Transcript
Page 1: Chapter 5: Diffusion - University of Washingtoncourses.washington.edu/mse170/lecture_notes/zhangF08/lecture7.pdf · Chapter 5: Diffusion Outline Introduction Diffusion mechanisms

1

Chapter 5: Diffusion

OutlineIntroductionDiffusion mechanismsSteady-state diffusionNonsteady-state diffusionFactors that influence diffusion

Introduction

• Interdiffusion: In an alloy, atoms tend to migratefrom regions of high concentration.

Initially After some time

Adapted from Figs. 5.1 and 5.2, Callister 6e.

100%

Concentration Profiles0

Cu Ni100%

Concentration Profiles0

Diffusion: the phenomenon of material transport by atomic motion

Page 2: Chapter 5: Diffusion - University of Washingtoncourses.washington.edu/mse170/lecture_notes/zhangF08/lecture7.pdf · Chapter 5: Diffusion Outline Introduction Diffusion mechanisms

2

Diffusion phenomenon (2)

• Self-diffusion: In an elemental solid, atomsalso migrate.

Label some atoms After some time

A

B

C

DA

B

C

D

Diffusion mechanisms

Vacancy diffusion

Interstitial diffusion• small atoms

Interstitial is more rapid than vacancy diffusion

Page 3: Chapter 5: Diffusion - University of Washingtoncourses.washington.edu/mse170/lecture_notes/zhangF08/lecture7.pdf · Chapter 5: Diffusion Outline Introduction Diffusion mechanisms

3

Processing using diffusion

Case Hardening:--Diffuse carbon atoms

into the host iron atomsat the surface.

--Example of interstitialdiffusion is a casehardened gear.

The presence of C atoms makes iron (steel) harder.

Processing using diffusion

Doping silicon with phosphorus for n-type semiconductors:Process:

3. Result: Dopedsemiconductorregions.

silicon

magnified image of a computer chip

0.5mm

Dark regions: Si atoms

light regions: Al atoms

2. Heat it.

1. Deposit P richlayers on surface.

silicon

Page 4: Chapter 5: Diffusion - University of Washingtoncourses.washington.edu/mse170/lecture_notes/zhangF08/lecture7.pdf · Chapter 5: Diffusion Outline Introduction Diffusion mechanisms

4

Steady-state diffusion

Diffusion flux

Steady-state diffusion: the diffusion does not change with time

Concentration profile

AtMJ =( )( ) sm

kgorscm

moltimearea surface

diffusing mass) (or molesFlux 22=≡≡J

Flux vs concentration profile

Page 5: Chapter 5: Diffusion - University of Washingtoncourses.washington.edu/mse170/lecture_notes/zhangF08/lecture7.pdf · Chapter 5: Diffusion Outline Introduction Diffusion mechanisms

5

Steady-state diffusion (continue)

Concentration gradient=dC/dx

Linear concentration gradient

Driving force B

BxxCC

xC

A

A−−

ΔΔ ==

Examples (steady state)

C1 = 1.2kg/m3

C2 = 0.8kg/m3

Carbon rich gas

10mm

Carbon deficient

gas

x1 x205m

m

D=3x10-11m2/s

Steady State = straight line!

• Steel plate at 7000C withgeometryshown:

• Q: How much carbon transfers from the rich to the deficient side?

J = −DC2 − C1

x2 − x1

= 2.4 ×10−9 kg

m2s

Page 6: Chapter 5: Diffusion - University of Washingtoncourses.washington.edu/mse170/lecture_notes/zhangF08/lecture7.pdf · Chapter 5: Diffusion Outline Introduction Diffusion mechanisms

6

Nonsteady-state diffusion

Fick’s second law

Non-steady state diffusion

The concentration of diffucing species is a function of both time and position C = C (x,t)In this case Fick’s Second Law is used

2

2

xCD

tC

∂∂

=∂∂

Fick’s Second Law

Page 7: Chapter 5: Diffusion - University of Washingtoncourses.washington.edu/mse170/lecture_notes/zhangF08/lecture7.pdf · Chapter 5: Diffusion Outline Introduction Diffusion mechanisms

7

Non-steady state diffusion

B.C. at t = 0, C = Co for 0 ≤ x ≤ ∞

at t > 0, C = CS for x = 0 (const. surf. conc.)

C = Co for x = ∞

Copper diffuses into a bar of aluminum.

pre-existing conc., Co of copper atoms

Surface conc., C of Cu atoms bars

Cs

Solution

C(x,t ) = Conc. at point x at time t

erf (z) = error function

erf(z) values are given in Table 5.1

CS

Co

C(x,t)

( )⎟⎠

⎞⎜⎝

⎛−=−−

Dtx

CCCt,xC

os

o

2 erf1

dye yz 2

0

2 −∫π=

Page 8: Chapter 5: Diffusion - University of Washingtoncourses.washington.edu/mse170/lecture_notes/zhangF08/lecture7.pdf · Chapter 5: Diffusion Outline Introduction Diffusion mechanisms

8

Nonsteady-state diffusion

Examples (non-steady state)

Sample Problem: An FCC iron-carbon alloy initially containing 0.20 wt% C is carburized at an elevated temperature and in an atmosphere that gives a surface carbon concentration constant at 1.0 wt%. If after 49.5 h the concentration of carbon is 0.35 wt% at a position 4.0 mm below the surface, determine the temperature at which the treatment was carried out.

Solution: use Eqn. 5.5

⎟⎠

⎞⎜⎝

⎛−=−−

Dtx

CCCtxC

os

o

2erf1),(

Page 9: Chapter 5: Diffusion - University of Washingtoncourses.washington.edu/mse170/lecture_notes/zhangF08/lecture7.pdf · Chapter 5: Diffusion Outline Introduction Diffusion mechanisms

9

Solution (cont.)

• t = 49.5 h x = 4 x 10-3 m• Cx = 0.35 wt% Cs = 1.0 wt%• Co = 0.20 wt%

⎟⎠

⎞⎜⎝

⎛−=−−

Dtx

CCC)t,x(C

os

o

2erf1

)(erf12

erf120.00.120.035.0),( z

Dtx

CCCtxC

os

o −=⎟⎠

⎞⎜⎝

⎛−=

−−

=−−

∴ erf(z) = 0.8125

Solution (cont.)

We must now determine from Table 5.1 the value of z for which the error function is 0.8125. An interpolation is necessary as follows

z erf(z)0.90 0.7970z 0.81250.95 0.8209

7970.08209.07970.08125.0

90.095.090.0

−−

=−

−z

z = 0.93

Now solve for D

Dtxz

2=

tzxD 2

2

4=

/sm 10 x 6.2s 3600

h 1h) 5.49()93.0()4(

m)10 x 4(4

2112

23

2

2−

−==⎟

⎟⎠

⎞⎜⎜⎝

⎛=∴

tzxD

Page 10: Chapter 5: Diffusion - University of Washingtoncourses.washington.edu/mse170/lecture_notes/zhangF08/lecture7.pdf · Chapter 5: Diffusion Outline Introduction Diffusion mechanisms

10

Factors that influence diffusion

Diffusing species

Diffusion and temperature

Diffusion coefficient increases with increasing T

D = Do exp⎛

⎝⎜

⎠⎟−

Qd

RT

= pre-exponential [m2/s]= diffusion coefficient [m2/s]

= activation energy [J/mol or eV/atom] = gas constant [8.314 J/mol-K]= absolute temperature [K]

DDo

Qd

RT

Page 11: Chapter 5: Diffusion - University of Washingtoncourses.washington.edu/mse170/lecture_notes/zhangF08/lecture7.pdf · Chapter 5: Diffusion Outline Introduction Diffusion mechanisms

11

D has exponential dependence on T

Dinterstitial >> DsubstitutionalC in α-FeC in γ-Fe

Al in AlFe in α-FeFe in γ-Fe

1000K/T

D (m2/s) C in α-Fe

C in γ-Fe

Al in Al

Fe in α-Fe

Fe in γ-Fe

0.5 1.0 1.510-20

10-14

10-8T(°C)15

00

1000

600

300

Diffusion and temperature

Example: At 300ºC the diffusion coefficient and activation energy for Cu in Si are

D(300ºC) = 7.8 x 10-11 m2/sQd = 41.5 kJ/mol

What is the diffusion coefficient at 350ºC?

⎟⎟⎠

⎞⎜⎜⎝

⎛−=⎟⎟

⎞⎜⎜⎝

⎛−=

101

202

1lnln and 1lnlnTR

QDDTR

QDD dd

⎟⎟⎠

⎞⎜⎜⎝

⎛−−==−∴

121

212

11lnlnln TTR

QDDDD d

transform data

D

Temp = T

ln D

1/T

Page 12: Chapter 5: Diffusion - University of Washingtoncourses.washington.edu/mse170/lecture_notes/zhangF08/lecture7.pdf · Chapter 5: Diffusion Outline Introduction Diffusion mechanisms

12

Example (cont.)

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −

−= −

K 5731

K 6231

K-J/mol 314.8J/mol 500,41exp /s)m 10 x 8.7( 211

2D

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−−=

1212

11exp TTR

QDD d

T1 = 273 + 300 = 573KT2 = 273 + 350 = 623K

D2 = 15.7 x 10-11 m2/s

Diffusion FASTER for...

• open crystal structures

• materials w/secondarybonding

• smaller diffusing atoms

• lower density materials

Diffusion SLOWER for...

• close-packed structures

• materials w/covalentbonding

• larger diffusing atoms

• higher density materials

Summary


Top Related