Transcript
Page 1: Calcium channel blockers (1)

Calcium Channel Blocking Drugs

Page 2: Calcium channel blockers (1)

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 3: Calcium channel blockers (1)

Chemical Type Chemical Names Brand Names

Phenylalkylamines

verapamil Calan,Calna SR,Isoptin SR,Verelan

Benzothiazepines diltiazem Cardizem CD,Dilacor XR

1,4-Dihydropyridines

Nifedipine  nicardipineisradipinefelodipineamlodipine

Adalat CC,Procardia XL CardeneDynaCircPlendilNorvasc

Three Classes of CCBs

Page 4: Calcium channel blockers (1)

Three Classes of CCBs

N CH2 CH2N

0

CH3

0 C CH3

0

CH3

CH3

Diltiazem

C 0 CH3

NO2

CH3H3C

C0H3C

0 0

Nifedipine

C CH2 CH2 CH2CH2 CH2N

CH3

CH3

C N

CH

H3C

0H3C

0H3C

0 CH3

0 CH3

Verapamil

NH

S

Page 5: Calcium channel blockers (1)

Angina pectoris

Hypertension

Treatment of supraventricular

arrhythmias

- Atrial Flutter

- Atrial Fibrillation

- Paroxysmal SVT

Widespread use of CCBs

Page 6: Calcium channel blockers (1)

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 7: Calcium channel blockers (1)

III IV

II IIVIII

56 5

6

Out

In

I II III IV

The 1C subunit of the L-type Ca2+ channel is the pore-forming subunit

Page 8: Calcium channel blockers (1)

NH3+

NH3+

COO-

COO-

b

1C

NH3+ COO-

2

I II III IV

COO-

NH3+

d

The expression and function of the 1C subunit is modulated by other smaller subunits

L-Type Ca2+ Channel

Page 9: Calcium channel blockers (1)

The Three Classes of CCBs Bind to Different Sites

1,4-Dihydropyridines

(nifedipine)

Phenylalkylamines(verapamil)

Benzothiazepines(diltiazem)

Ca2+

pore

-

- -

-++-

Page 10: Calcium channel blockers (1)

Increase the time that Ca2+ channels are closed

Relaxation of the arterial smooth muscle but

not much effect on venous smooth muscle

Significant reduction in afterload but not preload

CCBs – Mechanisms of Action

Page 11: Calcium channel blockers (1)

The different binding sites of CCBs result in differing pharmacological effects

Voltage-dependent binding (targets smooth muscle)

Use-dependent binding (targets cardiac cells)

Cellmembrane

1

out

in b

+20

-80mV 2

d

DiltiazemVerapamil

1

b

1

out

in

+20

-80-30 2

d1

Nifedipine

CellmembranemV

Page 12: Calcium channel blockers (1)

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 13: Calcium channel blockers (1)

Why Do CCBs Act Selectively on Cardiac and Vascular Muscle?

Page 14: Calcium channel blockers (1)

N-type and P-type Ca2+ channels mediate neurotransmitter release in neurons

postsynaptic cell

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Page 15: Calcium channel blockers (1)

MyofibrilPlasma membrane

Transverse tubule

Terminal cisterna ofSR

Tubules ofSR

TriadTSR

Skeletal muscle relies on intracellularCa2+ for contraction

Page 16: Calcium channel blockers (1)

Cardiac cells rely on L-type Ca2+ channels for contraction and for the upstroke of the AP in slow response cells

Contractile Cells(atria, ventricle)

L-Type

Ca2+

Ca2+ Ca2+

Slow Response Cells(SA node, AV node)

L-Type

Ca2+

Ca2+

Page 17: Calcium channel blockers (1)

Vascular smooth muscle relies on Ca2+ influxthrough L-type Ca2+ channels for contraction

(graded, Ca2+ dependentcontraction)

L-Type

Ca2+

Page 18: Calcium channel blockers (1)

CCBs Act Selectively on Cardiovascular Tissues

Neurons rely on N-and P-type Ca2+ channels

Skeletal muscle relies primarily on [Ca]i

Cardiac muscle requires Ca2+ influx through L-type Ca2+ channels - contraction (fast response cells) - upstroke of AP (slow response cells)

Vascular smooth muscle requires Ca2+ influx

through L-type Ca2+ channels for contraction

Page 19: Calcium channel blockers (1)

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 20: Calcium channel blockers (1)

The different binding sites of CCBs result in differing pharmacological effects

Voltage-dependent binding (targets smooth muscle)

Use-dependent binding (targets cardiac cells)

Cellmembrane

1

out

in b

+20

-80mV 2

d

DiltiazemVerapamil

1

b

1

out

in

+20

-80-30 2

d1

Nifedipine

CellmembranemV

Page 21: Calcium channel blockers (1)

Differential effects of different CCBs on CV cells

AV

SN

AV

SN

Potential reflexincrease inHR, myocardialcontractilityand O2 demand

CoronaryVD

Dihydropyridines: Selective vasodilators Non -dihydropyridines: equipotent forcardiac tissue and vasculature

Heart ratemoderating

Peripheraland coronaryvasodilation

Reducedinotropism

Peripheralvasodilation

Page 22: Calcium channel blockers (1)

Effect Verapamil Diltiazem Nifedipine

Peripheralvasodilatation

Coronaryvasodilatation

Preload 0 0 0/

Afterload

Contractility 0/ / *

Heart rate 0/ /0

AV conduction 0

Hemodynamic Effects of CCBs

Page 23: Calcium channel blockers (1)

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 24: Calcium channel blockers (1)

AgentOral

Absorption(%)

Bioavail-Ability

(%)

ProteinBound

(%)

Elimination

Half-Life(h)

Verapamil >90 10-35 83-92 2.8-6.3*

Diltiazem >90 41-67 77-80 3.5-7

Nifedipine >90 45-86 92-98 1.9-5.8Nicardipin

e-100 35 >95 2-4

Isradipine >90 15-24 >95 8-9

Felodipine -100 20 >99 11-16Amlodipin

e>90 64-90 97-99 30-50

CCBs: Pharmacokinetics

Page 25: Calcium channel blockers (1)

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 26: Calcium channel blockers (1)

  Diltiazem Verapamil Dihydropyridines

Overall 0-3% 10-14% 9-39%

Hypotension ++ ++ +++

Headaches 0 + +++Peripheral

Edema ++ ++ +++

Constipation 0 ++ 0

CHF (Worsen) 0 + 0

AV block + ++ 0Caution w/beta

blockers+ ++ 0

Comparative Adverse Effects

Page 27: Calcium channel blockers (1)

heart rate

blood pressure

anginal symptoms

signs of CHF

adverse effects

CCBs - Monitoring

Page 28: Calcium channel blockers (1)

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 29: Calcium channel blockers (1)

Contraindication Verapamil Nifedipine Diltiazem

Hypotension + ++ +

Sinus bradycardia + 0 +

AV conduction defects ++ 0 ++

Severe cardiac failure ++ + +

Contradications for CCBs

Page 30: Calcium channel blockers (1)

Outline

Introduction

CCB binding sites

Heterogeneity of action

Cardiac & hemodynamic

differentiation

Pharmacokinetics

Adverse effects

Contraindications

Summary

Page 31: Calcium channel blockers (1)

Which CCB is most likely to cause hypotension and reflex tachycardia?

A. Diltiazem

B. Nifedipine

C. Verapamil

Page 32: Calcium channel blockers (1)

Contraindications for CCBs include (choose all appropriate):

A. Supraventricular tachycardias

B. Hypotension

C. AV heart block

D. Hypertension

E. Congestive heart failure

Page 33: Calcium channel blockers (1)

CCBs may improve cardiac function by:

A. Reducing cardiac afterload

B. Increasing O2 supply

C. Decreasing cardiac preload

D. Normalizing heart rate in patients with

supraventricular tachycardias

Page 34: Calcium channel blockers (1)

Thank you!


Top Related