data, we are looking for areas of low resistivity relative to the surrounding ground. It is important to keep in mind the dimensions of the targets and their expected orientation.

The ER survey has identified two localities that bare resemblance to graves. These include two resistivity features that extend through lines 4 and 5 perpendicularly. This is evident from corresponding resistivity features identified between lines 4 and 5 at 12.5m and 14.75m from the origin.

It is noteworthy that the A and B anomalies appear to be parallel when compared in lines 4 and 5 considering graves were likely to be dug next to one another. It is significant that these anomalies are not only parallel, but show similar lateral resistivity changes (moving from one line to the next).

There is evidence to support two gravesites in Grid 2 despite their locations not complying with those outlined in Elorane’s survey. The two potential graves are identified at 12.5m and 14.7m from the origin, intersecting lines 4 and 5. One test hole between lines 4 and 5 for each potential grave should be adequate in identifying the graves.

Page 9: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey8

APPENDIX A. Target Area MapThis map of the target area was created to assist in locating the anomalies found in

lines 4 and 5. It represents the distance (m) from the origin on the X-axis. The survey lines and their spacing are shown on the Y-axis. The four corners of the grid mark the pegs placed by Alpha Archaeology on the first day of the survey. The NW and SW grid corners mark the origin.

Page 10: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Jesse Savage Geo-Surveys

Phone: 0425 892 288Email: [email protected]

Electrical Resistivity Survey – Collins Settlement, Sorrento

Page 11: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Jesse Savage Geo-Surveys

Phone: 0425 892 288Email: [email protected]

APPENDIX B. Survey DataAppendix B presents the profiles of lines 1-8. It includes the measured apparent

resistivity, the calculated apparent resistivity and the inverted resistivity. The measured apparent resistivity is the raw data that represents the spatial resistivity distribution. The Earth Imager 2D Resistivity Inversion Software uses an algorithm to invert these data to produce an inverted resistivity section. This inverted section represents the internal resistivity distribution. The calculated apparent resistivity is a quality control for the algorithm used to invert the spatial resistivity distribution. The greater the similarity between the measured and calculated apparent resistivity, the more accurate the inverted resistivity section is at representing the internal resistivity distribution. The algorithm can be manually changed for more accurate inversions; however, the default inversion formula is sufficient.

Profiles are represented as 2D ground cross-sections running from West to East. The X-axis represents the distance (m) from the origin. The Y-axis illustrates depth (m) of the section. The colours represent variation in ground resistivity in Ohms () with numerical values in the legend to the right of each profile.

Electrical Resistivity Survey – Collins Settlement, Sorrento

Page 12: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey1

LINE 1

Page 13: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey2

LINE 2

Page 14: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey3

LINE 3

Page 15: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey4

LINE 4

Page 16: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey5

LINE 5

Page 17: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey6

LINE 6

Page 18: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey7

LINE 7

Page 19: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey8

LINE 8

Page 20: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey9

APPENDIX C. Inverted Resistivity Profiles Appendix C contains the 2D resistivity cross-sections for lines 1-8. The X-axis

represents the distance (m) from the origin. The Y-axis illustrates depth (m) of section. The colours represent variation in ground resistivity in Ohms () with numerical values in the legend to the right of each profile.

All profiles are aligned and displayed sequentially to assist in comparing resistivity in adjacent lines.

Page 21: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey10

LINE 1

LINE 2

Page 22: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey11

LINE 3

LINE 4

B

Page 23: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey12

LINE 5

LINE 6

LINE 6

LINE 6

B2

Page 24: Jesse Savage Geo-Surveys - Web viewJesse Savage Geo-SurveysPhone: 0425 892 288Email: jjsav1@student.monash.edu. Jesse Savage Geo-Surveys. Phone: 0425 892 288. Email: jjsav1@student.monash.edu

Electrical Resistivity Survey13

LINE 7

LINE 8


Top Related