Transcript

Catalytic Pellet Reactor Under Uncertainty Design

Catalytic Pellet Reactor Under Uncertainty Catalytic Pellet Reactor Under Uncertainty DesignDesign

Final Presentation at the REU meeting Chicago, IL, Tuesday, Aug. 4th, 2005.

Presenter: Celia Xue

Advisors: Pf. LinningerDr. Libin Zhang

Laboratory for Product and Process Design, Department of Chemical Engineering, University of Illinois,

Chicago, IL 60607, U.S.A.

LPPDLPPDCelia

MotivationMotivationFig.1: A Typical Configuration of a Pellet

Reactor• Catalytic Pellet Reactor

• Application:– Catalytic Converters in cars– Paraffin Dehydrogenation– Production of Sulfuric Acid

• Design Complication– Coupling of Heat and Mass

transfer phenomenon– Impact of uncertain parameters

LPPDLPPDCelia

Design Under UncertaintyDesign Under UncertaintyProduct Conversion??

Effectiveness FactorDiffusion + Reaction

• Uncertain Parameter: – system performance / safety – output quality.

• Lack of understanding lead to:– Loss of Revenue– Unsafe Design (Hot Spot, Explosion

etc.)

• Why we want to study it?– Safety Condition – Guarantee product quality and

maximum profit.– Control over design

Pellet Reactor

Inlet Conditions:

Ci and Ti

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

80 00 90 00 10000 1 1000 12000Fb

P(Fb

)

???

Operational Uncertainty

Property UncertaintyHeat Conductivity: ke

Mass Diffusivity: Dab

Reaction rate: a

LPPDLPPDCelia

MethodologyMethodology

• Case Study: Pellet Reactor Design– Develop Models

– Solve Models in MATLAB

– Analyze the system response

– Quantify impact of uncertain parameters: safety, quality

• Numerical Methods– 1st Order ODE:

» R-K Method (ode45)

– 2nd Order Differential Equation:

» Collocation Method

– Integration: » Adaptive Lobatto

Quadrature Integration (quadl)

LPPDLPPDCelia

Case Study: Case Study: Catalytic Pellet ReactorCatalytic Pellet Reactor

• Catalytic Reaction:– SO2 (g)+1/2 O2(g) ↔SO3 (g)– 1st Order Heterogeneous

reaction: A→B

• Components of Design– Pellets (Ts, Cs)

» Mass» Energy

– Effectiveness Factor [Fogler]

– Reactor (Ti, Ci)» Mass» Energy

surfaceatratereactionratereactionactual

Fig. 3: Pellet Control Volume Fig. 4: Reactor Control Volume

Fig.2: Expanded View of a Pellet Reactor

Control Volume

Inlet

LPPDLPPDCelia

Pellet Profiles Pellet Profiles

• Steady State

Boundary Conditions:r=R: Cs, Ts

r=0: dCs/dz=0, dTs/dz=0

• Dynamic State

Initial Conditions:1. t=0: To=12. t=0: Co =Steady State result

Steady State Pellet Temperature Profile

Steady State Pellet Concentration Profile

22

2

2 1exp 1 0d dd dϕ ϕ γ ϕθ θ θ ζ

⎡ ⎤⎛ ⎞+ −Φ − =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦2

2

2 1exp 1 0d dd dζ ζ β γ ϕθ θ θ ζ

⎡ ⎤⎛ ⎞+ − − =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

di

Concentration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

p

Temperature

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

0 0.5 1Time

Con

cent

ratio

n (C

/Co)

r=1

r=0.887

r=0.5

r=0.113

r=00

5

10

15

20

25

30

35

40

0 0.5 1Time

Tem

pera

ture

(T/T

o)

r=0

r=0.113

r=0.5

r=0.88

r=1

Dynamic Pellet Concentration Profile

Dynamic Pellet Temperature Profile

Radius Radius

Scal

ed C

once

ntra

tion

Scal

ed T

empe

ratu

re

LPPDLPPDCelia

Pellet Sensitivity at Steady StatePellet Sensitivity at Steady State

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

0.E+00 2.E-05 4.E-05 6.E-05CAs (mol/m^3)

Effe

ctiv

ess

Fact

or

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

250 450 650 850 1050Ts (K)

Effe

ctiv

ess

Fact

or

surfaceatratereactionratereactionactual

Effectiveness factor vs. TsEffectiveness factor vs. CAs

Diffusion limitedSurface reaction limited

Nominal Values:

CAs=2.46E-6 mol/m3

Ts= 550K

LPPDLPPDCelia

Effectiveness factor vs. Inlet conditions

θθξ

γθϕη d21

0

)11(exp)(3∫ ⎥⎦

⎤⎢⎣

⎡−=

Multiple Steady States for PelletsMultiple Steady States for Pellets

LPPDLPPDCelia

0 0.2 0.4 0.6 0.8 10.50

0.55

0.60

0.65

0.70

0.75

Scal

ed C

once

ntra

tion

0 0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

Scal

ed C

once

ntra

tion

0 0.2 0.4 0.6 0.8 10.955

0.960

0.965

0.970

0.975

0.980

Scal

ed C

once

ntra

tion

Reaction Condition:

•Thiele Modulus =0.430

•Beta=0.4

•Gamma=30

Importance:

--Initial Conditions

--One steady state may go to another!!

⎥⎦

⎤⎢⎣

⎡−=Φ )exp(

22

s

a

e RTE

aDR

s

s

TTT )( max −=β

RTEa

Steady state a

Unstable region b

Steady state c

Normalized Thiele Modulus

Radius Radius Radius

Concentration profiles for a single reaction condition

Multiplicity

Effe

ctiv

enes

s Fa

ctor

Steady State a

Unstable region b

Steady State c

Reactor ProfilesReactor ProfilesSteady State Concentration Profile Steady State Temperature ProfileSteady State:

Ci=1.6E-2 mol/m3

Ti=300K

0)11(exp2

2

=⎥⎦

⎤⎢⎣

⎡−−−

rr

AB

boar

AB

r

TC

DkS

dzdC

DU

dzCd

γρη

0)11(exp2

2

=⎥⎦

⎤⎢⎣

⎡−

∆−−

rr

ib

biar

b

pgr

TC

TkCSH

dTk

UCdz

Tdγ

ρηρ

Dynamic Temperature ProfileDynamic Concentration Profile

Dynamic State:Initial Condition: Steady State

Ci=1.6E-2*5 mol/m3

Ti=300K

LPPDLPPDCelia

Reactor Safety: HotspotReactor Safety: Hotspot

LPPDLPPDCelia

0 0.2 0.4 0.6 0.8 11

1.05

1.10

1.15

1.20

1.25

length of reactor

Scal

ed T

empe

ratu

re

Ti=300KTi=350KTi=400KTi=450K

0 0.2 0.4 0.6 0.8 11.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

length of reactor

Scal

ed T

empe

ratu

re

Ko=4.42E-10 m3/(m2*s)ko=4.42E-10*1.2ko=4.42E-10*0.8

0 0.2 0.4 0.6 0.8 11

1.5

2.0

2.5

length of reactor

Scal

ed T

empe

ratu

re

Ci=1E-2Ci=1E-2*0.5Ci=1E-2*0.2Ci=1E-2*2Ci=1E-2*5

• “Hotspot” [Froment.] :– Temperature Profile reach

a maximum– Very exothermic reaction

• Why “hotspot” happens?– Depletion of reactant– Cooling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11.00

1.05

1.10

1.15

1.20

1.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Temperature Profile Concentration Profile

Temperature Profile vs. CiTemperature Profile vs. Ti

Scal

ed T

empe

ratu

re

Scal

ed C

once

ntra

tion

Temperature Profile vs. ko

Length of Reactor Length of Reactor

Reactor Safety: MultiplicityReactor Safety: Multiplicity

LPPDLPPDCelia

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

5

10

15

20

25

Time

Sca

led

Tem

pera

ture

Steady State a

Unstable region b

Steady State c

Ideal Design Steady State c

Unsafe Design Steady State a

Normalized Thiele Modulus

Multiplicity for Pellets

Multiplicity for Reactor

• How does reactor respond to pellet multiplicity?

• By testing uncertainty in inlet conditions, we find unsafe design!

– Initial steady state (z=0.5)» Tr=1.2» Cr=0.7

– Disturbance: » Ti=300K» Ci=1E-2 mol/m3

Effe

ctiv

enes

s Fa

ctor

ConclusionConclusion

– Pellet steady/dynamic state profiles

– Multiplicity in pellets

– Reactor steady/dynamic state profiles

– Reactor “hotspot”

– Uncertainty analysis helps to prevent unsafe design!

LPPDLPPDCelia

ReferencesReferences

• 1. Malcom, A,; Linninger, A.A; “Integrating Design ad Control: Dynamic Analysis of Flexible Operation.”http://viena.che.edu/research/designcontrol/DesigControl.pdf. [June 8, 2005.]

• 2. Fogler H. Scott, Elements of Chemical Reaction Engineering, 3rd Ed., Prentice Hall PTR, 1999.

• 3. Froment Gilbert F. and Bischoff Kenneth B. Chemical Reactor Analysis and Design, 2nd Ed. John Wiley & Sons, Inc., Canada, 1979.

• 4. Catalytic Pellet Reactor. http://jbrwww.che.wisc.edu/~jbraw/chemreacfun/ ch7/slides-masswrxn.pdf. [July 11th, 2005]

• 5. Perkins Victor and Gomez Javier Cruz. Assessment of Electricity Generation to 2011 Using Low Sulfur Fuel Oil in Mexico. http://www.iaee.org/documents/AssessmentofElectricityGenerationto2011UsingLowSulfurFuelOilinMexicoVictorBazC3A1nPerkinsJavierCruzGC3B3mez.pdf. [July 11th, 2005]

LPPDLPPDCelia

AcknowledgementAcknowledgement

• NSF DMI 0328134 REU Supplement (Linninger) PI

LPPDLPPDCelia


Top Related