Transcript
Page 1: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

A QUANTUM THEORETICAL

STUDY OF THE 1,3-DIPOLAR

CYCLOADDITION REACTIONS

THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENT OF THE DEGREE OF

DOCTOR OF PHILOSOPHY (SCIENCE)

IN CHEMISTRY

OF

THE UNIVERSITY OF BURDWAN

TAPAS KUMAR DAS, M.Sc.

DEPARTMENT OF CHEMISTRY

THE UNIVERSITY OF BURDWAN

BURDWAN-713104

WEST BENGAL, INDIA

MAY-2012

TA

PA

S K

UM

AR

D

AS

2

01

2

Page 2: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

A QUANTUM THEORETICAL STUDY OF

THE 1,3-DIPOLAR

CYCLOADDITION REACTIONS

Submitted by

Tapas Kumar Das

DEPARTMENT OF CHEMISTRY

UNIVERSITY OF BURDWAN

A THESIS

SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN CHEMISTRY

TO

THE UNIVERSITY OF BURDWAN BURDWAN-713104

INDIA MAY-2012

Page 3: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Dedicated to….

My parents….

.…for their untiring love and blessings

Page 4: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

The University of Burdwan

Dr. Manas Banerjee

Professor

Department of Chemistry Golapbag,

Burdwan 713104, India.

Tel: +91-342-2533913 (O)

+91-33-26845255 (R)

Fax: +91-342-2530452 (O)

E-mail: [email protected]

Dated, 04.05.2012

TO WHOM IT MAY CONCERN

This is to certify that the thesis entitled “A QUANTUM THEORETICAL STUDY

OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONS” is the result of

work done by Mr. Tapas Kumar Das, M.Sc., who has been registered to The

University of Burdwan on 15.05.2006 for the award of Doctor of Philosophy

(Science) under my supervision. This work, neither in part nor whole, has been

submitted for fetching any degree by Mr. Das or others, to the best of my

knowledge.

This is also to certify that he has fulfilled all the requirements under the regulation

relating to the nature of work, qualifying course work, period of research satisfying

residential requirement and presentation of seminar talks etc. in the due time.

(Manas Banerjee)

[Supervisor]

Page 5: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Acknowledgements

I take this golden opportunity to express my deepest sense of gratitude to my

Supervisor Prof. Manas Banerjee for his guidance, encouragement, support and help

rendered to me during my research tenure here without which my Thesis would have

not been completed.

I would like to thank the Head of the Department of Chemistry, University of

Burdwan, for providing the facilities for necessary items. I would also like to extend

my sincere thanks to the teachers of our Chemistry Department for their kind

assistance whenever I felt the need for anything necessary for the completion of my

Ph. D program.

I sincerely thank all my friends and colleagues of my school, Ramnagar Atul

Vidyalaya, Head Master: Mr. Prasanta Kumar Chakraborty, and Assistant Teachers:

Anirban Seth, Abhijit Ray, Susanta Maity, Amit Adhya, Ujjwal Bhar and specially

my research colleagues Mr. Kalyan Ghosh, Ms. Tandrima Chaudhuri, Mrs. Sneha

Salampuria for all their encouragement, help and support.

I would also like to thank all the research scholars and non-teaching staff of the

chemistry department for their help and support rendered to me in the course of my

research.

Without the encouragement, inspiration, blessings and support of my Parents Mr.

Nirapada Das and Smt. Susama Das, I would not have reached this stage. Here I

would like to mention specially my wife Smt. Sampa Das and sons Subhadeep Das

and Arghadeep Das without whose inspiration and moral support I would have never

reached this far.

Above all, I thank to the almighty God for His blessing and providing me so much.

Burdwan

May, 2012 Mr. Tapas Kumar Das

Page 6: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Contents

Contents

Dedication

Letter of supervisor

Acknowledgements

PAGE

Chapter 1 1-18

General Introduction

1.1. Cycloaddition Reaction 2

1.2. Classification of Cycloaddition Reactions 8

1.3. Need for a Quantum-Theoretical Study 10

1.4. The Major Objectives of Study 11

1.5. Previous Works of Different Research Groups 11

1.6. General Scope of the Present Work 13

References 17-18

Chapter 2 19-48

General methodology and theoretical approach towards chemical reactions 2.1 . Theoretical Chemistry and Chemical Reactions 20

2.2 . Geometry Optimization 20

2.3 . Test for a True Minimum 21

2.4 . Transition State Optimization and its Location 22

2.5 . Test for True Transition State 23

2.6 . Quantum Chemical Tools for Electronic Energy Calculation 23

2.6.1. The Hartree-Fock Self-Consistent Field Method 23

2.6.2. Moller-Plesset Perturbation Theory 27

2.6.3. Density Functional Theory 29

2.7. Natural Bond Orbital (NBO) Analysis 33

2.7.1. Wiberg Bond Index 35

2.8. Chemical Reactivity Indexes 35

Page 7: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Contents

2.8.a) Chemical Hardness 35

2.8.b) Electronic Chemical Potential 37

2.8.c) The Global Electrophilicity Index 37

2.8.d) The Fukui Function 38

2.8.e) The Local Electrophilicity Index 39

2.8.f) The Global Nucleophilicity Index 39

2.8.g) The Local Nucleophilicity Index 40

2.8.h) Global and Local Softness 40

2.8.i) Enthalpy or Heat of the Reaction 41

2.8.j) Enthalpy of Activation 41

2.8.k) Free Energy of the Reaction 42

2.8.l) Free Energy of Activation 42

2.8.m) Activation Energy 43

2.8.n) Rate Constant 43

2.8.o) Pauling’s Partial Bond Order (PBO) 46

2.8.p) Charge Transfer at Transition State (CT) 46

References 47-48

Chapter 3 49-70

Studies on cyclization of azomethine ylides with substituted alkenes

3.1. Introduction 50

3.2. Computational Method 52

3.3. Results and Discussion 53

3.3.1. Reaction of Acyclic Azomethine Ylides with Alkenes 57

3.3.2. Reactions of Cyclic Azomethine Ylides with Alkenes

Bearing Electron Withdrawing Substituents 60

3.4. Nature of the Transition State 65

3.5. Conclusion 67

References 68-70

Page 8: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Contents

Chapter 4 71-86

Stereoselectivity in the 1,3-dipolar cycloaddition of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

4.1. Introduction 72

4.2. Computational Method 74

4.3. Results and Discussion 75

4.3.1.Theoretical Explanation for the Cycloaddition of

1-pyrroline-1-oxide (N1) to Methyl Cinnamate (E1)

and Benzylidene Acetophenone (E2) 75

4.4. Exploring the Transition State 78

4.5. Selectivity and Reactivity of the Cycloadditions 80

4.6. Conclusion 83

References 84-86

Chapter 5 87-107

1,3-dipolar cycloaddition of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol 5.1. Introduction 88

5.2. Computational method 89

5.3. Results and Discussion 89

5.3.1. Reaction of the Nitrones with Styrene 94

5.3.2. Reaction of Nitrones with Allyl Alcohol 99

5.4 Nature of Transition State in the Reactions 103

5.5 Conclusion 104

References 105-107

Page 9: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Contents

Chapter 6 108-133

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles 6.1. Introduction 109

6.2. Computational Method 110

6.3. Results and Discussion 111

6.3.1. Reaction of Azomethine Imine with Unsymmetrically

Substituted Alkenes (E1 and E2) 119

6.3.2. Reaction of Azomethine Imine (AI) with the

Symmetrical Substituted Alkene ( E3) 123

6.4. Reactivity in Terms of Global and Local Electrophilicity

and Nucleophilicity of the Reactants 125

6.5. Nature of the transition State 128

6.6. Selectivity and Reactivity of the Cycloadditions 130

6.7. Conclusion 130

References 131-133

7. List of Publications 134-136

8.1. Annexure 1 A1-A46

8.2. Annexure 2 A47-A65

8.3. Annexure 3 A66-A105

8.4. Annexure 4 A106-A167

Page 10: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Chapter: 1

General Introduction

Page 11: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

2

1.1. Cycloaddition Reaction

Organic cycloaddition is a very interesting and important chemical reaction due to

its role in organic synthesis as well as from academic considerations1. It gives cyclic

products without the loss of atoms i.e., without the formation of any side products

and requires nothing other than light or heat for initiation. These reactions are

stereospecific and regiospecific in nature and are obviously important for the

preparation of specific cyclic compounds. The cyclic compounds containing

heteroatoms are called heterocyclic compounds. Those are very important for

biological and industrial use.

Now, the question arises what precisely a cycloaddition reaction is. The addition

reaction of alkenes with polyenes or dipoles leading to the formation of cyclic

product/products is called cycloaddition reaction.

There are different types of cycloaddition reaction. Concerted pericyclic

cycloadditions involve reorganization of the -electron systems of the reactants to

form two new -bonds. Examples might include cyclodimerization of alkenes,

cycloaddition of allyl cation to an alkene, and the addition reaction between alkenes

and dienes (Diels-Alder reaction)2. The cycloadditions can be characterized by

specifying the number of π-electrons involved for each species, and for the above

three cases, this would be [2+2], [2+2] and [4+2] respectively. The pattern of

reactivity can be understood by application of the principle of conservation of orbital

symmetry. The most important of the concerted cycloaddition reactions is Diels-

Alder reaction between a diene and alkene derivative to form a cyclohexene. The

alkene reactant usually has a substituent and is called the dienophile. Concerted

reactions occur without an intermediate. The transition structure involves both bond

breaking and bond formation, although not necessarily to the same degree. There are

numerous examples of both unimolecular and bimolecular concerted reactions. A

particularly important group consists of the concerted pericyclic reactions, which is

characterized by a continuous reorganization of electrons through cyclic transition

structures (TS). Furthermore, the cyclic TS must correspond to an arrangement of

the participating orbitals that can maintain a bonding interaction between the

reacting atoms throughout the course of the reaction. The [4+2] cycloaddition

Page 12: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

3

reaction is the addition reaction, where 4 π-electrons of one-reactant and 2 π-

electrons of the other reactant are combined to form a cyclic product. This is actually

the case of Diels-Alder reaction (Fig. 1.1)2. But the mechanism of this reaction was

not so easy to understand, which is clear from the fact that the Nobel committee took

twenty-two years to understand the beauty of this reaction.

Fig. 1.1

The [2+2] cycloaddition reaction is the addition reaction, where 2 π-electrons of one

reactant and 2 π-electrons of the other reactant to form the cyclic product (Fig. 1.2).

Fig. 1.2

Another important type of [4+2] cycloaddition is 1,3-dipolar cycloaddition2. These

reactions involve heteroatomic systems that have four π-electrons and are

electronically analogous to the allyl or propargyl anions. Many combinations of

atoms are conceivable; among them are azides, nitrones, nitrile oxides and ozone. As

these systems have four π-electrons, they are analogous to dienes and their

cycloadditions with alkenes and alkynes are allowed [4+2] reactions. In a [4+2]

cycloaddition reaction one reactant has 4 π-electrons in the form of a dipole (1,3-

dipole) and the other reactant has 2 π-electrons and they combine to form a cyclic

product. A key to understand the mechanisms of the concerted pericyclic reactions

was recognized by Woodward and Hoffmann. That the pathways of such reactions

are determined by the symmetry properties of the orbitals and those are directly

+ (4+2)-cycloaddition reaction

+ (2+2)-cycloaddition reaction

Page 13: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

4

involved. Specifically, they stated the requirement for conservation of orbital

symmetry. The idea was that the symmetry of each participating orbital must be

conserved during the reaction process. In 1,3-dipolar cycloaddition reaction the

alkene is usually termed as dipolarophile. The dipoles include various heteroatoms.

(Fig. 1.3).

R N N N+

Azide

1 2 3

C N

R

R

O

R

+

Nitrone

1

23

C N+

C13 2

R

R

R

R

R

Ylide

C NR R+

N123

Imine

C NR O+

123

Nitrile oxide

O+

123

OO

Ozone

Some 1,3-dipoles

Fig. 1.3

O

N

C

-

+

+

O

N

Dipole Dipolarophile Adduct

1,3-dipolar cycloaddition reaction

1

2

3

Fig. 1.4

The 1,3-dipolar cycloaddition (1,3DC) reaction (Fig. 1.4) can be more precisely

defined as, the addition of 1,3-dipole to an alkene for the synthesis of five membered

heterocyclic rings. A dipole is a system of three crucial atoms over which 4 π-

electrons are distributed in two filled π-orbitals and there is one empty π-orbital with

Page 14: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

5

a central heteroatom, usually oxygen, nitrogen or sulphur. There are wide varieties

of dipoles that include a combination of carbon, oxygen and nitrogen atoms within

the structures1. They can be considered as electrically neutral molecules carrying a

positive and a negative charge centers in one of their major canonical structures.

However, they are not zwitterionic in nature. The 1,3-dipoles vary greatly in their

stability. Some can be isolated and stored, others are relatively less stable but are

usually prepared on the same day of their use and some like azomethine ylides,

azomethine imines etc. are so unstable that they are generated and reacted in situ.

Basically, the 1,3-dipoles can be divided into two major different types: the allyl

anion type and the propargyl/allenyl anion type.

Mostly, the outcome from 1,3-dipolar cycloaddition reactions are the heterocyclic

compounds. The chemistry of heterocyclic compounds is one of the most interesting

yet complex branches of organic chemistry, of equal interest for its theoretical

implications, diversity of its synthetic procedures, and for physiological and

industrial significance of the heterocycles. Many broader aspects of heterocyclic

chemistry are recognized as disciplines of general significance, which have impact

on almost all aspects of modern organic chemistry, medicinal chemistry, and

biochemistry. For this reason scientists initiated several years ago a parallel series

entitled General Heterocyclic Chemistry, which dealt with such topics like nuclear

magnetic resonance, mass spectra, and photochemistry of heterocyclic compounds.

The utility of heterocycles in organic synthesis, includes the synthesis of

heterocycles by means of 1,3-dipolar cycloaddition. This was intending to be of

interest to all organic, medicinal, and biochemically oriented chemists, as well as to

those whose particular concern was heterocyclic chemistry1. It is a major challenge

to this immense field of heterocyclic chemistry for the synthetic preparation of

compounds and theoretical study. One strategy is to study the new materials, as has

been done inter alia with isoxazolidine, pyrazolidine, pyrrolidines, pyridines,

purines, pyrimidines, quinazolines, isoxazoles, pyridazines and pyrazines.

Page 15: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

6

Since this fascinating and broadly useful subject has developed in the intermediate

period, the ability of the 1,3-dipolar cycloaddition (1,3DC) reaction to produce

heterocycles has been extended to two other areas of organic synthesis. Firstly, the

heteroatom-containing important cycloadducts may be transformed into a variety of

other functionalized organic molecules, whether cyclic or acyclic. Secondly, many

1,3DC have the ability to generate rings (and functionality derived ones from

transformations of such rings) containing several contiguous stereocenters in one

synthetic operation1. The configurations of these new stereocenters arise from the

geometry of the dipole and dipolarophile as well as the topography (endo- or exo-)

of the cycloaddition and also from the different faces of attack, i.e., the re or si face

for a prochiral molecule. An additional stereochemical feature arises when the

reactive p faces of either of the cycloaddends are diastereotopic. Relative

stereocontrol in 1,3DC can be dealt with some details, and asymmetric versions of

dipolar cycloaddition would emerge. Again the chemistry and synthetic applications

of 1,3DC in the broad context of organic chemistry can result in such products with

specific stereo-, regio- and enantio- selectivity3-5

. The 1,3DC reactions do not

require other reagents except for 1,3-dipoles and the dipolarophiles and also there is

no formation of byproducts. In this sense 1,3DC reactions are friendly to the

environment and they can be made useful for the development of green chemistry.

As the complexity of synthetic targets increase, so does the demand for solutions to

the synthetic problems. As such, development and refinement of established

methodologies continue. In particular, cycloaddition chemistry has continued to

maintain its place as one of the cornerstones of modern organic chemistry, for the

construction of mono- and polycyclic systems, a consequence of being able to

deliver high molecular complexity from relatively simple and accessible precursors.

The most important dipoles, which we have studied, are the azomethine ylides,

nitrones and azomethine imines.

For the construction of the five-membered nitrogen-containing heterocycles, among

the 1,3-dipoles, the ylides provide conceptually the most simple and efficient

Page 16: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

7

method. Generation of the ylides, usually in situ, followed by dipolarophile attack,

furnishes pyrrolidines and pyrrolines with operational simplicity. For the

synthetically orientated chemist it is necessary to have the requisite knowledge to

implement such methodology to meet the challenges posed by asymmetric and

natural product synthesis. But less theoretical study6-8

has been done in this regard.

Again, among the most thoroughly investigated 1,3-dipoles, the nitrones are

arguably most useful through their ability to generate nitrogen- and oxygen- based

functionality from the cycloadducts and these are potential to introduce multiple

chiral centers stereoselectively. The 1,3-dipolar cycloaddition reactions of nitrones

are important for the straight forward route to the synthesis of isoxazolidines. Again

the nitrones’ cycloadducts are very attractive intermediates for the synthesis of

various natural products and biologically active compounds9-13

. Their chemistry has

been widely varied and frequently reviewed. Extensive theoretical investigation on

the 1,3DC reactions using nitrones were done by many researchers compared to

those done with the other dipoles14

. The azomethine imines (AI), had been relatively

little studied and were less explored compared to the nitrones counterpart. The

1,3DC reactions of azomethine imines have found potential application in the

efficient regio- and stereo- controlled synthesis of pyrazolidine rings using the

appropriately substituted alkenes, thus having the possibility to generate three new

chiral centers simultaneously. Although cases of azomethine imines essentially

entering asymmetric cycloaddition reaction with alkenes are limited, we have

focused our attention to the chiral azomethine imines for the stereoselective

synthesis of C-nucleosides, which plays a very important role in the synthesis of

cyclic or bicyclic natural and bio-organic compounds with a very high or complete

selectivity. The synthetic utility of the 1,3DC reaction is evident from the number

and scope of targets that can be prepared by this chemistry15

. The mechanism of the

1,3DC is quite interesting and there was a debate over two decades3 between the two

pioneer researchers, R. Huisgen and R.A. Firestone, in attempt to recognize that a

duality of mechanism might exist on the whole. This discussion has been done

elaborately in chapter 3.

Page 17: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

8

Cycloaddition reactions figure prominently in both synthetic and mechanistic

processes. The monumental work of Rolf Huisgen and co-workers in the early 1960s

has led to building the general concept of 1,3-dipolar cycloadditions. Few reactions

rival this process in terms of the number of bonds that undergo transformation

during the reaction, generating products considerably more complex than the

reactants. Over the years, this reaction has developed into a generally useful method

for synthesis of five-membered heterocyclic rings, since many 1,3-dipolar species

are readily available which react with a wide variety of dipolarophiles. The utility of

this cycloaddition reaction in synthesis, deals primarily with information that has

appeared during the last few decades. Consequently, only a selected few numbers of

dipoles have been reviewed, with a major emphasis on their synthetic applications3.

We have investigated only the three types of dipoles-ylides, nitrones and imines

which are most important among all the 1,3-dipoles.

1.2. Classification of Cycloaddition Reactions

In connection with concertedness of the Diels-Alder (D-A) reaction, it is

argued that there might be an intermediate which is diradical in character. D-A

reactions are almost always stereospecific which implies that if an intermediate

exists it can not have a lifetime sufficient to permit rotation or inversion. The

majority of D-A reactions is concerted. It is recognized that in reactions between

unsymmetrical alkenes and dienes, bond formation might be more advanced at one

pair of terminal than at the other. This is described as an asynchronous process. Loss

of stereospecificity is expected only if there is an intermediate in which one bond is

formed and the other is not, permitting rotation or inversion at the unbound termini.

Cycloaddition reactions that occur through a pericyclic concerted mechanism can be

written as a continuous rearrangement of electrons. Orbital symmetry considerations

provide a fundamental insight into the electronic nature of cycloaddition reactions.

Woodward and Hoffmann formulated the orbital symmetry principles for

cycloadditions in terms of frontier orbitals. An energetically accessible TS requires

overlap of the frontier orbitals to permit smooth formation of the new -bond. If it is

assumed that the reactants approach one another face to face, as expected for

Page 18: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

9

reactions involving π-orbitals, the requirement for bonding overlap between the

Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular

Orbital (LUMO) are met for [2+4] but not for [2+2] or [4+4] cycloadditions. More

generally, (4n+2) π-electrons are favourable whereas systems with 4n π-electrons

are not. When systems interact with face to face topology, this addition is called

suprafacial denoted by subscript s and when they interact with opposite face

topology of the π system, the addition is called antarafacial denoted by subscript a.

Sustmann16-17

and Trill summarized these and related reactivity relationships in

terms of Frontier Molecular Orbital (FMO) theory and pointed out that 1,3-DC

reactions could be of three types, depending on relative placement of the frontier

orbitals: type-1, HOMOdipole–LUMOdipolarophile dominant; type-2, LUMOdipole–

HUMOdipolarophile dominant; type-3, both HOMO-LUMO interactions are significant.

Electron repelling group (ERG) in the dipole and electron withdrawing group

(EWG) in the dipolarophile should accelerate the first type. The second type should

be facilitated by an EWG in the dipole and an ERG in the dipolarophile. These

relationships suggest a parabolic substituent effect as type-3 reactions shift from

LUMOdipolarophile to mixed to HOMOdipolarophile controlled. Using a wider range of

reactants, Sustmann and Trill demonstrated a parabolic rate relationship and

developed a mathematical treatment in terms of FMO theory that provided a

semiquantitative explanation of relative reactivity.

Although the FMO approach provides a good foundation for understanding the

regioselectivity of 1,3DCs, there are many specific cases in which it fails to provide

a complete understanding. Steric factors are not considered by the FMO analysis and

in many instances steric factors control regiochemistry. 1,3DC can be broadly

classified as steric controlled or electronically controlled. There may also be specific

interactions in the TSs that are not considered by the FMO analysis.

Cycloaddition reactions are classified as nonpolar, polar and ionic depending on the

value of calculated charge transfer (CT) in the transition state. The reaction

becomes18

nonpolar if CT<0.15e, polar if 0.15e<CT<0.4e and ionic if CT>0.4e. The

detailed computational procedure and explanation have been given in the subsequent

section 2.8.p.

Page 19: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

10

1.3. Need for a Quantum-Theoretical Study

Computational approach provides a fundamental insight into the electronic nature of

the cycloaddition reactions and allows us to see that some of the TS structures are

electronically favourable, whereas others are not. As with the D-A reaction, the

concerted pericyclic mechanism can account for many aspects of stereochemistry

and regiochemistry of the 1,3DC reaction. Most 1,3DC reactions are highly

stereospecific with respect to the dipolarophile.

There have been many studies of individual systems by Molecular Orbital (MO) and

Density Functional Theory (DFT)19-22

methods and these provide further insight into

the factors that control regio- and stereo-selectivity. For example, there are two

possible regioisomers from the reaction of diazomethane and methyl vinyl ether, but

only the 3-methoxy isomer is formed. Calculations at several levels of theory

(Hartree-Fock (HF)/6-31G and Moller-Plesset second order (MP2)/6-31G*) found

lower activation energies for TS leading to the observed product. Among the various

methods, DFT becomes most popular, versatile, and applicable to all types of

reacting systems. This DFT method gives greater accuracy than the Hartree-Fock

method only at slight increase in cost but far less than that of MP223

for medium size

and large size molecular systems. The 1,3DC reactions are relatively less explored,

specially for the ylides and imines. Additionally, our interest is to explain the 1,3DC

reactions with the help of theoretical calculations. The computer revolution has

paved the way for accurate calculations made on the basis of Valence Bond (VB) or

Molecular Orbital (MO) theory on actual molecules, which gives very good

rationalization of the observed physical properties and chemical behaviour of the

systems. The results are an enormous output of the molecular orbital calculations on

an astonishing variety of chemical systems24-25

. This is more applicable to organic

chemistry, but now applicable to almost any field of chemistry. From the efforts of

theoretical and computational chemists, completely new field of research has

emerged, that of theoretical and physical organic chemistry26-28

. Again, the

parameters of reaction and electronic behavior of the reactants for the reaction can

be obtained easily and correctly from the DFT calculations. This makes our attention

to be attracted towards a theoretical study of the 1,3DC reactions.

Page 20: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

11

1.4. The Major Objectives of Study

1. Predicting theoretically the stereo-specific adducts in 1,3DC reactions, in

general.

2. Predicting the probable path of the reaction and nature of interactions in the

transition state.

3. Application of these reactions to asymmetric synthesis for the preparation of

important stereoisomers.

4. Exploring how the 1,3-DC reactions of nitrones, azomethine imines and ylides

produce predominantly 5-membered and differently substituted isoxazolidine,

pyrazolidine and pyrrolidines rings.

5. Predicting particularly the diastereofacial, regio- & enantio- selectivity of

1,3DC reactions of nitrones, imines and ylides in terms of local electrophilicity

and nucleophilicity since FMO predictions are not generally quite satisfactory.

6. Predicting the product ratios of different stereoisomers obtained in a particular

cycloaddition reaction.

1.5. Previous Works of Different Research Groups

There is a huge literature for the study of cycloaddition reactions and it is

practically impossible to state all such works here. Rather we mention here some

of the important works that we felt significant in the development of the subject

and related to our study. More references are given in the introduction section of

each chapter.

Page 21: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

12

K.V. Gothelf et al.2 done very good job on Asymmetric 1,3-Dipolar

Cycloaddition reaction experimentally and prepare a detailed review about this

matter.

S. Sakai et al.29

studied DFT-SHAB (Soft-Hard-Acid-Base) prediction of

regioselectivity, transition state, reaction mechanism of imine dipoles in 1,3-

Dipolar Cycloaddition.

Houk et al.30

studied the pericyclic reactions and also the 1,3-Dipolar

Cycloaddition reactions both by experimentally and computational theoretical

study. They used molecular orbital calculations in order to rationalize and

prediction of relative rates of regioselectivity of 1,3-dipoles and dipolarophiles.

Again by using Perturbation theory they studied the origin of reactivity,

regioselectivity and stereoselectivity in 1,3-Dipolar Cycloaddition reactions.

L.R. Domingo et al.31

studied the molecular reaction mechanism of the 1,3-

Dipolar Cycloaddition reaction by different computational methods. They are

especially interested on azomethine ylides. They have lots of theoretical paper

about these 1,3DC reactions.

Magnuson et al.32

studied the Molecular Orbital calculations to explain

theoretically the 1,3-Dipolar Cycloaddition reactions of nitrone with different

substituted ethylenes.

R.C.F. Jones et al.15

performed experimental study on 1,3-Dipolar Cycloaddition

reactions of Azomethine Imines with electron withdrawing substituted ethylenes

and prepared principally 4-substituted pyrazolidines. These reactions are very

much useful for the stereoselective synthesis of C-nucleosides.

M.T. Nguyen et al.33

used quantum mechanical methods, such as MP2 and DFT,

to study the mechanism of 1,3-Dipolar Cycloaddition reaction of simple Azides

and many nitrones with many simple dipolarophiles.

Page 22: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

13

C.D. Valentin et al.34

studied the Concerted vs Stepwise mechanism of 1,3-

Dipolar Cycloaddition reactions of Nitrones with some different alkenes with the

help of DFT study.

1.6. General Scope of the Present Work

We are very interested to investigate different aspects of 1,3-dipolar

cycloadditions for a better insight into its mechanism, specially for the dipoles

azomethine ylides, nitrones and azomethine imines. In order to explore the

nature of transition states and rationalizing the product ratios and the observed

selectivities in terms of Quantum chemical DFT based reactivity parameters.

Such essential parameters are philicity indices, activation parameters etc. We

have divided our investigations into four parts: first one is for the azomethine

ylides, second and third are for the nitrones and last one is for azomethine

imines. The section-wise summary of our work are given in the following.

DFT computational study has been done for the 1,3-dipolar cycloaddition

of a few acyclic and cyclic azomethine ylides (AY) with maleimide,

maleic anhydride, methylacrylate and also some simple substituted

alkenes6 bearing different electron withdrawing substituents. We have

explained the reactivity and the selectivity of these reactions using the

values of important thermodynamic quantities like free energy of reaction

(ΔrG), free energy of activation (ΔG ), and enthalpy of reaction (ΔrH)

obtained through Quantum-Theoretical computations. Those important

quantities include chemical hardness, electronic chemical potential,

global electrophilicity, which correlate well with experimental findings.

The DFT computations are performed35

using the B3LYP functional and

6-31G(d) as well as [6-311+G(d,p)] basis sets to rationalize the

reactivity, regioselectivity, enantioselectivity and diasteriofacial

selectivity in respect of those 1,3DC reactions-leading to enantiomeric/

diasteriomeric excess of the products. In particular, N-substituted and C-

Page 23: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

14

substituted AYs have been considered for reactions with the substituted

ethylenes: maleimide, maleic anhydride and methyl acrylate. From an

analysis of the results of calculation for the selected reactions, the regio-

and exo/endo-stereoselectivity have been explained. Reactions are

followed through transition state (TS) structure optimization, calculation

of Intrinsic Reaction Coordinate (IRC) and activation energies. Trends in

regioselectivity and enantioselectivity are followed with the help of

HOMO–LUMO energies, electrophilicity differences and an analysis of

Pauling’s bond order36

(PBO) in the TS.

Pyrolidine-N-oxide is a nitrone type 1,3-dipole. Experimentally it has

been found to add to dipolarophiles like methyl cinnamate and

benzylidene acetophenone to produce different stereo- isomeric products.

Possibility of formation of the various adducts is computationally

explored through optimization of the corresponding TS’s constituted

from the suitable approaching reactants. The effects of various factors

which control regioselectivity and endo/exo- selectivity are examined.

The reason for selecting a cyclic nitrone like 1-pyrroline-1-oxide (N1)

stems from its capability to delicately alter the diastereoselectivity of the

cyclic adducts through simple functional group alterations on the

dipolarophile moiety alone. That the cyclic nitrone N1 can exist only in

the E-isomer restricts the flexibility of addition to the nitrone end37

. The

results of theoretical calculation given in the present work will be useful

for the prediction of selectivities for similar cycloadditions. The present

work addresses the following questions: (1) what would be the structure

and energy of the transition states; (2) how could the experimentally

observed selectivities be rationalized on the basis of computational

results in terms of energy, enthalpy, and free energy of activation; (3)

whether the selectivities could be justified on the basis of global and

local electrophilicity, chemical potential and hardness parameters of the

reacting systems; (4) how could the structures of the isolated

cycloadducts be assigned with the help of spectroscopic means like the

Page 24: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

15

X-ray crystallography and the NMR analysis. Such theoretically

augmented experimental investigation about the variation in

stereoselectivity would provide an insight to understanding the process of

cycloaddition.

Cycloaddition reaction of allyl alcohol with the 1,3-dipole: 1-phenylethyl

nitrone is observed computationally to produce stereoisomeric products,

giving the re-face : si-face product ratio approaching unity which is also

observed experimentally38

. Similar results on products ratio are also

found for the cycloaddition between styrene and the dipole: 1-

phenylethyltrans-2-methyl nitrone, giving a product ratio agreeing with

the experimental ratio as observed by Belzecki et.al.39,40

Theoretical

calculations are performed at the modest B3LYP/6-31G(d) level of DFT.

The quantities that we employ to study these reactions include the rate

constant values and Wiberg bond index in the transition state.

Interpretation of the regioselectivity, enantioselectivity and prediction of

diastereofacial selecitivity for the 1,3DC reaction of these two known

nitrones, have led to a diastereomeric excess of the products. In this

regard, the N-substituted and C-substituted nitrones are considered for

reactions with the substituted dipolarophiles like styrene and allyl

alcohol. These reactions are studied by constructing the potential energy

surface of the addition process and rationalizing results in terms of the

global electrophilicity index of reactivity. For the reactions considered,

trends in reactivity, i.e., the regio- and exo/endo-selectivity and product

ratios have been explained in terms of frontier orbital interactions,

electrophilicity difference, the theoretical rate constant values and an

analysis in terms of Pauling’s bond order and Wiberg bond index41

in the

transition state. All these are found to be in good agreement with the

experimental findings.

Page 25: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

16

Cycloaddition of azomethine imines with three electron deficient

dipolarophiles: acrylonitrile, methylpropenoate, and dimethylmaleate

have been theoretically studied42

. This has produced predominantly 4-

substituted pyrazolidines, which are found to be very useful for the

stereoselective synthesis of C-nucleosides15

. The mechanisms of

regioselectivity, chemoselectivity and diastereofacial selectivity are

studied through an evaluation of activation energies and the parameters

of philicity indices on the assumption of a concerted path. The reactions

are followed by performing transition state optimization. The

regioselectivity and reactivity are amply predicted with the help of local

and global electrophilicity and nucleophilicity indices. The reactions are

found to be nonpolar or at the most weakly polar on the basis of Charge

Transfer (CT) calculated at the transition states. A rationalization is also

attempted in terms of chemical potential, hardness, global electrophilicity

differences, local electrophilicity, local nucleophilicity, Pauling’s bond

order and Wiberg bond indices in the transition state41

. Theoretical

evaluation of rate constants for elementary reaction steps employing the

transition state theory has been done for getting quantitative idea of the

kinetic rates associated with those steps. Calculation of rate constants are

performed with the Eyring’s TST rate equation43-44

and calculating total

partition functions of the concerned species at different temperatures. All

the computed results are derived from density functional calculations at

the B3LYP/6-31G(d) level of theory and with [6-311+G(d,p)] basis.

Considering the reality that the reactions are practically carried out in

solutions, some calculations are performed in solvents of different

polarity to examine the influence on the activation barrier and the

reaction rate.

Page 26: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

17

References

1. A. Padwa and W. H. Pearson, Synthetic Applications of 1,3-Dipolar

Cycloaddition Chemistry Toward Heterocycles and Natural Products. John

Wiley & Sons, Inc., New York, 2002.

2. T.W.G. Solomons, C. B. Fryhle, Organic Chemistry, Eighth Edition, John

Willey & Sons, Inc., 2004.

3. K.V. Gothelf and K.A. Jorgensen, Asymmetric 1, 3-Dipolar. Cycloaddition

Reactions. Chem. Rev., 98 (1998) 863.

4. R. Huisgen, in 1,3- Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley,

New York. 1984; vol.1, Ch 1.

5. R. Huisgen, J. Org. Chem., 33 (1968) 2291.

6. L.M. Harwood, A. I. Lilly, Tetrahedron Lett. 34 (1993) 537.

7. A.S. Anslow, L.M. Harwood, I.A. Lilley, Tetrahedron: Asymmetry. 6 (1995)

2465.

8. A.S. Anslow, G.G. Cox, L.M. Harwood, Khim. Geterotsikl. Soedin.

(1995)1393.

9. C.M. Tice and B. Ganem, J. Org. Chem., 48 (1983) 5048.

10. A. Padwa, Y. Chen, W. Dent, and N. Hildegard, J. Org. Chem., 50 (1985)

4006.

11. A. Padwa and J. R. Gasdaska, J. Am. Chem. Soc., 108 (1986) 1104.

12. A. Banerjee and D. Bandyapadhyay, J. Indian Chem. Soc., 81 (2004) 817.

13. P. Merino, J. Revuelta, T. Tejero, U. Chiacchio, A. Rescifina and G. Romeo,

Tetrahedron, 59 (2003) 3581.

14. L. R. Domingo, European J. Org. Chem. (2000) 2265.

15. R.C. F. Jones, S.J. Hollis, ARKIVOC, v (2007) 152.

16. R. Sustmann, Tetrahedron Lett. (1971) 2717.

17. R. Sustmann, Pure Appl.Chem. 40 (1974) 569.L. R. Domingo, European J.

Org. Chem. (2000) 2265.

18. L.R. Domingo and J.A. Sáez, Org. Biomol. Chem. 7 (2009) 3576.

19. R.G. Parr and Y. Wang, Density-Functional Theory of atoms and molecules

(Oxford Univ. Press: Oxford) 1989.

20. R.G. Parr, L.V.Szenpaly, S. Liu, J. Am. Chem. Soc. 121 (1999)1922.

21. P.K. Chattaraj, D.R. Roy, Chem. Rev. 107 (2007) 46-74.

Page 27: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General Introduction

18

22. R.G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512.

23. C. Møller and M. S. Plesset, Phys. Rev., 46 (1934) 618.

24. P. Geerlings, F.De. Proft, W. Langenaeker,. Chem. Rev. 103 (2003) 1793.

25. M.J. Frisch et al., Gaussian 03, Revision D. 01, Gaussian Inc.,

Wallingford, CT, 2004.

26. P. Merino, J. Revuelta, T. Tejero, U. Chiacchio, A. Rescifina and G. Romeo,

Tetrahedron, 59 (2003) 3581.

27. C. Peng, P.Y. Ayala, H.B. Schlegel and M.J. Frisch, J. Comput. Chem., 17

(1996) 49.

28. H. Chermette, J. Comput. Chem. 20 (1999) 129.

29. S. Sakai, M.T. Nguyen, J. Phys. Chem. ,A 108 (2004) 9169.

30. K.N. Houk, J. Gonzalez and Y.Li, Acc. Chem. Res., 81 (1995) 28.

31. L.R. Domingo. J. Org. Chem., 64 (1999) 3922.

32. E.C. Magnuson and J. Pranata, J. Comput. Chem., 19 (1998) 1795.

33. M.T. Nguyen, A.K. Chandra, S. Sakai and K. Morokuma, J. Org. Chem., 65

(1999) 64.

34. C. DiValentin, M. Freccero, R. Gandolfi, A.Rastelli, J. Org. Chem., 65

(2000) 6112.

35. T.K. Das, M. Banerjee, J. Phys. Org. Chem. 23 (2009) 148.

36. L. Pauling, in The Nature of Chemical Bond, Cornell University, ITHACA,

NY, 3rd

.ed. 1960, p. 239

37. N. Acharjee, T.K. Das, M.Banerjee, A. Banerji, T. Prangé, J. Phys. Org.

Chem. 23 (2010) 1187.

38. T.K. Das, S. Salampuria, M. Banerjee, J. Mol. Struct.: THEOCHEM 959

(2010) 22.

39. C. Belzecki, I. Panfil, J. Chem. Soc. Chem. Commun. (1977) 303.

40. C. Belzecki, I. Panfil, J. Org. Chem. 44 (1979) 1212.

41. K. B. Wiberg, Tetrahedron 24 (1968) 1083.

42. T.K. Das, S. Salampuria, M. Banerjee, Computational and Theoretical

Chemistry 979 (2012) 102–111.

43. K.J. Laidler,Chemical Kinetics, PEARSON Education Inc. 3rd

ed. 2009.

44. D.A. McQuarrie, J.D. Simon, Physical Chemistry, Viva Books Private

Limited, First South Asian Edition, 1998.

Page 28: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Chapter: 2

General methodology and theoretical

approach towards chemical reactions

Page 29: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

20

2.1. Theoretical Chemistry and Chemical Reactions

Development of quantum mechanics in the 1920’s rapidly led to the formulation of

new quantum mechanical theory of molecular structure and bonding, as expressed in

the pioneering approaches of Pauling1 (the valence bond (VB) theory) and Mulliken

2

(the molecular orbital (MO) theory). Through such approaches, it became possible to

describe molecular structure in terms of position of the atoms in space and the

chemical bonds formed between them. It further became feasible to give

mathematical expression to chemical reactivity through the use of atomic charges

and the preferred sites for reactivity of the chemical molecule could be identified.

Recent revolution in computer technology could provide more accurate calculations

of properties for the actual molecules giving a very good rationalization of chemical

phenomena. In order to achieve a reliable accounting of the energies leading to a

chemical reaction, it is essential to obtain optimal geometry configurations of the

different species involved.

2.2. Geometry Optimization

Optimization of geometry of a molecule is usually attempted to locate minima on the

potential energy surface (PES), thereby predicting equilibrium structures of

molecular systems. Optimization to minima is also called energy minimizations.

This energy-minimized configuration in space is called the equilibrium geometry,

occurring at the bottom of a potential well. At both the minima and saddle points

over the reaction path, the first derivative of energy, known as the gradient is zero. A

point on the potential energy surface where the forces are zero is known as a

stationary point. All successful optimizations locate a stationary point, although not

always the one that was intended.

A geometry optimization begins at the molecular structure specified as its input, and

steps along the potential energy surface. It computes the energy and the gradient at

that point, and then determines how far and in which direction to make the next step.

Page 30: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

21

The gradient indicates the direction along the surface in which the energy decreases

most rapidly from the current point also known as the steepness of that slope. Most

optimization algorithms estimated or computed the value of the second derivative of

the energy with respect to the molecular coordinates, updating the matrix of force

constants which is known as Hessian. These force constants specify the curvature of

the surface at the point, which provided additional information useful for

determining the next steps. An optimization is complete when it has converged,

essentially when the forces are zero. The semi-emperical MO methods3 allow for a

more rapid search for energy minima using gradients which can be evaluated

analytically without much expense of computer time.

The steepest descent methods involves step-wise movement of the atoms of the

molecule towards the equilibrium point by calculating each step of movement as a

liner function of force or gradient acting on that atom. This causes the gradient norm

finally to cross a prescribed small threshold. This process may be carried out in

terms of cartesian coordinates or other systems like the internal coordinate system.

Optimizations of the individual reactants of a reaction are done isolatedly. But the

optimization of the reactants together is sometimes difficult. It requires some

important prior requirements such as force constants and some times the solvent as

default, otherwise the job gets terminated. Again the transition state optimization is

somewhat more difficult, and not as easy as that of a single molecule. This is

experienced from our observation through computation with the Density Functional

Theory (DFT)/ Lee, Yang and Parr (B3LYP) method4 and 6-31(d) basis.

2.3. Test for a True Minimum

Characterization of a given stationary point as a true minimum may be preformed by

setting up the Hessian matrix and diagonalising it. When internal coordinates are

used, for a system of X internal coordinates, the emergence of X positive

eigenvalues confirms the given point as an energy minimum or equilibrium

Page 31: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

22

geometry. When cartesian coordinates are used for a system of N atoms, an

equilibrium geometry, may be characterized by the emergence of 3N-3 positive non-

zero Hessian eigenvalues, and there will be only 3 eigenvalues becoming zero or

near zero corresponding to translation in three dimensions.

All these methods to locate energy minima would, in general, lead to that minimum

which is closest to the starting input geometry. Care should be taken that the input

geometry is not too far from the expected equilibrium geometry. A

multidimensional potential energy surface may have several local minima and which

one of these is actually sought is determined by educated guess. The local minimum

which is the lowest of all in energy is termed as the global minimum.

2.4. Transition State Optimization and its Location

The Transition State for a given reaction process is a saddle point on the potential

energy surface. The given process may be a bonafied chemical reaction with bond-

breaking and bond-making, or it may be a more physical process like simple rotation

around a bond or the stretching and compression of bonds. Whatever might be the

process, its rate is dependent on the activation energy barrier which lies on the path

along the reaction coordinate. This barrier corresponds to the point on the energy

hypersurface wherein the transition state is located. The location of this saddle point

is thus an important part of the study of chemical reactivity from the view point of

kinetic feasibility. The highest point of the on the reaction path way of the potential

energy surface or the activation energy diagram is the saddle point where the

transition state is supposed to exist. The most rigorous method to locate the saddle

point would be to plot the entire potential surface upon which all the reacting species

lie. It is a minimum in one direction and maximum in the others. This is a low point

along a ridge. As the potential energy surface becomes progressively

multidimensional, such a procedure becomes more and more time consuming and

tedious computationally. Although time consuming, it is essential to optimize the

Transition State (TS) to evaluate the kinetic part of the reactions and also to explore

Page 32: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

23

the product ratios and stereochemical feasibility of the reactions. Within the

Gaussians set of package the QST3 option5 (Quasi-Newton Synchronous Transit)

option for the optimization of TS does not require a pre-optimization of the reactants

brought together, but requires in the input an optimized product geometry as well as

a guess TS geometry. This option produces an optimized TS efficiently. In some

difficult cases an input of the geometry of an optimized orientation complex of the

reactants leads to successful attainment5 of the TS.

2.5. Test for True Transition State

Locating the true TS in a reaction is a very critical task. Within the Gaussian set of

packages we optimized the transition state with the option of (Opt+Frq) which on

successful completion produces one imaginary frequency in the result section, which

ensures obtaining the true transition state. Intrinsic Reaction Coordinate (IRC)6

corresponding to the optimized TS is the lowest possible minimum energy path,

which connects the reactants and products through the transition state. Obtaining

IRC confirms the location of a true Transition State on the saddle point of potential

energy surface. Every calculation of TS has been substantiated with calculation of

corresponding IRC throughout our entire work7.

2.6. Quantum Chemical Tools for Electronic Energy Calculation

2.6.1. The Hartree-Fock Self-Consistent Field Method

The formulation of actual molecular orbitals is a matter of design or

convenience, which makes a liner combination of the atomic orbitals (LCAO) of

constituents atoms to generate molecular orbitals (MO) for molecules. The atomic

Page 33: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

24

orbitals may be expressed in various ways i) hydrogenic orbitals, ii) Slater-type

orbitals, iii) Gaussian type orbitals. Again the net collection of all the atomic

functions used to express them is referred to as the basis set. According to Pauli’s

Exclusion Principle, the overall molecular wave-function is of antiasymmetric type,

which becomes possible when the total molecular wave-function is expressed as a

Slater determinant – a determinantal combination of the constituent electrons

molecular orbitals, or a liner combination of determinants.

Hartree-Fock (HF) Self Consistent Field (SCF) method8 gives

account of the explict electron repulsions in a molecular system by applying

columbic interactions and the Pauli’s Exclusion Principle with the help of Fock

operator. Employing the concept of an averaged-out field in which the electrons

move, the Slater determinantal wave-function has an iterative solution, when the

molecular orbitals take on a form which is consistent with the field they generate.

The repeated diagonalization of the ever-recreated energy matrix leads to the

solution in which the finally self-consistent field MO’s emerge as the eigenvectors

and their energies as the eigen values. In practice, the iterations are truncated when

the level of self-consistency of field falls below an acceptable threshold, expressed

in terms of successive difference of values of relevant component of mathematical

form adopted by the MO’s that is the total energy.

The Roothaan approach weds the LCAO approximation to the HF-SCF MO theory9.

In this case all the energy terms appear as various integrals involving the atomic

orbitals of the constituent atoms and centered over various atomic centers-one, two,

three, four or five at a time. The bottleneck lies here in the amount of computational

effort required to evaluate all these different types of integrals. When no

approximations are made and all the integrals are explicitly evaluated, the approach

is termed as ab initio, which of necessity is rigorous and time-consuming, depending

upon the basis set.

Hartree-Fock (HF) theory is fundamental to electronic structure theory10

.

It is the basis of molecular orbital (MO) calculation. This produces a situation that

each electron’s motion can be described by a single-particle function (orbital) which

Page 34: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

25

does not depend explicitly on the instantaneous motions of other electrons. In other

words, HF theory is effectively a one-electron theory that approximates a many

electron problem as a single electron one, where each electron is moving in an

effective potential field produced by the remaining electrons and nuclei in a system.

The ubiquity of orbital concepts in chemistry is a testimony to the predictive power

and intuitive appeal of Hartree-Fock MO theory. However, it is important to

remember that these orbitals are mathematical constructs which only approximate

reality. Only for the one-electron system, orbitals are exact eigen functions of the

full electronic Hamiltonion. As long as we are content to consider molecules near

their equilibrium geometry, HF-theory often provides a good starting point for more

elaborate theoretical methods which are better approximations to the electronic

Schrdöinger Equation. The HF wave function is the cornerstone of ab initio

electronic structure theory. In HF theory10

, the molecular wave function Ψ is

constructed with Slater determinants of molecular orbitals, namely;

)(),....,(),(

)2(),....,2(),2(

)1(),......,1(),1(

!

1

21

21

21

NNN

N

N

N

N

SDHF

……….. (2.1)

Where N is the total number of electron, an {χ} is the set of molecular spin-

orbitals i.e., a product of a spatial orbital and an electron spin eigen function. A

Slater determinant is used to make Ψ antisymmetrical with respect to the exchange

of co-ordinates of any two electrons, and thus, compliant to the Pauli Exclusion

Principle. The molecular orbital is normally expanded in terms of the atomic orbitals

.4,321 .......,, N

iC ……………. ( 2.2)

In which the limited set of m functions is called the “basis set”, and each

associated with a MO co-efficient iC . This construction is known as the liner

combination of atomic orbitals (LACO).

Page 35: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

26

Based on the variational principle, one can now minimize the expectation value of

total electronic energy with respect to the orbitals presenting a single Slater

determinant.

HFHF

HFHF HE

………………. (2.3)

And the Hartree-Fock energy is given as;

M

A

M

B

M

A AB AB

BAelec

AB

BAHFelecHFHF

R

ZZE

R

ZZHE

1

……. (2.4)

where; Z is the nuclear charge and ABR is the separation between two nuclei A and

B.

The HF wave function takes into account the interaction between two electrons only

in an average way. Actually, we have to consider the instantaneous interactions

between electrons. That means motion of electrons is correlated with each other

implying the importance of electron correlation. The lack of electron correlation

causes the main limitation of the HF theory. Therefore, several ab initio methods

have been developed in order to improve upon the HF wave function and to include

the effect of electron correlation.

These methods view HF theory as a stepping stone or the zeroth order wave function

on the way of exact solution of the Schrödinger Equation. HF theory provides a very

well-defined energy, one which converges in the limit of an infinite basis-set, and

the difference between that converged energy (EHF) and exact energy (Eexact) is the

electron correlation energy (Ecorr) given as;

Ecorr = EHF - Eexact ………….. (2.5)

Further approaches to the reality involves the creation of further models which treat

electron correlation, the instantaneous effect that every electron has on all the others

Page 36: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

27

that all move together and not to be confused with the time averaged electron

interaction of SCF theory. There is a limit to which the best Hartree-Fock interaction

can reach, and the difference in total energy of the system between the Hartree-Fock

limit and nature itself (exact) is termed as the correlation energy. Some of the

approaches to treat electron correlation include Moller-Plesset perturbation theory11

of varying orders, configuration interaction, the method of coupled clusters, etc.

2.6.2. Moller-Plesset Perturbation Theory

Prior to the widespread use of methods based on density functional theory, the

Moller-Plesset (MP) perturbation theory11

was one of the least expensive ways to

improve on Hartee-Fock and it was thus often the first correlation method to be

applied to new problems. It can successfully model a wide variety of systems, and

Moller-Plesset second order perturbation (MP2) geometries are usually quite

accurate. Thus, MP2 remains a very useful tool for computational chemists10

.

Using eigen functions and eigen values of the simplified operator, it is possible to

estimate the eigen functions and eigen values of the more complete operator.

Quantitatively, MP perturbation theory adds higher excitations to the HF manifold,

drawing upon the techniques from the area of mathematical physics known as many

body perturbation theory. The MP theory is a practical approach based upon

dividing the electronic Hamiltonian into two parts:

H = HHF + λV ………. (2.6)

Such that H0 or HHF is taken as the unperturbed Hamiltonian for an atom or molecule

as the sum of the one FOCK operators which are solveable exactly, i.e.,

)(iFHHF ……….. (2.7)

Page 37: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

28

where, the eigenfunctions of F are the occupied and virtual HF orbitals of the system

and the eigenvalues are the associated one electron energies.

iiiF ……….. (2.8)

The HF wavefunction is an eigenfunction of

HFH with an eigenvalue equal to the

sum of the one electron energies of the occupied spin orbitals.

The essential observation in MP perturbation theory is that all Slater determinants

formed by exciting electrons from the occupied to the virtual orbitals are also

eigenfunctions of

HFH with an eigenvalue equal to the sum of the one electron

energies of the occupied spin orbitals. So a determinant formed by exciting from the

ith

spin orbital of the Hartree-Fock ground state into the ath

virtual spin orbital.

λV is a perturbation applied to H0, a correlation which is assumed to be small in

comparison to it. In other words, it is the difference between the instantaneous and

average electron-electron interaction. This perturbation is sometimes called the

fluctuation potential as one imagines that it measures the deviation from the mean

electron-electron interaction.

N

i

N

ij

N

i

HF

ijHF iVrHHV1 1

1 )( ……….. (2.9)

The assumption that V is a small perturbation to H0 suggests that the perturbed wave

function and energy can be expressed as a power series in V. The usual way to do so

is in terms of parameter λ. The Moller-Plesset second order energy is obtained as;

2

1

)2(

0

srba srba

ji

rs

abijHF r

E

……… (2.10)

rs

ab is doubly excited determinant and ε’s are the corresponding energies of the

occupied and the virtual orbitals.

Page 38: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

29

There are problems for which MP2 theory fails as well, however. In general, the

more unusual the electronic structure a system has the higher level of theory that

will be needed to model it accurately.

Higher level (MP) orders are available for cases where the second order solution of

(MP2) is inadequate. In practice, however only Moller-Plesset fourth order (MP4)

sees wide use. Moller-Plesset third order (MP3) is usually not sufficient to handle

cases where MP2 does poorly, and it seldom offers improvement over MP2 which

are commensurate with its additional computational cost. In contrast, although

significantly more expensive than MP2, MP4 does successfully address many

problems which MP2 cannot handle.

2.6.3. Density Functional Theory

Density functional theory (DFT)10,12

is a quantum mechanical theory used in physics

and chemistry to investigate the electronic structure of many-body systems, in

particular atoms, molecules and the condensed phases. With this theory, the

properties of the many electron systems can be determined by using a functional,

i.e., a function of another function, which is spatially dependent on the electron

density.

DFT is among the most popular and versatile methods applicable to condensed

matter physics, computational physics and computational chemistry. During the last

few years, methods based on density theory have gained steadily in popularity. The

best DFT methods achieve significantly greater than the Hartree-Fock at only

modest increase in cost but far less than MP2 for medium size and large molecular

systems. This theory does so by including some of the effects of electron correlation

much less expensively than traditional correlation methods. DFT-based methods

were derived from quantum mechanics research since the 1920’s especially from

Thomas-Fermi-Dirac model, and from Slater’s fundamental work in quantum

Page 39: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

30

chemistry in 1950’s. The DFT approach is based upon a strategy of modeling

electron correlation via general functional of the electron density.

Such methods owe their origin to the Hohenberg-Kohn theorem13

, published in

1964, which demonstrated the existence of unique functional which determines the

ground state energy and density exactly. The theorem does not provide the exact

form of this functional. Following the work of Kohn and Sham14

, an approximate

energy functional was developed by the present DFT method15

which partitions the

electronic energy into several terms;

xcees EJVTE ……… (2.11)

Where sT is the kinetic energy term arising from the motion of the electrons,

J[ρ] includes the potential of the nuclear-electron attraction and the repulsion

between pairs of nuclei, Vee[ρ] is the electron-electron repulsion-term or columbic

self-interaction of the electron-density, and EXC[ρ] is the exchange-correlation term

which includes the remaning part of the electron-electron interactions. It contains the

difference between ground state kinetic energy T and kinetic energy for the N non

interacting electrons sT , a presumably fairly small and nonclasical part Vee[ρ].

JVTTE eesxc ][ ……… (2.12)

Ts[ρ] +Vee[ρ]+J[ρ] correspond to the classical energy of the charge distribution ρ.

The EXC[ρ] term is basically quantum mechanical in nature and the accounts for the

quantum mechanical effect* (non-classical).

* The exchange energy arising from the antisymmetry of the quantum mechanical

wavefunction.

* Dynamic correlation in motion of the individual electrons.

Therefore, the working expression for energy of density functional theory may be

written as;

Page 40: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

31

drrrVEdrdrrr

rrE xcxc

N

i

i )()(][''

)'()(

2

1

……… (2.13)

N

i

N

i

ieffii V 2

2

1 …….. (2.14)

N

i

effsi drrrVT )()(][ …….. (2.15)

where; ρ(r) electron density, Vxc and Veff exchange-correlation and effective

potentials.

Traditional Functionals:

A variety of functionals have been defined, generally distinguished by the way that

they treat the exchange and correlation functional;

Local and exchange functionals involve only the electron-spin densities. Slater

and X are well known local exchange functionals, and the local spin density

treatment of Vosko, Wilk and Nusair (VWN) is a widely used local correlation

functional.

The local exchange is virtually defined as follows:

rdE X

LDA

33/4

3/1

4

3

2

3

….... (2.16)

Where, ρ is a function of position vector r. This form was developed to

reproduce the exchange energy of a uniform gas. However, it has a weakness in

describing molecular systems.

Gradient-corrected functionals involve both the values of the electron spin

densities and their gradients. Such functionals are also sometimes referred to as

non-local. A popular gradient-corrected exchange functional is one proposed by

Becke in 1988; a widely used gradient corrected correlation functional is LYP

Page 41: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

32

functional of Lee, Yang and Parr15,16

. The combination of the two forms is the B-

LYP method. Perdew has also proposed some important gradient-corrected

correlation functional, known as Perdew 86 and Perdew-Wang 91.

The functional form of gradient-correlated exchange functional based on the

LDA exchange functional is given as;

rdEE X

LAD

X

Becke

3

1

23/4

88)sinh61(

….. (2.17)

where 3/4 .

γ is a parameter chosen to fit the known exchange energies of the inert gas

atoms, and Becke17

defines its values as 0.0042 Hatrees. As the above equation

makes it clear, Becke’s functional is defined as a correlation to the local LDA

exchange functional, and it succeeds in remedying many of the LDA

functional’s deficiencies.

Hybrid Functionals:

There are also several hybrid functionals which define the exchange functional as a

liner combination of Hartree, local and gradient-corrected correlation functionals.

The best known of these hybrid functionals is Becke’s three-parameter formulation.

Becke-style three parameter functional may be defined via the following

expression18

:

)( 338803

C

VWN

C

LYPC

X

VWN

X

BX

X

LDA

X

HF

X

LDA

XC

LYPB EECEECEECEE …… (2.18)

Here, the parameter C0 allows any admixture of Hartree-Fock and local exchange to

be used. In addition, Becke’s gradient correction to LDA exchange is also included,

scaled by the parameter CX. Similarly, the VWN3 local correlation functional is

used, and it may be optionally corrected by correlation functional proposed by Lee,

Yang and Parr (LYP) via the parameter CC. In the B3LYP functional, the parameter

Page 42: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

33

values are those specified by Becke, which he determined by fitting to the

atomization energies, ionization potentials, proton affinities and first-row atomic

energies in the G1 molecule set: C0 = 0.20, CX = 0.72 and CC =0.81. Becke style

hybrid functionals (such as B3LYP, B3PW91)19

have proven to be superior to the

traditional functionals defined so far for calculating ground state properties.

2.7. Natural Bond Orbital (NBO) Analysis

The localized bond orbital analysis such as natural bond orbital analysis20

can be

carried out to understand the orbital interaction involved with the hydrogen bond

formation and how it varies with the change in proton donor and acceptor atoms.

Natural bond orbital analysis is a technique for studying hybridization and covalency

effects in polyatomic wave functions.

Natural Orbital (NOs) can be described as unique optimal orbital chosen by the

wavefunction itself for its own description. Mathematically, the NOs i of a

wavefunction can be defined [2.19] as the eigenorbitals of the first reduced

density operator .

kkk p (k=1,2,…..) ………… (2.19)

In this equation, the eigenvalue kp represents the population (occupancy) of the

eigenfunction k for the molecular one electron density operator of . The

density operator is merely the 1-electron “projection” of the full N-electron

probability distribution (given by the square of the wave function 2

) for

answering questions about 1-electron subsystems of the total wave function .

Since is only quantity that defines the NOs, these orbitals are truly ’s “own”

(eigen) orbitals, intrinsic (“natural”) to description of the electron density and other

single-electron properties of . The natural bond orbitals (NBO) are determined

Page 43: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

34

through a sequence of orthogonal transformations from the input basis set i to

various localized basis sets [natural atomic orbitals (NAOs)].

Input basis → NAOs →NBOs

Natural Atomic Orbitals (NAOs) )( A

k are localized 1-center orbitals that can be

described as effective “natural orbitals of atom A” in the molecular environment.

Charges on individual atoms, hybridization, orbital occupancies and

hyperconjugative energies can be obtained from the natural bond orbital (NBO)

analysis scheme. The coupling between orbitals can be well approximated by simple

second-order perturbative expressions of type illustrated in Fig. 2.1.

*

E1

E2

Fig. 2.1 Perturbative donor-acceptor interaction, involving

a filled orbital and an unfilled orbital * .

The extent of coupling between a -orbital or a lone-pair orbital with * orbitals

can be assured from the hyperconjugative interaction energies estimated form the

second order perturbation theory:

E

Fn

F

nE

2

2

*

*

)2( *

………… (2.20)

Page 44: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

35

Where, represents a bond-orbital or a lone-pair orbital and * is the antibonding

orbital. F is the Fock operator and ’s represent orbital energies.

2.7.1. Wiberg Bond Index (from the NBO analysis)

Wiberg bond index

21 is one kind of bond order, which is applicable to

calculating bond order mainly from overlap of electron density and

especially significant for the study of transition states. Calculation of Wiberg

bond index can be done with the NBO analysis computationally by giving a

particular command in Gaussian program during NBO calculation.

2.8. Chemical Reactivity Indexes

Theoretical reactivity indexes22

and calculated thermodynamic parameters are very

much associated with a chemical reaction, more so for a cycloaddition reaction and

for that reason we have included some of them in the following. Among the various

entities are the electronic chemical potential (), chemical hardness (),

electrophilicity (), nucleophilicity (N), enthalpy (rH), and free energy (rG) of

reaction, enthalpy (H) and energy (E

) of activation

23.

a) Chemical Hardness

The chemical hardness24

specifies the resistance to flow of the electronic charge

during the reaction process and can be quantitatively represented as

Page 45: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

36

)()(

2

2

rrNN

E

………………...(2.21)

If HOMO and LUMO are the energies of highest occupied and lowest

unoccupied molecular orbitals, respectively then the above equation can be

rewritten as

= LUMO HOMO ………………...(2.22)

For a pair of reactants, a quantity *

is defined as the pair hardness of the

system R-Rˊ when R and Rˊ are widely separated and is has been defined

by *= R-Rˊ = (Imin –Amax )/2 where Imin is the smaller of the two ionization

potentials IR and IRˊ and Amax is the larger of the two electron affinities AR

and ARˊ. Following Koopman’s theorem this quantity *

has been taken in

our case to be the difference between LUMOalkene and HOMOdipole energy

values and can compare with the results alongside the heats of reaction rH.

It appears that pair hardness parameter for the two reacting species: dipole

and dipolarophile follows the sequence of stability (rH), satisfying

maximum hardness principle. As the hardness increases it is seen that the

reaction gets faster due to decrease in activation energy. This feature is a

reflection of the “Hardness maximization principle”. It should be highlighted

additionally that the HOMO – LUMO energy gap, even for different species,

is a measure of stability. Hard interactions are essentially electrostatic in

nature. Charges or associated quantities such as molecular electrostatic

potentials and local hardness are supposed to be better descriptors for hard

reactions25

. This observation is also confirmed through our calculation of rate

constant values and the corresponding activation energies that are presented

in the corresponding sections.

Page 46: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

37

b) Electronic Chemical Potential

The electronic chemical potential () can be expressed as

][

][)(lim

)(,0 r

Fr

E

N

A

N

E

r

…….. (2.23)

Simply the chemical potential can be written as

≈ (HOMO+LUMO)/2 ……… (2.24)

This can explain the direction of flow electrons from one reactant to the other

reactants, during the course of reaction. The flow of electrons occurs from the

reactant with higher value of to the reactant of lower electronic chemical

potential ()26

.

c) The Global Electrophilicity Index

The global electrophilicity index ()

measures the stabilization in energy when

the system acquires an additional electronic charge N from the environment.

has been expressed in terms of electronic chemical potential and chemical

hardness as = 22. The maximum amount of electronic charge Nmax that

can be accepted by an electrophile system is given by Nmax = -/. The global

electrophilicity index includes the propensity of the electrophile to acquire an

additional electronic charge as well as the resistance to exchange that electronic

charge with the environment, simultaneously. Thus, a good electrophile can be

characterized by a high value of and a low value of 25,26

.

Page 47: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

38

d) The Fukui Function

Fukui function is a measure of sensitivity of a system’s chemical potential to an

external perturbation at a particular point. This is a chemical reactivity index in

the sense of frontier electron theory and contains information about relative site

reactivity in a molecule. The calculation of Fukui functions of an atom in a

molecule proves to be a useful criterion to characterize the reactive sites within a

chemical species. To describe the site selectivity or reactivity of an atom in a

molecule, it is necessary to condense the values of Fukui function )(rf around

each atomic site into a single value that characterizes the atom in a molecule.

Nr rvN

rrf

)(

)()(

)(

……… (2.25)

This can be achieved through electronic population analysis. Thus, for an atom k

in a molecule, depending upon the type of electron transfer, we have the

condensed Fukui function of the atom k.

The value of )()1( NqNqf KKK for a nucleophilic

attack and )1()( NqNqf KKK for an electrophilic attack. Where,

)1( Nqk , )(Nqk , )1( Nqk are the Mulliken charge populations of the atom k

in the cation, neutral, and anion respectively of a molecule27

. These values are

calculated from the optimized geometry of neutral molecule, which calculations

are further submitted through single point energy calculations giving the

molecular charge –1 for anion and +1 for cation.

Page 48: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

39

e) The Local Electrophilicity Index

The local electrophilicity index k can be expressed as the product of global

electrophilicity and Fukui function )(rf around each atomic site i.e., k = k+

where k+ is the Fukui function. Hence condensed Fukui functions (for

electrophilic and nucleophilic) of the reactants were calculated on the basis of

the atomic sites in order to rationalize the observed regioselectivities in respect

of the investigated cycloadditions26

.

f) The Global Nucleophilicity Index

The global nucleophilicity (N) model has been recently introduced

28, based on

the relationship N = -IP, where IP is the gas phase (intrinsic) ionization potential

and can be straightforwardly extended to describe the local nucleophilicity.

Following those derivations concerning the local electrophilicity and philicities,

it is taken that the global nucleophilicity index (N) can be written as,

N = k

kN ……. (2.26)

The nucleophilicity index N for a given system was therefore defined as28

,

N(Nu) = EHOMO – EHOMO (TCE) ……… ( 2.27)

Where, EHOMO is the HOMO energy the nucleophile molecule in eV units for

the reactants we want to study and EHOMO (TCE) is the HOMO energy of the

reference tetracyanoethylene molecule in eV unit. The reference TCE is

taken due to the lowest HOMO energy allowing us to have a positive global

nucleophilicity scale. With the simplest approximation to neucleophilicity,

the IP values can be approximated in terms of the HOMO energy in a

molecule within a given molecular orbital (MO) scheme.

Page 49: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

40

g) The Local Nucleophilicity Index

The local nucleophilicity condensed to atom k through nucleophile is related

to the global nucleophilicity (N) and the Fukui function, fk+ by

kk NfN ……. ( 2.28)

This equation shows that the maximum nucleophilicity power in a molecule

will be developed at the site where the nucleophilic Fukui function fk+

displays its maximum value (i.e., the active site of the nucleophile). Note that

the projection to the local level is based on the normalization condition of the

Fukui function, namely 1)( drrf or in its condensed at k atom version

1

k

kf , it is wroth to mention that there might exit other systems where

philicity indexes would perform better, as far as numerical results are

concerned.

h) Global and Local Softness

The values of Global softness26

are needed to convert regional Fukui

functions into regional softness that were obtained from the frontier one

electron energies of HOMO and LUMO as;

S ≈ 1/(LUMO HOMO) ………..(2.29)

where, S is the global softness of a molecule. The local (regional)

softness of an atom in a molecule can be related to the Fukui functions as

given by Sk = Sfk+

. From the value of local softness it is easy to predict the

nature of atomic centers of the two reactants where they would attack or

would be attached to from chemical bonds.

Page 50: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

41

i) Enthalpy or Heat of the Reaction

The enthalpies of reaction (∆rH)29

are calculated from a deduction of sum of

the enthalpies of individual reactants from the sum of enthalpies of the

products. These thermal enthalpies can be obtained from the frequency

calculation of the optimized individual chemical species, and the data were

extracted from the thermochemistry section of the output (log) file. All the

optimization and frequency calculations were done by the DFT/B3LYP

method using 6-31G(d) basis.

This can be expressed as

∆rH = [H(products)] – [H(reactants)] …….. (2.30)

The enthalpy of reaction ∆rH is positive for the endothermic reactions and

negative for the exothermic reactions. It has been stated that pair hardness

parameter *for the two reacting species: dipole and dipolarophile follows

the trend of ∆rH. As the hardness increases it is seen that the reaction gets

faster due to decrease in activation energy. This feature is a reflection of the

“Hardness maximization principle”.

j) Enthalpy of Activation

The enthalpy of activation of the reactions (∆H)23,29

are calculated by the

deduction of sum of enthalpies of the optimized energy of the individual

reactants from the enthalpy of the transition state. The enthalpy can be

obtained from the similar calculation of the optimized individual chemical

species, and TS as stated above.

This can be expressed as;

∆H

= [H(Transition State)] – [H(reactants)] …………….(2.31)

Page 51: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

42

k) Free Energy of the Reaction

The free energy of the reactions (∆rG)

23,29 are calculated by the deduction of

sum of the free energies of the individual reactants from sum of the free

energies of the products. The free energies can be obtained from the

frequency calculation of the optimized individual chemical species, and the

data can be extracted from the similar process as stated in the above section.

This can be expressed as

∆rG = [G(products)] – [G(reactants)] …… (2.32)

l) Free Energy of Activation

The free energies of the reactions (∆G

)23,29

are calculated by the deduction

of sum of the free energies of the individual reactants from the free energy of

the transition state. These free energies can be obtained from the frequency

calculations of the optimized individual chemical species, and also for the

optimized TS. All the optimization and frequency calculations are done by

using the same basis as stated above.

This can be expressed as;

∆G

= [G(Transition State)] – [G(reactants)] …………….(2.33)

Using the value of free energy of the activation (∆G) in the Eyring equation,

the rate constants can be easily calculated. This also helps us to calculate

the probable products ratios from the ratio of rate constants.

Page 52: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

43

m) Activation Energy

The activation energies of the reactions (∆E)23,29

are calculated by the

deduction of sum of the free total electronic energies of the individual

reactants from that of the transition state.

This can be expressed as;

∆E

= [E(Transition State)] – [E(reactants)] …… (2.34)

n) Rate Constant

The Eyring equation29

of transition state theory has been applied for

determination of rate constants for elementary bimolecular reactions in the

gas phase. Following the theory of reactions rates, the rate constant for the

reaction between A and B is given by

RT

E

BA

Ba

eQQ

Q

h

Tkk

#

……………….(2.35)

in which Q represents the total partition function, for the concerned species.

A + B ⇌ AB# → Products

The bimolecular reaction is depicted in the activation energy diagram in

Fig. 2.2.

Page 53: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

44

Energy

Reaction co-ordinate

Reactants A+B

Products

Transition state AB#

Ea

Fig. 2.2

The total partition function Q is factorized into the various contributing

factors: rvt qqqQ .. incorporating translational, vibrational and rotational

motions. We have evaluated the component partition functions according to

their respective statistical mechanical expressions:

2/32/320

2/32/32/3232/3

10879264.1

)/(2/2

TM

TMNhkhTmkq BBt

………. (3.36)

all the terms having their usual meaning.

For the ith

mode of vibrational motion.

1)]/exp(1[ Tkhq Bii ……..(2.37)

ii

v qq … (2.38)

For a liner molecule, the rotational partition function

hcBTkhTkq BBr ))(/1(]/8)[/1()1( 2/12/122 …. (2.39)

Where, )8/( 2 chB

Page 54: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

45

In 3-dimensions,

CBA

B

CBABr

BBBTk

hTkq

2/3

2/322

)()/(

]/8)[/()3(

... (2.40)

CBA

rBBB

Tq

2/3027.13 …. (2.41)

where A, B, C denote the three principal components of rotation and B the

rotational constant and is a symmetry number.

The vibrational frequencies and rotational constants were taken from the

output of Gaussian calculation and were made input to a simple program and

the total partition function of each species was evaluated. Those together

with the Gaussian reported Ea value of activation energy were put into

equation (2.35) and the rate constant (k) was computed by using the simple

program from which we calculate the rate constants of the reaction at

different temperatures. For a given dipolar-dipolarophile pair of reactants,

calculations were performed for different faces (re/si-) of dipole attacked by

the different modes of approach (exo/endo-) of the dipolarophile describing

different channels of reaction.

A further plot of 1000/T vs -log(k) gave liner plot in each case, a

representative plot being shown in Fig. 2.3. Activation energy Ea was

recalculated from the slope of this plot.

2.4 2.6 2.8 3.0 3.2 3.4

23.0

23.5

24.0

24.5

25.0

25.5

26.0

-log(k

)

1000/T

Fig. 2.3

Page 55: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

46

o) Pauling’s Partial Bond Order

The index of Pauling’s partial bond order (PBO)1 gives the indication of

asynchronicity or synchronous, early or late nature of the TS. In the similar

investigation Magnuson et al30

. made use of the PBO in their study of

mechanism of the 1,3DC of nitrones.

The PBO is defined as1,

log10(PBO) = – (rTS-rSB)/0.71 … (2.42)

where rSB is the length of a single bond between two atoms, as present in the

product, and rTS is the length of the same bond in the TS, the atoms involved

being only of non-metallic representative 1st

row elements.

p) Charge Transfer at Transition State (CT)

Natural bond order analysis of Transition state indicates the charge transfer

(CT), which is actually the measure of transfer of electronic charge during

interaction of two reactants at the transition state. The polar model of

cycloaddition reactions are also characterized31

by dominant electrophile-

nucleophile interaction. The interaction of 1,3DC reaction can be classified

according to the CT31

calculated at transition states; the reaction is nonpolar

if CT is less than 0.15e, polar if 0.15e CT 0.4e and ionic if CT 0.4e.

Page 56: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

47

References

1. L. Pauling, in The Nature of Chemical Bond, Cornell University, ITHACA,

NY, 3rd

.ed. 1960, p. 239

2. R.S. Mulliken, Life of a Scientist, Springer, Verlag: New York, 1986, p. 90

3. U. Salzner, P.v.R. Schleyer, J. Am. Chem. Soc. 115 (1993) 10231.

4. M.J. Frisch et al., Gaussian 03, Revision D. 01, Gaussian Inc., Wallingford,

CT, 2004.

5. C. Peng, P.Y. Ayala, H.B. Schlegel and M.J. Frisch, J. Comput. Chem., 17

(1996) 49.

6. C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 90 (1989) 2154.

7. C. Gonzalez, H.B. Schlegel, J. Phys. Chem. 94 (1990) 5523.

8. G.B. Bacskay, Chem. Phys. 61 (1981) 385.

9. R. Seeger, J. A. Pole, J. Chem. Phys. 2 (1976) 265.

10. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, McGRAW-HILL

PUBLISHING COMPANY, New York, 1982.

11. C. Møller and M. S. Plesset, Phys. Rev., 46 (1934) 618

12. F.M. Bickelhaupt and E.J Baerends, Review in Computational Chemistry,

Vol. 15, John Wiley & Sons, New York, 2000.

13. P. Hohenberg and W. Kohn, Physical Review, 136 (1964) B864.

14. W. Kohn and L. Sham, Phys. Rev., 140 (1965) A1133.

15. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules,

Oxford University Press, New York, 1989.

16. J. P. Perdew and Y. Wang., Phys. Rev. B, 45 (1992) 13244.

17. A. D. Becke, Phys. Rev. A, 38 (1988) 3098.

18. A. D. Becke, J. Chem. Phys., 98 (1993) 1372.

19. A. D. Becke, J. Chem. Phys., 98 (1993) 5648.

20. A.E. Reed, L.A. Curtiss, F.Weinhold, Chem. Rev. 88 (1988) 899.

21. K. B. Wiberg, Tetrahedron 24 (1968) 1083.

22. P. Pérez, L.R. Domingo, A. Aziman, R. Contreras, Theoretical Aspects of

Chemical Reactivity, ed. A. Toro-Labbe, Elsevier Science, New York, 2007.

23. K.J. Laidler, Chemical Kinetics, PEARSON Education Inc. 3rd

ed. 2009.

24. P. K. Chattaraj, G. R. Roy, Chem. Rev. 107 (2007) PR46.

Page 57: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

General methodology and theoretical approach towards chemical reactions

48

25. P.K. Chattaraj, A. Cedillo, R.G. Parr and E.M. Arnett, J.Org.Chem., 60

(1995) 4707.

26. P.K. Chattaraj, U. Sarkar, D.R. Roy, Chem.Rev. 106 (2006) 2065.

27. K. Fukui, Theory of Orientation and stereoselection, Springer: Rerlin, 1973.

28. P. Pérez, L.R. Domingo, M.D. Norena, E. Chamorro, J. Mol. Struct.:

THEOCHEM 859 (2009) 86.

29. D.A. McQuarrie, J.D. Simon, Physical Chemistry, Viva Books Private

Limited, First South Asian Edition, 1998.

30. E.C. Magnuson and J. Pranata, J. Comput. Chem. 1998; 19, 1795.

31. L.R. Domingo and J.A. Sáez, Org. Biomol. Chem. 7 (2009) 3576.

Page 58: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Chapter: 3

Studies on cyclization of azomethine

ylides with substituted alkenes

Page 59: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

50

3.1. Introduction Cycloaddition reactions are some of the most important processes from the view

point of both synthetic and mechanistic interest in organic chemistry1. Current

understanding of the 1,3-Dipolar cycloadditions (1,3DC) has grown from a fruitful

interplay between theory and experiment. The usefulness of these cycloaddition

reactions arises from their versatility and from their remarkable stereochemistry2,3

.

By varying the nature of the reagents many different types of carbocyclic or

heterocyclic 5-membered structures can be built up. Due to the importance of these

reactions, a strong effort has been directed towards the characterization of the

reagents in these cycloadditions as well as the elucidation of its reaction

mechanisms4. However, the nature of the 1,3DC reaction mechanism is still an open

problem in physical organic chemistry. The general concept of 1,3DC reactions was

introduced by Huisgen5 and co-workers in the early 1960s. Huisgen‟s work stated

the basis for the understanding of the mechanism of the concerted cycloaddition

reactions. The development of the 1,3DC reactions has, in recent years, entered a

new stage to control the stereochemistry in the addition step. It is now the major

challenge to us. The stereochemistry of these reactions may be controlled either by

choosing the appropriate substrates or by controlling the reaction using a metal

complex acting as catalyst. The concept of 1,3DC reaction was first suggested in

1983 by Smith. The chemistry of 1,3DC reaction is more than one century old.

Study of 1,3DC reactions is also historical5 and of immense interest

6 in both

academia and industry. The possible mechanism of these reactions which

encompasses those of pericyclic reactions in general, had created a lengthened

debate7 during the 1960‟s and 70‟s. The mechanism that received much attention

from Huisgen‟s group, and the picture which they drew in an convincing manner is

that of a single-step, four-centered, “no-mechanism” cycloaddition, in which the two

new bonds are both partially formed in the transition state, although not necessarily

to the same extent (Fig. 3.1.A). But it is nevertheless hoped to cover the vast

majority of these reactions, while it is finally recognized that a duality of mechanism

may exist in the field as a whole.

One the other hand, R. A. Firestone6 and his group proposed a two step reaction

mechanism instead of one step pathway with a discrete intermediate, a spin-paired

Page 60: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

51

diradical, with the first step being rate determining (Fig. 3.1.B). The stereochemical

facts imposed upon this mechanism by further restriction of the activation energies

for both advance and retrograde motion along the reaction coordinate from this

intermediate is very small, smaller in fact than that for rotation around a single bond.

Huisgen gave a experimental evidence of the 1,3DC reaction of benzonitrile oxide

with trans-dideuterated ethylene which gave only and exclusively the trans-

isoxazoline (Fig. 3.1.C). As the diradical intermediate would allow for a 180

rotation of the terminal bond and would thus be expected to yield a mixture of cis

and trans isomers6. On this basis of the stereospecificity of the 1,3DC reaction, the

dispute was ultimately settled in favour of concerted mechanism.

Fig. 3.1(A-C)

Reactants Transition State Products

C

.a

a abbb

c c

d d d ee e

+ -B

Firestone’s Diradical Mechanism

Reactant Transition State Product

a b+

c-

d e

ab

c

d e

ab

c

d e

A

Huisgen’s Concerted Mechanism

Ar C N O+

+ CC

D

D

N

O

C

C

C

D

D

Ar

Only product

C

Benzonitrile oxide Trans-dideuterated ethylene

Huisgen’s Experimental evidence

Page 61: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

52

The 1,3DC reaction of azomethine ylides with alkenes leads to the formation of the

pyrrolidines. A number of methods have been developed for the generation of

azomethine ylides, such as proton abstraction from imine derivatives of α-amino

acids, thermolysis or photolysis of aziridines, and dehydrohalogination of imonium

salts.

3.2. Computational Method

In recent years, theoretical methods based on the Density Functional Theory (DFT)8

have emerged as an alternative to traditional ab initio methods in the study of

structure and reactivity of chemical systems. Diles–Alder (DA) and 1,3DC reactions

have been the object of several DFT studies that include gradient corrections and

hybrid functional for exchange and correlation, such as B3LYP9,10

, together with the

standered 6-31G11

basis set which yields potential energy barrier in good agreement

with experiment. All our calculations are carried out on a Silicon Graphics

Workstation - Octane/2 employing the UNIX version of Gaussian0312

together with

Gaussview03. Energies of the isolated reactant moieties and the product (adduct) are

individually optimized to their respective equilibrium structures using the DFT/

B3LYP option. Considering the complexity of the reacting systems, we have

adopted the 6-31G(d) basis set throughout all our calculations since such

calculations are known to produce good ground state. We have routinely performed

accurate the single point energy calculations with the basis 6-311+G(d) at the

equilibrium structures previously optimized with 6-31G(d) basis. All the reacting

systems are studied by locating the correct TS through vibrational analysis

producing only one imaginary frequency followed by an Intrinsic Reaction

Coordinate (IRC) calculation, in each case. This would ensure that the potential

energy curve connecting the optimized reactants and the products passes through the

correct and lowest TS which are a first order saddle point. The TS structure

optimization is achieved through setting the option QST3 in the optimization step of

Gaussian program, which employs a synchronous transit quasi Newton (STQN)

procedure13

for locating the TS. Barrier height E≠ for the forward reaction is taken

as the difference of the sum of energies of isolated reactants and the energy of the

Page 62: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

53

optimized TS. In the same manner, the free energy of activation G≠ are calculated

from a similar difference of Gibb‟s free energies at 298K and have been included in

the same table in the text. The enthalpy rH and free energy rG of reaction are

calculated at 298K and provided in the table 3.4. While exploring the nature of TS,

we have calculated the index of Pauling‟s14

partial Bond Order (PBO) as explained

in chapter 2 by the equation 2.42. Magnuson et al.15

who also used the PBO values

in their similar study of nitrones.

3.3. Results and Discussion

The backbone structure of the 1,3-dipole, azomethine ylides is shown in Fig. 3.2.

C N+

C1 32

Fig. 3.2

The azomethine ylides are less stable and prepared in situ so it is very difficult to

study the property of the reactants and also the reaction experimentally, but the

theoretical computational study can be done easily. Again, the reactions of 1,3DC

reactions of ylides are relatively less explored than the nitrones moiety. In 1985

Padwa et al16

. published the first diastereofacial selective 1,3DC reaction of chiral

azomethine ylides with alkenes leading to optically active products. The chiral

template for the azomethine ylide has been further developed to form a chiral cyclic

product by Harwood et al17

. We have performed DFT calculations to rationalize the

reactivity, regioselectivity, enantioselectivity and diasteriofacial selectivity in the

context of 1,3DC reactions of a few acyclic and two cyclic azomethine ylides (AY)

leading to enantiomeric/ diasteriomeric excess of the products18

. In particular, N-

substituted and C-substituted AYs have been considered for reactions with the

substituted ethylenes, maleimide, maleic anhydride and methyl acrylate18

. Different

azomethine ylides (AY) reactants and dipolarophiles are abbreviated in Table 3.1.

Page 63: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

54

From an analysis of the results of calculation for the selected reactions, the regio-

and exo/endo- stereoselectivity have been explained. Reactions are followed through

transition state (TS) structure optimization, calculation of reactivity parameters and

activation barriers. Computed data have been provided in the annexure 1.

A rationalization of the trends in regioselectivity and enantioselectivity is attempted

with the help of HOMO-LUMO energies, electrophilicity differences ( ω) and the

related thermodynamic parameters of the reactants and for TS. Considering the need

for stereo-specific synthesis of the cycloadducts, theoretical characterization of the

probable products and a study of the preferred reaction path will be of much value.

In spite of the broadly accepted point of compromise on the question of concerted or

biradical mechanism, continued efforts18-24

in reconciliation between the theory and

experiment are still going on.

Table 3.1 The reactants and their abbreviations:

---------------------------------------------------------

Reactant Abbreviation

CH2NHCH2 = 1AY

CH2=CH2 = 1EN

CH2N(CH3)CH2 = 2AY

CH2CH(CH3) = 2EN

CH2N(C2H5)CH2 = 3AY

CH2CH(C2H5) = 3EN

CH2N[C(CH3)3]CH2 = 4AY

CH2CH[C(CH3)3] = 4EN

N

CH2

OO

+ H

= 5AY CH2CHCOOCH3 = 5EN

N

CH2

OO

+ H

H

Ph

= 6AY

maleimide = 6EN

maleicanhydride = 7EN

------------------------------------------------------------

We have taken interest in the present study because 1,3DC reactions of AYs are

relatively less explored compared to those of the nitrones. It has been found that the

1,3DC reaction of AYs is extensively used as an efficient regio- and stereo-

Page 64: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

55

controlled method for synthesis of pyrrolidine and pyrrole containing cyclic or

bicyclic natural and bio-organic compounds25

with a very high or complete

selectivity. The present study helps us to understand the phenomenon of regio- and

enantio- selectivity through ground state DFT26

calculations since such calculations

yield potential energy barriers in good agreement with experiment. It is known that

the control of stereochemistry in the addition step leads to enantioselectivity and

diastereoselectivity of the product. The stereospecificity dispute was finally settled

in favour of concerted, synchronous and early transition state (TS)27

.

The TS, according to Huisgen28

, is concerted for pericylic reactions. Dewar29

has

suggested to the TS be asynchronous and aromatic. Fukui30

has attributed the control

of 1,3DC to the Frontier Molecular Orbitals (FMOs) of substrates. We have

incorporated the FMO energies of the reacting species in Table 3.2. It should be

pointed out that in terms of second order perturbation theory the interaction energy

depends on the HOMO-LUMO energy gap between different species and this value

appears in the denominator of the perturbation energy expression.

Table 3.2 Energies of the frontier orbitals and related descriptors in eV.

---------------------------------------------------------------------------------------

Reactanting

systems HOMO LUMO

----------------------------------------------------------------------------------------

1AY -4.05 0.42 -1.82 4.47 0.371

1EN -7.26 0.51 - 3.38 7.77 0.735 0.364

2AY -3.94 0.35 -1.80 4.29 0.378

2EN -6.80 0.77 -3.02 7.47 0.602 0.224

3AY -3.89 0.39 -1.75 4.28 0.358

3EN -6.77 0.83 -2.97 7.60 0.580 0.222

4AY -3.82 0.37 -1.73 4.19 0.357

4EN -6.79 0.75 -3.02 7.54 0.605 0.248

5AY -5.25 -1.35 -3.30 3.90 1.396

5EN -7.40 -1.23 -4.32 6.17 1.512 0.116

6AY -5.09 -1.24 -3.17 3.85 1.305

6EN -7.46 -2.72 -5.09 4.74 2.733 1.428

6AY -5.09 -1.24 -3.17 3.85 1.305

7EN -8.15 -3.19 -5.67 4.96 3.241 1.936

-------------------------------------------------------------------------------------

Page 65: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

56

In our present work we have considered several C- and N- substituted AYs as the

dipole, which react with the symmetrically substituted ethylenes like maleimide and

maleic anhydride and also with the unsymmetrically substituted ethylene like

methylacrylate18

. Experimental results for the reaction of cyclic ylides 5AY and

6AY with maleimide and maleic anhydride are available31,32

. This data provides the

evidence that endo- isomer is produced in diastereoselective excess of the exo-

isomer. A systematic scheme for this cycloaddition reaction has been very concisely

worked out by Belzecki et al33

.

We have carried out theoretical calculations following their scheme and enumerated

results which are given in subsequent sections. Several workers18-24

have explored

the 1,3DC reactions by DFT employing the associated tools of hardness and

softness. Chattaraj et al.34,35

have extensively reviewed the subject over many

diverse facets of reactive and physicochemical processes with the help of

electrophilicity index defined earlier by Parr et al.26

It is attractive from the purview

of organic chemist to examine the proximity of TS to the reactant or product over

the reaction coordinate. In this regard the Hammond postulate36

says that TS for

exothermic reactions are reactant-like, and for endothermic it is product-like.

We can expect that FMO effects will be particularly strong in exothermic reactions.

Global electrophilicity ( ), chemical potential ( ) and hardness ( ) parameters for

the AY-alkene systems have been calculated (Table 3.2) to interpret their reactivity.

We have performed through the energy minimization procedure using DFT

8

calculations and optimized the geometries of reactants, products and the TS. We

have calculated the quantum chemical parameters like frontier orbital energies

(Table 3.2), bond order (Table 3.3) and the thermo-chemical parameters like the

energy of activation, free energy of activation, the enthalpy ( rH) and free energy

( rG) of reaction (Table 3.4).

Page 66: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

57

3.3.1. Reaction of Acyclic Azomethine Ylides with Alkenes

This section describes the reactions between (i) the simplest azomethine

ylide (1AY) and ethylene (1EN), (ii) the N-methyl substituted azomethine ylide

(2AY) and propene (2EN), (iii) the N-ethyl substituted azomethine ylide (3AY) and

1-butene (3EN) and (iv) the N-tert substituted azomethine ylide (4AY) and 3,3-

dimethyl-1-butene (4EN). In this section we have abbreviated the names of our

1,3DC reactants in Table 3.1. For all these reacting systems we have explored the

different approaches (exo- and endo-) of dipole towards the re- and si- faces of the

alkene (dipolarophile) as the four possible reactive channels. The systems are

labeled for the different channels of reaction according to scheme 3.1. Structural

symbols for the various products (psx, prx, psn, prn) together with their

corresponding TS (tsx, trx, tsn, trn) are shown in the scheme so as to identify the

various stereochemical species. We have followed the structural naming system:

[(product/ts)(re/si)(exo/endo)] for the product and/or transition state configurations.

For some approaching orientation of reactants, the structural naming system:

[(re/si)(exo/endo)] has been used18

. For the simplest azomethine ylide 1AY reacting

with ethylene 1EN, there will be expectedly no stereospecificity of the products due

to symmetry of the reacting species. According to scheme 3.1 and Fig. 3.3 the

dipolarophile (alkene) having only one prochiral center is placed in the middle of

figure to distinguish between the exo- and endo- approaches of dipole on the re- and

si- faces of the dipolarophile. Evidently, for the other achiral ylides 2AY-4AY and

achiral alkenes 2EN-4EN only two stereoisomeric reactive channels : the exo- and

endo-, out of all four probable channels, will be feasible because exo- attack on the

re- and si- faces lead to the same energy of TS and similar thing occurs for the endo-

channels of attack (Table 3.4). This particular feature of energetic identity is more

prominent with the results of DFT/B3LYP with 6-31G(d) basis. This feature is

obviously a consequence of symmetrical structures of the reactants which we have

practically observed through calculations over all the four channels. It may be noted

from Table 3.4 that for the system 2AY-2EN, the product energies are same in all

the channels, but activation energies differ in the exo- and endo- channels only,

irrespective of si-/re- faces.

Page 67: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

58

Scheme 3.1 Azomethine ylide(N-AY) and Alkene (N-EN)a:

Configuration of approaching Structure symbol Structure symbol Structure

symbol reactants of reactants of products of TS

si-face of ene + exo-ylide Nsx Npsx Ntsx

si-face of ene + endo-ylide Nsn Npsn Ntsn

re-face of ene + exo-ylide Nrx Nprx Ntrx

re-face of ene + endo-ylide Nrn Nprn Ntrn a

N=2,3,4 for different reacting AY-EN systems. Both exo- & endo- approaches on a particular

face give structurally the same product. The acyclic AYs do not present diastereoselectivity

because they have a symmetry plane.

H2C

N

CH2

+

-

R

RC

H

CH2

CH2

N

CH2

+

-

R

trx

tsx

N

R

R

H

N

R

RH

pr

ps

(R)

(S)

CH2

N

CH2

+

-

R

RC

H

CH2

CH2

N

CH2

+

-

R

trn

tsn

N

R

R

H

N

R

RH

pr

ps

(R)

(S)

[R= H, CH3-, C2H5-, (CH3)3C-]

Fig. 3.3 Transition states and products in the different facial approaches (re- and si-) on the

various substituted ethylenes by the acyclic AYs along exo and endo- paths.

Suitable schemes (scheme 3.1-3.4) are employed to define the various reaction

channels from reactants to specified products.

It may be noted from Table 3.3 that very low PBO values and larger interatomic

distances rC-C for the newly forming bonds in the TS indicate the existence of an

early transition state, as has been similarly found by Domingo37

in connection with

azomethine ylides. Following Fukui, an analysis of the HOMO-LUMO energy

values in Table 3.2 indicates that the reactions are favourably controlled through the

interaction of HOMO of the ylides 1AY, 2AY, 3AY, 4AY respectively with the

LUMO of dipolarophiles 1EN, 2EN, 3EN, 4EN. The control for such reactions is

indeed not solely with the FMOs, but certain other parameters like hardness and

electrophilicity38-40

having definite dependence on the HOMO and LUMO may have

more direct influence on the control. From the results of calculation we observe that

in absence of electron withdrawing groups on the alkene in all the three acyclic AY

Page 68: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

59

systems (2-4), the exo- path involves lesser energy and enthalpy of activation in

Table 3.4 than the endo- path on both re- and si- faces. The products (pr) and (ps)

differing in chirality are obtained in major yields through the exo- path (Fig. 3.3, left

portion).

Table 3.3 Structural parameters of transition states.

Ylide Ene str. symb rc-c in TS (A ) PBOs

1AY 1EN 1ts 2.53, 2.53 0.04, 0.04

2AY 2EN 2trx 2.50, 2.53 0.05, 0.04

2AY 2EN 2trn 2.49, 2.50 0.05, 0.04

2AY 2EN 2tsx 2.50, 2.54 0.05, 0.04

2AY 2EN 2tsn 2.49, 2.50 0.05, 0.04

3AY 3EN 3trx 2.49, 2.46 0.05, 0.05

3AY 3EN 3trn 2.48, 2.45 0.05, 0.05

3AY 3EN 3tsx 2.49, 2.46 0.05, 0.05

3AY 3EN 3tsn 2.48, 2.45 0.05, 0.05

4AY 4EN 4tsx 2.61, 2.43 0.03, 0.06

4AY 4EN 4tsn 2.59, 2.39 0.04, 0.06

4AY 4EN 4trx 2.61, 2.43 0.03, 0.06

4AY 4EN 4trn 2.59, 2.39 0.04, 0.06

5AY 5EN 5tsx 2.25, 2.73 0.11, 0.02

5AY 5EN 5tsn 2.24, 2.78 0.11, 0.02

5AY 5EN 5trx 2.28, 2.73 0.11, 0.02

5AY 5EN 5trn 2.26, 2.73 0.11, 0.02

5AY 5EN 5tsx-r 2.29, 2.49 0.09, 0.05

5AY 5EN 5tsn-r 2.29, 2.49 0.09, 0.05

5AY 5EN 5trx-r 2.29, 2.49 0.09, 0.05

5AY 5EN 5trn-r 2.29, 2.49 0.09, 0.05

6AY 6EN 6trx 2.58, 2.38 0.03, 0.07

6AY 6EN 6trn 2.60, 2.34 0.04, 0.08

6AY 7EN 7trx 2.37, 2.56 0.07, 0.04

6AY 7EN 7trn 2.54, 2.35 0.05, 0.08

-------------------------------------------------------

Here both the exo- and endo- attacks on the re- face of alkene generate only one and

the same stereoisomer (pr) with configuration R at the chiral centre. Similarly, on

the si- face both exo- and endo- attacks generate only one and the same stereoisomer

(ps) with configuration S at the chiral centre. Using ethylene (1EN) and the simplest

azomethine ylide (1AY) we have calculated the TS in which both the C-C distances

are 2.533 Å. We have also noticed that the energy of activation ( E≠), enthalpy of

activation ( H≠) and free energy of activation ( G

≠) increase systematically as in

Page 69: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

60

Table 3.4 with increasing size of alkyl substituents (Table 3.1), whether on the N-

alkyl site of the AY or on the alkene. While the exo- path is favoured over the endo-

path on both faces of the dilpolarophile, the difference in activation barriers between

the two paths also increases with size of the substituent, making the exo- way of

product formation more facile18

.

3.3.2. Reactions of Cyclic Azomethine Ylides with Alkenes Bearing

Electron Withdrawing Substituents

In this section we present the results of our calculation for the reaction of the

dipolarophiles methylacrylate, maleimide and maleic anhydride with the cyclic

azeomethine ylides18

5AY and 6AY as prepared by A.S. Anslow et al31,32

for which

experimental reports are available. The different approaches (exo- and endo-) of the

dipolarophile towards the re- and si- faces of the AY are labeled according to the

schemes 3.2-3.4 and depicted in Figs. 3.4-3.6.

O

O

N

Co

C O

re face exo attack

si face exo attack

tsx

trx

OMe

OMe

o

No

H

H

OMinorproduct

S

OMe

S

o

No

H

H

OMinorproduct

R

OMe

R5prx

5psx

H

(A)

OO

N

C

oMeO

CO

MeO

re face endo attack

si face endo attack

tsn

trn

o

No

H

H

OMajorproduct

OMe

S

R

o

No

H

H

OMajorproduct

R

OMe

S

5psn

5prn

H

Fig. 3.4. (A) Transition states and products in the different facial approaches (re- and si-) on

the cyclic AY (5AY) by the methyl acrylate (5EN), along exo- and endo- paths

producing the normal adducts.

Page 70: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

61

O

O

N

C

o

C O

re face exo attack

si face exo attack

OMe

OMe

o

N

o

H

H

OMajorproduct

R

OMe

S

o

N

o

H

H

OMinorproduct

R

OMe

S

tsx-r

trx-r

5psx-r

5prx-r

H

(B)

O

O

N

Co

MeO

CO

MeO

re face endo attack

si face endo attack

o

N

o

H

H

OMajorproduct

R

OMe

R

o

N

o

H

H

OMinorproduct

S

OMe

S

tsn-r

trn-r

5psn-r

5prn-r

H

Fig. 3.4. (B) Transition states and products in the different facial approaches (re- and si-) on the

cyclic AY (5AY) by the methyl acrylate (5EN), along exo- and endo- paths

producing the regio-isomeric adducts

.

O

O

N

O

O

Ph

N

H

o

N

N

o

o

H

H

HPh

O

exoattack

R

R

R

S

on re face

MinorProduct

O

O

N

O

O

Ph

N

H

o

N

N

o

o

H

H

HPh

O

endoattack

Majorproduct

R S

R R

on re face

Fig. 3.5 Transition states and products in the attacks on re- face of the cyclic AY (6AY) by

maleimide (6EN) along exo- and endo- paths.

O

O

N

O

O

Ph

H

o

No

o

H

H

HPh

O

exoattack

No producto

o

S R

R Ron re face

O

O

N

O

O

Ph

H

o

No

o

H

H

HPh

O

endoattack

Only product

o

o

R S

R Ron re face

Fig. 3.6 Transition states and products in the attacks on re- face of the cyclic AY (6AY) by

maleic anhydride (7EN) along exo- and endo- paths.

In each case the AY, having only one prochiral carbanionic center, is placed in the

middle of figure between the re- and si- face approaches of the dipolarophiles.

Structures of the various products (psx, prx, psn, prn) together with their

Page 71: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

62

corresponding TS (tsx, trx, tsn, trn) are shown in the figures to identify the various

stereochemical species. We have followed a similar naming system as that used in

the section 3.2.1. The question of regioselectivity in the matter of 1,3DC has been

adequately addressed41,42

by Aurell et al. in terms of TS calculations and

electrophilicity approach. In our present calculations two probable regio-isomers

(Figs. 3.4A, 3.4B) of product can arise when orientations of the substituent group

(-COOMe) of the attacking alkene 5EN are closer to or away from the carbanionic

centre of the ylide 5AY. For the regioisomers where the ester group is far away, we

have used the extra notation -r in the suffix of symbols. In this sense the cyclic ylide

5AY can have two additional regioisomeric channels due to asymmetry of this AY

adducts: 5psx, 5prx, 5psn, 5prn and the four –r (regio) isomers18

.

Scheme 3.2 Azomethine ylide(5AY) and Methylacrylate(5EN): Configuration of approaching Structure symbol, Structure symbol, Structure symbol,

reactants reactants products TS

si-face of ylide + exo-ene 5sx 5psx 5tsx

si-face of ylide + endo-ene 5sn 5psn 5tsn

re-face of ylide + exo-ene 5rx 5prx 5trx

re-face of ylide + endo-ene 5rn 5prn 5trn

si-face of ylide+ exo-ene (regio) 5sx-r 5psx-r 5tsx-r

si-face of ylide+ endo-ene (regio) 5sn-r 5psn-r 5tsn-r

re-face of ylide+ exo-ene (regio) 5rx-r 5prx-r 5trx-r

re-face of ylide+ endo-ene (regio) 5rn-r 5prn-r 5trn-r

Scheme 3.3 Azomethine ylide(6AY) and Maleimide(6EN)b:

Configuration of approaching Structure symbol, Structure symbol, Structure symbol,

reactants reactants products TS

re-face of ylide + exo-ene 6rx 6prx 6trx

re-face of ylide + endo-ene 6rn 6prn 6trn

bThere is no existence of the regioisomeric product. The si- face attack is not feasible,

computationally.

Scheme 3.4 Azomethine ylide(6AY) and Maleic anhydride(7EN)c:

Configuration of approaching Structure symbol, Structure symbol, Structure symbol,

reactants reactants products TS

re-face of ylide + exo-ene 7rx 7prx 7trx

re-face of ylide + endo-ene 7rn 7prn 7trn

cThere is no existence of the regioisomeric product. The si- face attack is not feasible,

computationally.

Page 72: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

63

Both methylacrylate (5EN) and the azomethine ylide 5AY described in Table 3.1

are achiral and possessing prochiral centers. They are considered for 1,3DC reaction

according to scheme 3.2. Here each of the possible products contains two chiral

centers, one coming from the dipole and one from the dipolarophile as presented in

Figs. 3.4A, 3.4B. So there should exist eight regio-stereo isomers all together among

the products since two chiral centers are being introduced. It is seen from the results

of calculation in Table 3.4 that the exo- path involves lesser activation energy on si-

face (5tsx<5tsn), while both endo- and exo- TS are energetically comparable on re-

face (5trx 5trn), both the products having lesser activation energy than those on the

si- face. Therefore, it appears that 5prn and 5prx should be the major

diasteriofacially selective products. For the regioisomeric approach it is found

computationally that endo- path on both the si- and re- faces have lesser energy,

enthalpy and free energy of activation in Table 3.4 than those in the exo- path. From

the values of activation energy, enthalpy and free energy of activation it could be

inferred that 5prn-r should be the major stereoselective product presented in Fig.

3.4B.

Mechanism of Diles-Alder as well as 1,3DC reactions has been very elaborately

studied by Domingo et al43-46

. They have also investigated the influence of Lewis

Acid46

on these reactions. We have taken up the cycloaddition reaction between

6AY and 6EN following the TS optimization procedure along the different channels

and have been able to calculate the thermodynamic parameters accurately. The

cycloaddition reaction between the ylide 6AY and maleimide 6EN can be described

with the help of Table 3.1 and scheme 3.3. There is one chiral centre already present

in 6AY and three new centers, one at the prochiral carboanionic atom of 6AY and

two at the ethylenic centers of 6EN, are being formed during cycloaddition. Among

the eight (23) stereoisomeric possibilities only two reaction modes viz. the exo- and

endo- channels on the re- face of the AY have been shown in Fig. 3.5. Two other

modes of approach corresponding to regio- attack on this face do not give rise to

new products due to the symmetric nature of 6EN. In consequence only enantio- and

diastereo- selectivity are presented but no regioselectivity is observed for the

symmetric alkenes 6EN and 7EN. A si- face attack on 6AY is not computationally

Page 73: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

64

feasible probably due to the presence of Ph- group on the attacking side of the dipole

6AY which would hinder sterically the approaching dipolarophile.

Table 3.4 Thermodynamic parameters for reactions in various orientations of attack.

-----------------------------------------------------------------------------------------------------------------

Ylide Ene str. symb. E (kcal/mol) H

G

rH

rG

*

[6-31G(d)] [6-311G+(d)] (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (eV) 1AY 1EN 1ts 1.19 2.91 2.27 14.50 -63.30 -49.97 4.56

2AY 2EN 2tsx 3.15 5.06 4.18 17.64 -62.51 -47.39

2AY 2EN 2tsn 3.90 6.05 4.97 18.47 -62.51 -47.39

2AY 2EN 2trx 3.15 5.06 4.17 17.64 -62.51 -47.39

2AY 2EN 2trn 3.90 6.05 4.97 18.47 -62.51 -47.39 4.71

3AY 3EN 3tsx 4.44 6.50 5.59 18.93 -56.53 -41.28

3AY 3EN 3tsn 5.48 7.69 6.68 20.57 -60.42 -44.80

3AY 3EN 3trx 4.44 6.51 5.58 17.55 -58.32 -43.25

3AY 3EN 3trn 5.48 7.72 6.68 20.57 -60.42 -44.80 4.72

4AY 4EN 4tsx 5.68 8.02 6.65 20.30 -60.55 -46.41

4AY 4EN 4tsn 7.96 10.93 9.06 22.77 -61.57 -45.17

4AY 4EN 4trx 5.68 8.11 6.65 20.25 -56.33 -41.52

4AY 4EN 4trn 7.96 10.93 9.06 22.78 -61.52 -45.11 4.57

5AY 5EN 5tsx 2.97 5.16 3.94 16.59 -43.76 -28.97

5AY 5EN 5tsn 3.36 5.68 4.39 17.29 -42.77 -28.30

5AY 5EN 5trx 2.62 4.67 3.53 16.08 -42.92 -28.97

5AY 5EN 5trn 2.17 4.70 3.11 16.19 -42.61 -27.98

5AY 5EN 5tsx-r 2.81 4.59 3.84 16.88 -44.03 -30.43

5AY 5EN 5tsn-r 1.56 3.67 2.61 16.00 -40.00 -26.49

5AY 5EN 5trx-r 1.69 3.26 2.66 15.59 -40.72 -29.52

5AY 5EN 5trn-r 0.95 3.08 2.17 15.41 -43.20 -29.23 4.02

6AY 6EN 6trx 0.31 2.59 1.15 13.70 -50.86 -36.53

6AY 6EN 6trn -0.05 2.32 0.94 14.08 -45.71 -30.94 2.37

6AY 7EN 7trx -1.24 0.43 1.45 12.28 -46.21 -33.97

6AY 7EN 7trn -3.26 -0.93 0.12 10.85 -41.81 -29.00 1.90

------------------------------------------------------------------------------------------------------------------

From scheme 3.3 and Table 3.4 it may be noted that on re- face the endo- approach,

having a negative activation energy (-0.05 kcal/mol), is favored over the exo-

approach as shown in Fig. 3.5. In order to avoid a negative activation energy value,

we have calculated the same system with 6-311G +(d) basis set and in consequence

obtained a positive value presented in Table 3.4 of the activation energy (2.32

kcal/mol). Similar findings were obtained in the works of Domingo et al37

. The large

basis single point calculations incorporating diffuse functions were performed over

the previously optimized TS-geometry. Thus positive values of activation energy are

Page 74: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

65

obtained in such critical cases of negative activation energy values. The product

6prn is expected in excess as the major kinetic product over 6prx, agreeing well with

experimental data47

. Similarly, it is found for the reaction between 6AY and 7EN

(Table 3.1, scheme 3.4) that both the exo- and endo- approaches produce negative

activation energies. But when the calculations are repeated with 6-311G+(d) basis,

the results have improved to a positive value in the case of exo- attack, however a

small negative activation energy still persists for the endo- attack (Table 3.4). Again

it is also observed that the enthalpy of activation H is very small for endo- as

compared with the exo- and the free energies of activation G≠ follow a similar

trend. This observation agrees very well with the experimental achievement31,32

of

endo- as the sole product. Similar to the reaction of 6AY-6EN system, the attack by

maleic anhydride (7EN) on the si- face of ylide 6AY is also not feasible (Fig. 3.6).

Due to the highly symmetric (C2V) structure of the dipolarophile 7EN, there is no

scope for any regioisomer.

We have calculated the Gibb‟s free energies, presented in Table 3.4 for the reactants

and TS in each case and also the corresponding free energies of activation G≠ at

298K. Moreover, the heats of reaction rH and free energies of reaction rG at 298K

have been calculated according to the equations 2.30 and 2.32 under section 2.8 in

chapter 2. We observe from Table 3.4 that with increasing electron withdrawing

nature of the dipolarophiles reacting with the same cyclic ylide 6AY, the energy of

activation decreases.

3.4. Nature of The Transition State

While these cycloaddition reactions pass through a transition state; the question

remains to be answered is whether the reactions considered follow a concerted or a

diradical path. Although the general consensus in this regard was in favour of

concerted mechanism, at a certain stage R.Huisgen48

reported the well-documented

example of a step-wise 1,3DC involving an intermediate. That encouraged

Firestone‟s contention49

that „no degree of stereospecificity could rule out diradical

mechanism‟ and claiming further support for his proposal49-51

that activation energy

Page 75: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

66

for single bond rotation was greater than that for either formation of the second bond

leading to the adduct or reversion to the reactants. In this context we have calculated

the PBOs for the forming C-C bonds in the TS (Table 3.3). It can be seen that in TS

the PBOs of the two forming C-C bonds are nearly equal for less substituted AYs

and alkenes but the difference increases with increasing substitution. The bond order

difference between the two newly forming bonds increases when the alkene is

substituted unsymmetrically with a more electron withdrawing group as may be

observed in the case of methylacrylate 5EN reacting with the ylide 5AY. In the case

of symmetrically substituted alkenes like maleimide 6EN and maleicanhydride 7EN

such difference in the PBOs at the two cyclizing ends is much less. It may be

assumed that unsymmetrical substitution by electron withdrawing group on alkene

leads to a more asynchronous but concerted (Fig. 3.6) and early TS. The bond

distances (Table 3.3) are found to be of the order of 2.3-2.7 Å in all cases. When

considering the reaction 5AY-5EN (scheme 3.2 and Table 3.4) it may be observed

that regioselectivity is along the more favourable regioisomeric path in which the

more nucleophilic centre of the 5AY, the carbanionic carbon atom, attacks to the

more electrophilic centre of the 5EN, that is the betaconjugated position of methyl

acrylate (Fig. 3.4). Thus the regiomer is favoured in this case. On the basis of

classification of 1,3DC in terms of FMOs30

, the interaction of different alkenes with

AYs appear to be (Table 3.2) controlled by HOMOdipole and LUMOalkene. Further

rationale behind the preferred stereo-/regio- selectivity in the light of FMO

interactions can be gained from an analysis on the basis of global electrophilicity

index ( )26

which has been found to be more reliable52

than the FMO theory.

Accordingly, the quantities: chemical potential ( ), hardness ( ) and electrophilicity

are defined in chapter 2 and their values are obtained by the equation 2.21 and 2.24

respectively.

These quantities have been calculated for all seven reacting systems

and the results are provided in Table 3.2. Quantitative characterization of reactivity

in connection with Diels-Alder and 1,3DC reactions in terms of global

electrophilicity power has been pioneered38,40,42

by Domingo et al. In their review

Chattaraj et al.34,35

have noted that “Larger electrophilicity differences correspond to

faster38

reactions”, we have found that the values of in Table 3.2 agree very well

Page 76: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

67

with the calculated E values in Table 3.4. Similar observations may also be found

in Table 3.2 from an analysis of the hardness values of the alkenes 6EN and 7EN

which react separately with the same dipole 6AY. As the hardness increases it is

seen that the reaction gets faster due to decrease in activation energy (Table 3.4).

This feature is a reflection of the “Hardness maximization principle”. It should be

highlighted additionally that the HOMO – LUMO gap, even for different species, is

a measure of stability through the maximum hardness principle53

. Following

Koopman‟s theorem54

this quantity *

(as explained in section 2.8.a) has been taken

in our case to be the difference between LUMOalkene and HOMOdipole and the values

are provided in Table 3.4 alongside the heats of reaction rH. It appears that pair

hardness parameter for the two reacting species: dipole and dipolarophile follow the

sequence of stability ( rH), satisfying maximum hardness principle55,56

. Hard

interactions are electrostatic in nature. Charges or associated quantities such as

molecular electrostatic potentials and local hardness are supposed to be better

descriptors for hard reactions. More detailed picture regarding site selectivity in the

cycloaddition processes can be achieved from a further analysis in terms of the local

electrophilicity descriptors.

3.5. Conclusion

The detail theoretical studies have performed on the 1,3DC reactions of four acyclic

azomethine ylides with four selected alkenes viz., the substituted ethylenes and also

for two cyclic AYs with methyl acrylate, maleimide and maleic anhydride. The

experimentally found products and their relative yields have been rationalized in

terms of our energy calculations. The present energy-based approach towards the

possible mechanism of the cycloaddition reactions has led to a prediction of the

major product and also to finding an early TS in all cases, some of which have been

found to be asynchronous. Further quantification about the products ratio might be

achieved through an evaluation of the local electrophilicity descriptors and also with

the calculation of rate constants

Page 77: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

68

References

1. T. Curtius, Ber. Dtsch. Chem. Ges., 16 (1883) 2230.

2. W. Carruthers, Some Modern Methods of Organic Synthesis, 2nd ed.;

Cambridge University Press: Cambridge, 1978.

3. W. Carruthers, Cycloaddition reactions in Organic Synthesis, Pergamon:

Oxford, 1991.

4. K.N Houk, J. Sims, C.R. Watts, L.J. Luskus, J. Am. Chem. Soc., 95 (1973)

7301.

5. R. Huisgen, in 1,3- Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley,

New York. 1984; vol.1, Ch 1.

6. K.V. Gothelf and K.A. Jorgensen, Chem. Rev., 98 (1998) 863.

7. K.N. Houk, J. Gonzalez and Y.Li, Acc. Chem. Res., 81 (1995) 28.

8. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules,

Oxford Science Publication, N.Y. 1989.

9. A.D. Becke, J. Chem. Phys., 98 (1993) 5648.

10. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 37 (1988) 785.

11. W.J. Hehre, L. Random, P.v.R. Schleyer, J.A. Pople; Ab intio Molecular

Orbital Theory; Wiley New York, 1986.

12. A. Frisch, M.J. Frisch and G.W. Trucks, Gaussian 03 user‟s Reference, 2003,

Ver. 7.0.

13. C. Peng, P.Y. Ayala, H.B. Schlegel and M.J. Frisch, J. Comput. Chem., 17

(1996) 49.

14. L. Pauling, in The Nature of Chemical Bond, Cornell University, ITHACA,

NY, 3rd

.ed. 1960, p.239.

15. E.C. Magnuson and J. Pranata, J. Comput. Chem., 19 (1998) 1795.

16. A. Padwa, Y.Y. Chen, U. Chiacchio, W. Dent, Tetrahedron, (1985) 1189.

17. L. M. Harwood, A.I. Lilly, Tetrahedron Lett., 34 (1993) 537.

18. T. K. Das, M. Banerjee, J. Phys. Org. Chem. 23 (2010) 148.

19. M.T. Nguyen, A.K. Chandra, S. Sakai and K. Morokuma, J. Org. Chem.,

65 (1999) 64.

20. C. DiValentin, M. Freccero, R. Gandolfi, A.Rastelli, J. Org. Chem., 65

(2000) 6112.

21. M. Carda, R. Portoles, J. Murga, H. Roper, J. Org. Chem., 65 (2000) 700.

Page 78: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

69

22. J. Liu, S. Niwayama, Y.You and K. N. Houk, J. Org. Chem., (1998) 1064.

23. R. Annunziata, M. Benaglia, M. Cinquini, F. Cozzi, L.Raimondi, Eur. J.

Org. Chem., (1998) 1823.

24. F.P. Cossio, I. Morao, H. Jiao, P.V.R. Scheleyer, J. Am. Chem. Soc., 121

(1999) 6737.

25. I. Coldham and R. Hufton, Chem. Rev., 105 (2005) 2765.

26. R.G. Parr, L.V.Szenpaly, S. Liu, J. Am. Chem. Soc., 121 (1999) 1922.

27. L.R. Domingo, M. Arno and J. Andres, J. Am. Chem. Soc., 120 (1998) 1617.

28. R. Huisgen, J. Org. Chem., 33 (1968) 2291.

29. M.J.S. Dewar, J. Am. Chem. Soc., 106 (1984) 209.

30. K. Fukui, Acc. Chem. Res., 4 (1971) 57.

31. A.S. Anslow, L.M. Harwood, I.A. Lilley, Tetrahedron: Asymmetry., 6

(1995) 2465.

32. A.S. Anslow, G.G. Cox, L.M. Harwood, Khim. Geterotsikl. Soedin. (1995)

1393.

33. C. Belzecki and I. Panfil, J. Org. Chem., 44 (1979) 1212.

34. P.K. Chattaraj, D.R.Roy, Chem.rev., 107 (2007) 46.

35. P.K. Chattaraj, U.Sarkar, D.R.Roy, Chem.rev., 106 (2006) 2065.

36. G.S. Hammond, J.Am.Chem.Soc., 77 (1955) 334.

37. L.R. Domingo. J. Org. Chem., 64 (1999) 3922.

38. P. Pérez, L. R. Domingo, M. J. Aurell, R. Contreras, Tetrahedron., 59

(2003) 3117.

39. P. Pérez, L. R. Domingo, A. Aziman, R. Contreras, Theoritical Aspects of

Chemical Reactivity, ed. Toro-Labbe, Elsevier Science, New Tork, 2007; vol

19, ch.9, pp 139-201.

40. L.R. Domingo, E. Chamorro, P. Perez. J. Phys.Chem.A., 112 (2008) 4946.

41. L.R. Domingo, M. J. Aurell, P. Pérez, R. Contreras, Tetrahedron., 58 (2002)

4417.

42. M.J. Aurell, L. R. Domingo, P. Pérez, R. Contreras, Tetrahedron., 60 (2004)

11503.

43. L. R. Domingo, European J. Org. Chem., (2000) 2265.

44. L.R. Domingo, M.J. Aurell, J. Org. Chem., 67 (2002) 959.

45. L. R. Domingo and M. T. Picher, Tetrahedron. 60 (2004) 5053.

Page 79: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Studies on cyclization of Azomethine ylides with substituted alkenes

70

46. J.A. Saez, M. Arno, L. R. Domingo, Tetrahedron. 2003; 59, 9167.

47. A.S. Anslow, L.M. Harwood, H. Phillips, D. Watkin, L.F. Wong,

Tetrahedron: Asymmetry., 2 (1991) 1343.

48. R. Huisgen and D.P. Curran (Ed.), Advances in Cycloaddition, JAI: London,

1988, vol.1, pp1-31.

49. R.A. Firestone, Heterocycles., 25 (1987) 61.

50. R.A. Firestone, J. Org. Chem., 33 (1968) 2285.

51. R.A. Firestone, Tetrahedron., 33 (1977) 3009.

52. A. Corsaro, V. Pistara, A. Rescifina, A. Piperno, M.A. Chiacchio, G. Romeo,

Tetrahedron., 60 (2004) 6443.

53. R.G. Parr, Pratim K Chattaraj, J.Am.Chem.Soc. 113 (1991) 1854.

54. P.K. Chattaraj, A. Cedillo, R.G. Parr and E.M. Arnett, J.Org.Chem., 60

(1995) 4707.

55. R.G. Pearson, Acc.Chem.Res., 26 (1993) 250.

56. R.G. Parr, Z. Zhou, Acc.Chem.Res., 26 (1993) 256.

Page 80: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Chapter: 4

Stereoselectivity in the 1,3-dipolar

cycloaddition of 1-pyrroline-1-oxide

to methyl cinnamate and

benzylidene acetophenone

Page 81: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

72

4.1. Introduction

The epistemological concerns of nitrone cycloadditions have been extensively

focused on experimental approaches historically1-2

. During the last four decades,

theoretical studies have also been devoted to anticipate the bonding nature,

mechanism and energy sequences of such reactions3-10

. Few communications have

also reported their energetics and kinetics on the basis of the transition state

calculations11-15

. Nowadays, the methods based on the Density Functional theory16

have emerged as alternative to traditional ab initio methods in terms of accuracy.

Recently17

, DFT/B3LYP/6-31G* study has been carried out for the reaction of

methacrolein with 1-pyrroline-1-oxide (N1) in which the coordination of a Lewis

acid (borane) and the effect of solvent polarity (dichloromethane) were also taken

into account. P. Merino et al18

recently rationalized the observed regioselectivities of

the 1,3-dipolar cycloaddition of C-(hetaryl) nitrones to methyl acrylate and vinyl

acetate from global electrophilicity indices. The lowered asynchronicity in case of

the cycloaddition of methyl acrylate compared to vinyl acetate was highlighted on

the basis of bond lengths in the geometries of transition states. Stecko et al19,20

recently reported DFT study of 1,3DC reaction of N1 to α, -unsaturated lactones

and vinyl ethers. We have recently reported21

the DFT study of the 1,3DC reaction

of azomethine ylides with maleimide, maleic anhydride, methylacrylate and some

simple substituted alkenes. However, theoretical implications still suffer to be a

cornerstone in comparison to the experimental findings due to the limitations of

powerful computing facilities to deal with complex reacting systems.

Experimental investigation22

on the cycloadditions of N1 with two substituted

alkenes viz. methyl cinnamate (E1) and benzylidine acetophenon (E2) were carried

out by our collaborating research group, furnishing first hand information regarding

the different isolated products, their structures, yields and observed stereo-isomers.

The related supporting data on synthesis, NMR spectra, X-ray data and structure

elucidation, have been provided in the annexure 2. The different stereoisomeric

products are presented in the following.

Page 82: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

73

N

O

+

-

+Toluene, N

2 ,

12

34

5

6

NO

HH

HCOR

Ph1

2

34

5

6

NO

H COR

H

H

Ph1

2

34

5

6

NO

HCOR

H

Ph

H+ +

12

3

5

6

NO

H H

COR

H

Ph

+

3a 3a 3a 3a

82 0C

2psx

(I)

1psx

2psn

1psn

(II)

2prn

1prn

(III)

2prx

(IV)

1prx

R = OCH3 (E1), Ph (E2)

(R = OCH3) (R = OCH3) (R = OCH3) (R = OCH3)

(R = Ph) (R = Ph) (R = Ph) (R = Ph)

1

23

O

R 1

2

4

N1

Fig. 4.1 The different stereoisomeric products of 13DC of N1 with E1 and E2

On ground of the above findings, we decided to attempt a theoretical study of 1,3-

dipolar cycloadditions of N1 to an α, -unsaturated ketone (E2) and to an α, -

unsaturated ester (E1) (Fig 4.1) in order to assess of various factors which control

the regioselectivity and endo/exo- selectivity in these reactions so as to rationalize

them with experimental findings. The reason to select a cyclic nitrone (N1) stems

from its capability to delicately alter the diastereoselectivity of the adducts by simple

functional group alterations on the dipolarophile moiety23-27

alone. Moreover, pseudo

aza-C-disaccharides can be obtained by simple reductive ring opening of

enantiopure tricyclic isoxazolidines28

derived from N1. That the cyclic nitrone N1

can exist only in the E-isomer restricts the flexibility of addition to the nitrone end.

The results of theoretical calculation given in the present work will be useful for the

prediction of selectivities for similar other cycloadditions. The theoretical

conclusions arrived in the present work22

will be informative for the prediction of

selectivities in the N1 cycloadditions.

The present report addresses the following questions regarding the investigated

cycloadditions: (1) What will be the structure and energy of the transition states; (2)

How the experimentally observed selectivities are to be rationalized on the basis of

computational results in terms of energy, enthalpy and free energy of activation; (3)

Whether the selectivities could be judged on the basis of Global electrophilicity ( ),

Page 83: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

74

chemical potential ( ) and hardness ( ) parameters for the reacting systems; (4)

How the assigned structures of the isolated cycloadducts could be established with

the help of theoretical calculations.

Such a theoretically augmented experimental investigation about the alteration in

stereoselectivity would be a great advantage in understanding the process of

cycloadditions.

4.2. Computational Method

The geometries of isolated reactants, orientation complexes, transition states, and

products were optimized using the hybrid density functional B3LYP method29

, i.e.,

Becke’s three parameter nonlocal-exchange functional30

with the nonlocal

correlation functional of Lee, Yang, and Parr31

, with the 6-31G* basis set32

. The

stationary points were characterized through vibrational frequencies analysis done at

the DFT/ B3LYP/6-31G* level. All the stationary points were definitely identified

for minima (number of imaginary frequencies = 0) or transition states (number of

imaginary frequencies = 1).

Intrinsic Reaction Coordinate (IRC)33-36

calculations starting at the saddle points

were performed to verify that the potential energy curve connecting the optimized

reactants and the products passes through the correct and the lowest TS which is a

first order saddle point as defined in the chapter 3.

In this study we have studied that the theoretically calculated NMR typically benefit

from an accurate geometry and a large basis set. Cheeseman37

and coworkers have

considered the B3LYP (6-31G(d)) optimized38

structures to be the minimum

recommended model chemistry for predicting NMR properties. Hence, GIAO/SCF

1H NMR calculations of the optimized nitrones were performed at B3LYP/ 6-311 +

G (2d,p) level of approximation.

Page 84: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

75

4.3. Results and Discussion

We have presented our experimental and computational results for the considered

reactions in two sections.

4.3.1. Theoretical Explanation for the Cycloaddition of 1-pyrroline-1-oxide (N1)

to Methyl Cinnamate (E1) and Benzylidene Acetophenone (E2).

The electronic chemical potential is the index pointing to the direction of the

electronic flux during the cycloaddition i.e. the charge transfer (CT) occurring

within the system in its ground state. However, the chemical hardness specifies the

resistance to this electronic change flow during the cycloaddition39

and can be

quantitatively expressed in terms of HOMO and LUMO energy values according to

equations as previously stated in section 2.8.a.

The global electrophilicity index39,40

measures the stabilization in energy when the

system acquires an additional electronic charge N from the environment. The

maximum amount of electronic charge Nmax that can be accepted by an electrophile

system is given by an expression which was explain in the chapter 2, section 2.8.c.

Table 4.1 Global and local properties of the isolated dipole (N1)

and dipolarophiles (E1, E2)

Global properties

____________________________________________________________

Optimized

Energy HOMO LUMO (eV) (eV) (eV) Nmax

(a.u) (eV) (eV)

Local properties

________________________

k f+ f k (eV)

(N1) -286.540959 -5.637 -0.169 -2.903 5.468 0.771 0.531 1 0.207 0.346 0.16

2 0.028 0.034 0.02

3 0.157 0.173 0.12

(E1) -537.529587 -6.390 -1.747 -4.068 4.643 1.782 0.876

4 0.044 0.079 0.08

5 0.066 0.030 0.12

(E2) -654.034373 -6.352 -1.962 -4.157 4.390 1.963 0.946 4 0.023 0.038 0.05

5 0.053 0.029 0.10

[k is the atom site in the molecule in Figs. 4.2 & 4.3 where the property is being evaluated.]

Page 85: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

76

The global electrophilicity index includes the propensity of the electrophile to

acquire an additional electronic charge as well as the resistance to exchange the

electronic charge with the environment simultaneously. Thus, a good electrophile

can be characterized by a high value of and a low value of . In Table 4.1 we have

presented the HOMO and LUMO energies of N1, E1 and E2 along with their

electronic chemical potential , chemical hardness and the global electrophilicity

. According to the absolute scale of electrophilicity41

based on the index, N1 can

be classified as a moderate electrophile whereas both the dipolarophiles belong to

the realm of strong electrophiles. The electronic chemical potential value of N1 (-

2.903 eV) was higher than those of E1 (-4.068eV) and E2 (-4.157eV) implying that

the CT would take place from the dipole to the dipolarophiles in these

cycloadditions resulting in normal electron demand (NED) reactions 42,43

.

In order to understand thermodynamically the difference in diastereoselectivity due

to functional group alteration in the dipolarophile, we have calculated the Gibb’s

free energies for the reactants and TS in each case and also the corresponding free

energies of activation G≠ at 298K. Moreover, the heats of reaction rH and free

energies of reaction rG at 298K have been calculated as stated in the chapter 2 in

section 2.8.i and 2,8.l. The pair hardness44

* for the reaction of N1 with E1 was

higher than that with E2 (Table 4.2). This also reflects the enhanced exothermicity in

the former reaction which was in agreement with the calculated values of rH in

Table 4.2. This result has substantiated the accuracy of our DFT computations.

Table 4.2 Free energy and enthalpy changes along the different paths of

reaction.

Reacting

system along

channel

Free energy

of activation

G

(kcal.mol-1

)

Enthalpy of

activation

∆H

(kcal.mol-1

)

Free energy

of reaction

rG

(kcal.mol-1

)

Enthalpy of

reaction

∆rH

(kcal.mol-1

)

(eV)

(eV)

*

(eV)

1rx to 1prx

1rn to 1prn

1sx to 1psx

1sn to 1psn

29.015

27.817

29.131

27.821

11.684

09.891

11.525

09.891

1.293

3.911

2.213

2.339

-17.054

-14.893

-15.810

-15.818

0.825

1.011

3.890

2rx to 2prx

2rn to 2prn

29.421

30.474

14.841

15.963

4.556

6.338

-11.207

-09.302

1.078 1.192 3.675

Page 86: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

77

As the hardness increases it is observed that the chemical reaction gets faster due to

decrease in activation energy in Tables 4.2 and 4.3. This feature is a reflection of the

“hardness maximization principle44

”. It should be highlighted additionally that the

HOMO – LUMO gap, even between different species, is a measure of stability that

has been explored through the maximum hardness principle44

. Hard interactions are

essentially electrostatic in nature. In this respect charges and the associated

quantities like molecular electrostatic potential, local hardness are supposed to be

better descriptors for hard reactions.

The calculation of fukui functions for the atoms in a molecule proves to be useful to

characterize the reactive sites. The local electrophilicity index45,46

k expressed as k

= fk+ where fk

+ is the fukui function for nucleophilic attack on the k-th site. Hence

the atom-centered condensed fukui functions44

(electrophilic and nucleophilic) of the

reactants were calculated on the basis of Mulliken charges at the atomic sites in

order to rationalize the observed regioselectivities in the cycloadditions considered.

It can be seen that E1 and E2 classified as strong electrophiles, have greater local

electrophilicity for C (k = 5, Fig. 4.2 and 4.3, Table 4.1) than for Cα (k = 4, Fig.

4.2, Table 4.1). Thus, C should be the preferred site for a nucleophilic attack by the

dipole. In case of the cyclic nitrone N1, oxygen had a larger fk− than that for carbon

(Fig. 4.2, Table 4.1), which suggested that both cycloadditions should preferentially

produce isoxazolidines where C gets linked to the oxygen atom of N1. This

conclusion arrived in terms of local electrophilicity index was in conformity with the

experimental observations of this reaction E1 and N1 and also for the reaction E2

with N1 in this section (Fig. 4.3).

Page 87: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

78

Table 4.3 Optimized energies of the orientation complexes and activation energies

of the transition states. No regioisomer was obtained computationally in

both the cycloadditions.

Configuration of

approaching reactants

Optimized

Energy of the

orientation

complex

(a.u)

Optimized

Product

energy

(a.u)

Transition state

Transition

states

Optimized

energy

(a.u)

Activation

Energy

(kcal.mol-1

)

N1 (re face) + E1 (exo-)

[1rx]

N1 (re face) + E1(endo-)

[1rn]

N1 (si face) + E1(exo-)

[1sx]

N1 (si face) + E1(endo-)

[1sn]

N1 (re face) + E2 (exo-)

[2rx]

N1 (re face) + E2 (endo)

[2rn]

-824.080106

-824.075109

-824.084113

-824.079892

-940.583942

-940.585683

-824.095922 [1prx]

-824.092480 [1prn]

-824.093922 [1psx]

-824.093884 [1psn]

-940.597683 [2prx]

-940.594728 [2prn]

1trx

1trn

1tsx

1tsn

2trx

2trn

-824.046961

-824.049917

-824.047345

-824.049917

-940.553142

-940.550928

14.775

12.893

14.775

12.893

13.805

15.060

4.4. Exploring the Transition State

We considered it convenient to attempt the transition state optimizations on the basis

of a concerted mechanistic approach carried out through DFT based calculations.

Our computations showed remarkable agreement with the experimental findings.

We were successful in locating the true transition states through vibrational

frequency analysis. Each such transition state corresponded to a single imaginary

frequency. From further IRC calculations33-36

, it was apparent that these transition

states connected the corresponding orientation complexes to the respective

cycloadducts. Consequently, we could relate the geometries of the orientation

complexes to those of the transition states and adducts for the systems being

considered. The two reacting systems N1-E1 and N1-E2 studied presently are

denoted by numbers (N) 1 and 2 respectively. For describing the different structures

of the approaching reactants (r), transition states (t) and the products (p), a

convenient naming system has been employed as in the previous chapter 3. The

generation of different product isomers with time and in that matter their product

ratios at different time intervals are presented in scheme 4.1, following the same

kind of notations and symbols as used in the previous chapter 3.

Page 88: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

79

Scheme: 4.1 IV/2psx : III/2psn=64:36 after 4hours

IV/2psx : III/2psn=64:36 after 14 hours III /1prn : IV/1prx = 89:11 after 4 hours III /1prn : IV/1prx = 87:13 after 8 hours III /1prn : IV/1prx = 65:35 after 14 hours

In this context, we also calculated the index of Pauling’s47

partial Bond Order (PBO)

as explained in the previous section 2.8.o. The C-C and C-O bond distances were

found to be 1.964 Å and 2.173 Å respectively (Table 4.4) for both faces of attack in

the endo-transition state for the reaction between N1 and E1. The comparable values

of PBOs ((PBO)C-O = 0.182 and (PBO)C-C = 0.143) were indicative of a

synchronous, concerted mechanism. Similar results were also observed for the

cycloaddition between N1 and E2 (Table 4.4).

Table 4.4 Bond distances and partial bond order values in transition states Transition

state rc-o (Å) (PBO)c-o rc-c (Å) (PBO)c-c

1trx

1trn

1tsx

1tsn

2trx

2trn

2.033

1.964

2.009

1.964

2.067

1.884

0.136

0.182

0.148

0.176

0.134

0.223

2.128

2.173

2.158

2.173

2.097

2.208

0.153

0.143

0.136

0.127

0.177

0.123

N

O

H

MeOOC

3 +N

I/1sn

4

5

4

5

1

I/1trn

I/1tsn

I/1prn

I/1psn

I/1rn

2

Ph

Ph

COOMe

Ph

N

O

H

MeOOC

Ph

COOMe

O

Fig. 4.2 Endo attack by E1 on re- and si- faces of N1.

Page 89: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

80

4.5. Selectivity and Reactivity of the Cycloadditions

Houk and Coworkers10,11

have gleaned a number of generalizations about the

molecular orbitals of 1,3-dipoles and dipolarophiles from their observation on results

of calculations and experimental facts. It is evident from our calculated HOMO and

LUMO energy differences that the present cycloadditions are favourably controlled

through HOMOdipole–LUMOdipolarophile frontier type interaction9,11,48,49

.

The cyclic nitrone N1 only can exist as the E isomer and was

considered as such in the calculation of transition states. Both the dipolarophiles E1

and E2 exist exclusively in trans- forms. The transition state optimization for the

corresponding regio- attacks were also computed. But, those results were not in

agreement with the experimental findings for both the reactions. Such computation

for regio- isomers had always terminated to unrealistic structures of the TS and to

wrong activation energies. In several calculations, DFT method predicted a different

regioisomer due to only small differences in calculated energy. Domingo et al50

also

reported about this deficiency of transition state calculations to predict the

experimental regioselectivities of 1,3DC reactions. On the other hand, the

regioselectivities were better predicted by the local electrophilicity index (Table 4.1)

and were found to be in good agreement with our experimental observation. So, we

were left with calculating four possible adducts (I-IV) involving both exo- and endo-

approaches to the re- and si- faces of N1 for each cycloaddition leading to the

generation of 3-substituted cycloadducts (Fig. 4.1). In Fig. 4.2, 1rn and 1sn were the

orientation complexes for the endo- approach of E1 to the re- and si- faces

respectively of N1 leading to the products 1prn and 1psn for the reaction between

N1 and E1. Similarly in Fig. 4.3, 2rx and 2sx were the orientation complexes for the

exo- approach of E2 to the re- and si- faces respectively of N1 leading to products

2prx and 2psx for the reaction between N1 and E2 in Fig. 4.3. The transition states

1trn and 1tsn in the former reaction are related to the products 1prn and 1psn

respectively of the isomer type-I. On the other hand, 2trx and 2tsx in the latter

reaction were the transition states for 2prx and 2psx respectively of the (Fig. 4.3)

isomer type- II. In the cycloaddition between N1 and E1, the calculated endo-

reaction path provided transition states (1trn and 1tsn) having fairly lower activation

Page 90: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

81

energy than those in the corresponding exo- path (1trx and 1tsx) on both faces. In

spite of redundancy due to molecular symmetry, the computations were carried out

for both the faces to justify the accuracy of the structures and it was found that the

computation results on both faces were identical (Table 4.3). The product 1psn or

1prn was obtained as the major cycloadduct (Table 4.5) through the endo- path.

Table 4.5

Stereoisomeric ratios were obtained experimentally for the cycloadditions of N1 to E1and

E2. The cycloadditions were carried out at 82˚C in toluene under nitrogen atmosphere.

On the ground of structural symmetry, it is expected that the results of calculation

would be equivalent between the structures I and IV and also between II and III

(Figs. 4.2 and 4.3). While discussing exo/endo- selectivity, we focus our attention to

the structures III and IV only, which provide understanding of the products ratios

presented in Table 4.5. It may be seen from Fig. 4.2 and 4.3 that carbomethoxy

group at C4 in E1 in the former system is replaced by ketophenyl group in E2 in the

latter (Fig. 4.3). In the former reaction (N1-E1), the higher product ratio 1prn : 1prx

is understandable from the higher activation energy of 1trx, which predicts an endo-

selectivity. For the second reaction (N1-E2) the ratio 2prx: 2prn 64:36, indicates

that exo- electivity is favored, and the situation is rationalizable from higher

activation energy of 2trn. When we consider the entire system as a substitution of

functional group and compare the two reactions in the same channel (i.e., exo- or

endo- on the same face)29

, it is revealed that the exo- channel is stabilized by a small

difference of 0.97 kcal mol-1

between 1trx and 2trx. In a similar manner the endo-

channel is destabilized by a fair amount of 2.167 kcal mol-1

of energy between 1trx

and 2trx. This computational feature could establish a notion that this functional

group alteration has brought about a weak stabilization of exo- channel and a

Nitrone Dipolarophile Reaction

time (hrs)

Ratio of the cycloadducts

Overall yield

of

cycloadducts

N1 E1 4 89(III/1prn):11(IV/1prx) 20%

N1 E1 8 87(III/1prn):13(IV/1prx) 19%

N1 E1 14 65(III/1prn):35(IV/1prx) 19%

N1 E2 4 64(IV/2prx):36(III/2prn) 30%

N1 E2 14 64(IV/2prx):36(III/2prn) 54%

Page 91: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

82

simultaneous but large destabilization of the endo- channel. Mechanistically, while

selecting the favored reaction channel, the system possibly encounters stronger steric

interaction through the phenyl C-H bonds along the endo- channel which is thereby

destabilized. It has been reported so from experimental findings that the reaction

between N1 and 1-cinnamoyl piperidine were in accordance with the preference for

the endo- mode of attack. Thus, it could be anticipated that for reactions with N1,

the amide carbonyl or ester carbonyl substituent moiety on the dipolarophile

diverted effectively the diastereofacial mode of attack in comparison to the keto-

carbonyl moiety.

3 +N

I/2sx

4

5

4

5

1O

I/2trx

I/2tsx

I/2prx

I/2psx

I/2rx

2

Ph

Ph

Ph

Ph

PhOC

PhOCN

O

H

PhOC

N

O

H

PhOC

Fig. 4.3 Exo attack by E2 on re-and si- faces of N1.

Page 92: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

83

4.6. Conclusion

Cycloadditions of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene

acetophenone have been reported and the results were rationalized through both

experimental reports and theoretical findings. The theoretical analyses of energy,

enthalpy and free energy of activation, as well as global and local electrophilicities in

the ground state of the reactants have been presented to substantiate the

experimentally observed selectivities in these cycloadditions. The reactions were

100% regioselective leading to the exclusive generation of 3-carbomethoxy and 3-

oxophenyl substituted isoxazolidines which were monitored both experimentally as

also through DFT calculations of the appropriate transition states. However, the

reaction involving E1 was endo-selective, whereas that of E2 was found to be exo-

selective due to functional group modification from carbomethoxy to keto-carbonyl

in the dipolarophile moiety.

The reactivity analysis performed using global and local electrophilicity indexes were

found to be in line with the experimental results. Hence, the global electrophilicity

index could be employed to understand the significance of polar character as well as

the direction of CT along the cycloaddition process. The dominant electrophilic and

nucleophilic centers in the reactants could be identified effectively through an

analysis of local electrophilicity in connection with predicting regioselectivity in

these reactions.

Page 93: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

84

References

1. K. B. G. Torssell, Nitrile oxides, nitrones and nitronates in organic synthesis,

Wiley publishers, VCH Weinheim, 1988.

2. A Padwa, W H Pearson, Synthetic Applications of 1,3-Dipolar Cycloaddition

Chemistry towards Heterocycles and Natural Products, John Wiley & Sons,

New York, 2002.

3. R. Huisgen, R. Grashey, and J. Sauer, in “The Chemistry of Alkenes”, S. Patai,

Ed., Interscience, London, 1964, p 739.

4. R. Huisgen, Angew. Chem., Int. Ed. Engl. 2 (1963) 565.

5. R. Huisgen, J. Org. Chem. 33 (1968) 2291.

6. R. A. Firestone, J. Org. Chem. 33 (1968) 2285.

7. R. A Firestone, Tetrahedron. 33 (1977) 3309.

8. K. Fukui, Molecular orbitals in Organic Chemistry, P. O. Löwdin and B

Pullman, Academic Press, New York, 1964, 513.

9. K. Fukui, Acc. Chem. Res. 4 (1971) 57.

10. K.N Houk, J. Sims, R. E. (Jr.) Duke, R.W. Strozier, and J. K, George, J. Am.

Chem. Soc. 95 (1973) 7287.

11. K.N Houk, J. Sims, C. R. Watts and L. J. Luskus, J. Am. Chem. Soc. 95 (1973)

7301.

12. I. Morao, B. Lecea and F. P. Cossio, J. Org. Chem. 62 (1997) 7033.

13. M.T. Nguyen, A.K. Chandra, S. Sakai and K. Morokuma, J. Org. Chem. 64

(1999) 65.

14. M. D, Su, H Y Liao, W. S. Chung and S. Y. Chu, J. Org. Chem. 64 (1999)

6710.

15. C. D. Valentin, M Freccero, R. Gandolfi and A. Rastelli, J. Org. Chem. 65

(2000) 6112.

16. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford

University Press, NewYork, 1989.

17. P. Merino, J. Revualta, T. Tejero, U. Chiacchio, A. Rescifina, G. Romeo,

Tetrahedron. 59 (2003) 3581.

18. P. Merino, J. A. Mates, J. Revuelta, T. Tejero, U. Chiacchio, G. Romeo, D.

Iannazze, R. Romeo, Tetrahedron: Asymmetry. 13 (2002) 173.

Page 94: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

85

19. S. Stecko, K. Paniczek, C. Michel, A. Milet, S. Perez, M. Chmielewski,

Tetrahedron: Asymmetry. 19 (2008) 1660.

20. S. Stecko, K. Paniczek, C. Michel, A. Milet, S. Perez, M. Chmielewski,

Tetrahedron: Asymmetry. 19 (2008) 2140.

21. T. K. Das, M. Banerjee, J. Phys. Org. Chem. 23 (2009) 148.

22. N. Acharjee, T. K. Das, A. Banerji, M. Banerjee and T. Prange´ J. Phys. Org.

Chem. 23 (2010) 1187.

23. J. J. Tufariello and S. A. Ali, Tetrahedron letters. 19 (1978) 4647.

24. S. A. Ali and M. I. M. Wazeer, Tetrahedron. (1988) 5911.

25. S. A. Ali and M. I. M. Wazeer, Tetrahedron. 44 (1988) 187.

26. S. A. Ali and M. I. M. Wazeer, J. Chem. Soc., Perkin Trans. 1. (1988) 597.

27. S. A. Ali, J. H. Khan, M. I. M. Wazeer and H. P. Perzanowski, Tetrahedron. 45

(1989) 5979.

28. A. Banerji and P. Sengupta, J. Indian Inst. Sci. 81 (2001) 313.

29. A. Frisch, M. J. Frisch and G.W. Trucks, Gaussian 03 user’s Reference, 2003,

Ver. 7.0.

30. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.

31. C. Lee, W. Yang and R. G. Parr, Physical Review B. 37 (1988) 785.

32. W. Yang, W.J. Mortier, J. Am. Chem. Soc. 108 (1986) 5708.

33. D.G. Truhlar, J. Chem. Phys. 53 (1970) 2041.

34. D.K. Malick, G.A. Petersson, J.A. Montgomery, Jr. J. Chem.Phys. 108 (1998)

5704.

35. C. Gonzales, H. B. Schlegel, J. Phys. Chem. 90 (1989) 2154.

36. C. Gonzales, H. B. Schlegel, J. Phys. Chem. 94 (1990) 5523.

37. J. R. Cheeseman, G W Trucks, T A Keith, M J Frisch, J. Chem Phys. 104 (1996)

5497.

38. R. G. Parr, R. G. Pearson, J.Am.Chem.Soc. 105 (1983) 7512.

39. R.G.Parr, L.V.Szenpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922.

40. A. Corsaro, V. Pistara, A. Rescifina, A. Piperno, M. A. Chiacchio, G. Romeo,

Tetrahedron. 60 (2004) 6443.

41. L. R. Domingo, M. J. Aurell, P. Pe´rez, R. Contreras, Tetrahedron, 58 (2002)

4417.

Page 95: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Stereoselectivity in the 1,3DC of 1-pyrroline-1-oxide to methyl cinnamate and benzylidene acetophenone

86

42. P. Perez, L. R. Domingo, J. M. Aurell, R. Contreras, Tetrahedron. 59 (2003)

3117.

43. P.K.Chattaraj, U.Sarkar, D.R.Roy, Chem.rev.106 (2006) 2065.

44. R. G. Parr, Pratim K Chattaraj, J.Am.Chem.Soc.113 (1991) 1854.

45. L. R. Domingo, M. J. Aurell, P. Pe´rez, R. Contreras, J. Phys. Chem. A. 106

(2002) 6871.

46. W. Yang, W.J. Mortier, J. Am. Chem. Soc. 108 (1986) 5708.

47. L.Pauling, in The Nature of Chemical Bond, Cornell University, Ithaca, New

York, 3rd

.ed. 1960, 239.

48. R. Sustmann, Tetrahedron Lett. 12 (1971) 2717.

49. R. Sustmann, Tetrahedron Lett. 12 (1971) 2721.

50. M. Carda, R. Portolés, J. Murga, S. Uriel, J. A. Marco, L. R. Domingo, R. J.

Zaragoźa, H. Röper, J. Org. Chem. 65 (2000) 7000.

Page 96: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Chapter: 5

1,3-dipolar cycloaddition of

1-phenylethyl-trans-2-methyl

nitrone to styrene and of 1-

phenylethyl nitrone to allyl alcohol

Page 97: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

88

5.1. Introduction

The chemistry of 1,3-dipoles has created great interest and application over more

than a century1. A historical study

2 of their cycloaddition reactions has been of

immense importance3 in both academia and industry. The 1,3-dipolar cycloaddition

(1,3DC) reaction of nitrones with alkenes leading to isoxazolidines is a fundamental

reaction in organic chemistry. Considering the need for stereo-specific synthesis of

the 5-membered heterocyclic cycloadducts, theoretical prediction of the probable

adducts and their ratios along with their preferred path of formation would be of

much importance for us. In fact, understanding of this reaction with the help of

different electronic and chemical property is also a challenge for physical chemists.

Quantum chemical study can be very useful to interpret the regioselectivity and

enantioselectivity and also to predict diastereofacial selecitivity for 1,3DC reaction

of some nitrones leading to a diastereomeric excess (de) of the products. In this

regard, N-substituted and C-substituted nitrones were considered for reactions with

the substituted dipolarophiles like styrene and allyl alcohol4. These reactions are

studied by calculating the potential energy surface of the addition process and also in

terms of the of global electrophilicity reactivity index. The trends in reactivity i.e.,

the regio- and exo/endo- selectivity and the product ratios for these reactions have

also been rationalized with the help of frontier orbitals interaction energies,

electrophilicity differences ( ω), the rate constant values, and an analysis of

Pauling‟s bond order (PBO)5 and Wiberg bond index

6 in the transition state. All

these are found to be in good agreement with the experimental findings. As such

reactions of the nitrones leading to 5-membered isoxazolidine rings are of particular

interest in bio-organic chemistry. Considering the need for stereo-specific synthesis

of the cycloadducts, theoretical exploration of the probable products together with

their preferred reaction path would be of much importance to us. All the necessary

computed data of this study have been provided in the annexure 3.

Page 98: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

89

5.2. Computational Method

We have chosen the density functional theory(DFT) method using similar basis set

as in previous chapter for studying the stereochemistry of these reacting systems,

since it gives good enough and correct results. The reacting systems are studied by

optimization of TS followed by the well established technique of characterization of

the TS through QST3 option within the optimization step of Gaussian program. For

locating the TS, synchronous transit-guided quasi Newton (STQN) procedure7 is

employed. Confirmation of the right transition structure in each case is ensured

through Intrinsic Reaction Coordinate (IRC) calculations on the TS which are

carried out over a 31-point grid of reaction coordinate with 15 points in each of

forward and reverse directions on the path. In a similar way, the enthalpy of

activation ( H≠), free energy of activation ( G

≠), the heats of reaction ( rH) and

free energies of reaction ( rG) at 298K are calculated as explained before in chapter

2 under section 2.8. The rate constants for different channels of the reaction path

have been evaluated by using standard TST rate equation (eq. 5.1).

RT

G

B ehc

Tkk

…… (5.1)

where kB is Boltzmann constant, h is the Planck constant, c is the standard-state

concentration (often taken to be 1.00 mol dm-3

) and R is gas constant.

5.3. Results and Discussion

The results obtained from our theoretical calculation are divided into two sections

and presented hereunder.

Page 99: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

90

The backbone structure of 1,3-dipole, nitrones is shown in Fig. 5.1.

Fig. 5.1

The mechanism of cycloaddition reactions and of those encompassing the pericyclic

reactions in general, had created a lengthened debate during the 1960‟s and 1970‟s3.

Many experimental reports and theoretical calculations continued to populate the

literature over different areas of the 1,3DC chemistry. Keeping in mind the generally

accepted views regarding these reactions8-10

, continued efforts in reconciliation

between the theory and experiment are still going on11–16

. Our interest in the present

theoretical investigation stems from an attempt to provide an in-depth account of

1,3DC reactions of the nitrones17

. We have taken up the present systems from

literature with an aim to visualize the processes of regio- and enantio-selectivity

through DFT calculations. It is known that the control of stereochemistry in the

addition step leads to enantioselectivity and diastereoselectivity of the products11

.

The stereospecificity dispute had ultimately settled down in favour of the

synchronous and concerted mechanism rather than the step-wise, diradical

mechanism3,18

. According to Huisgen18

, the transition state (TS) for pericylic

reactions was concerted, whereas Dewar suggested19

it to be an asynchronous and

aromatic transition state. Fukui attributed the control of 1,3DC to frontier molecular

orbitals (FMO) of the substrates20

. Again according to Sustmann21,22

the

classification of our reactions following Scheme 5.1 would be of type-I if they

incorporate highest occupied molecular orbital (HOMO) of the dipole to react with

lowest unoccupied molecular orbital (LUMO) of „ene‟ and those following Scheme

5.2 would of type-II if those were effected through LUMO of dipole interacting with

HOMO of „ene‟. The HOMO, LUMO energy values for all the reactants are

presented in Table 5.1.

C N O+ -

1 32

Page 100: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

91

Table 5.1 Total energy, HOMO, LUMO, chemical potential, hardness, electrophilicity of the

isolated dipoles (N1 & N2), the dipolarophiles (E1 & E2) and their differences

_______________________________________________________________________ Global properties

_______________________________________________________________________

Optimized

Energy HOMO LUMO Nmax

*

(a.u.) (eV) (eV) (eV) (eV) (eV)

N1 -518.801981 -5.543 -0.513 -3.03 5.03 0.91 0.60

E1 -309.648272 -6.032 -0.831 -3.43 5.20 0.17 1.13 0.22 0.66 4.712

N2 -479.480661 -5.996 -0.569 -3.28 5.43 1.00 0.60

E2 -193.108432 -6.673 0.835 -2.92 7.51 2.08 0.57 0.43 0.39 6.105

...............................................................................................................................................

0Energy

-6.674eV

0.835eV

-5.996eV

-0.569eV

-6.032eV

-0.831eV

-5.543eV

-0.513eV

N2

Diff of

&LUMO

HOMO

energy

N1

4.712 eV

5.519 eV

6.105 eV

6.831 eV

HOMOHOMO HOMO

HOMO

LUMO LUMO LUMO

LUMO

E1 E2

Fig. 5.2

We have displayed this observation in Fig. 5.2. It is well known that cycloaddition

of unsaturation („ene‟) to a nitrone like benzonitrile oxide gives predominantly the

5-substituted isoxazolidine8, a feature which is not readily explained by the polar

arguments, but can be readily interpreted with mechanism involving biradical

intermediates. The relative stability of the different regiomers of the biradical

intermediate has been pointed out in Fig. 5.3.

Page 101: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

92

Ph N + CH2 =CH-Ph

N

Ph

OPh

NPhO

Ph

+

N

Ph

Ph

NPh

Ph

C O

C

O

O

C

more stable

less stable

major product

minor product

123 4 51

2

3

4 5

12

3

4 5

12

3

4 5

12

3

45

Fig. 5.3

In a theoretical mechanistic study23

of the 1,3DC of fulminic acid and diazomethane,

the analysis was done in terms of ab initio molecular orbital (MO) theory instead of

DFT and they demonstrated the formation of a biradical state through cleavage of

the -bond of the dipolarophile. In the present work we have considered reactions

between several substituted nitrileoxides taken as the dipolar nitrones and the

unsymmetrically substituted „enes‟ like styrene and allyl alcohol4. Experimental

reports24,25

about the reaction between N(1- phenylethyl)-trans-C-methyl nitrone

(N1) and styrene (E1) shown in Fig. 5.4, indicate production of the exo-isomer in

diastereoselective excess of the endo-isomer.

Fig. 5.4

N+

H

C

OMe

Me

Ph (s)

H

C

Dipole (N1)

c c

H

Ph

H

H

Dipolarophile (E1)

(R)

MePh

C

H

C

H

HO N

+

Dipole (N2)

CH2OH

CC

HH

H

Dipolarophile (E2)

Page 102: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

93

Belzecki and Panfil25

very concisely presented a scheme for this

cycloaddition reaction as stated in previous chapter 3. We have developed

calculations on the basis of their scheme and the results of our calculations are given

in the subsequent sections. Very recently spiroisoxazolidines were synthesized as

antimycobacterial agents26

from 1,3DC of C-aryl-N-phenyl nitrones and substituted

pyridinones and were identified as potential anti-tuberculosis drug. As key steps for

total synthesis of virus inhibitors, 1,3DC involving azides, nitrones and azomethine

ylides are most appropriate27

with high biological response. Several workers28–32

have explored the 1,3DC reactions using DFT calculations along with the associated

reactivity tools of hardness and softness. More recently, several workers have

explored33–35

the energetics of stereo- and regio-selectivity of 1,3DC reactions of

nitrones using the DFT/B3LYP/6-31G(d) method. We have similarly adopted

DFT/B3LYP/6-31G(d) method for calculating the energies of reactants, products

and the TS. The rate constant of the addition process has been calculated by using

the standard transition state theory (TST) and applied the same to rationalize the

product ratios. The control for such reactions is indeed not solely by the FMOs, but

certain other parameters like hardness and electrophilicity36–39

having definite

dependence on the HOMO and LUMO have more direct influence on the reactions.

Chattaraj et al.40,41

have extensively reviewed the diverse facets of reactive and

physicochemical processes with the help of electrophilicity index defined earlier by

Parr et al.42

Geerlings et al.43

have reviewed the conceptual aspects of DFT and have

shown how the various physicochemical parameters are derived from theory and

applied successfully to chemical systems. Chemical reactivity has been correlated44

in terms of local softness, hardness, Fukui functions and certain other response

functions. Among these new concepts are the perturbative perspectives45

on

chemical reactivity. The thermodynamic analog such as electronic chemical

potential, although not an observable physical quantity, has its success linked with

the electron density which is instrumental in bearing most information about the

ground state. It is attractive from the purview of organic chemist to examine the

proximity of TS to the reactants or the products over the reaction coordinate. In this

respect the Hammond postulate46

says that TS for exothermic reactions is more

reactant-like, and for endothermic it is more product-like. We can expect that FMO

effects will be particularly strong in exothermic reactions. The global electrophilicity

Page 103: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

94

( ), chemical potential (μ) and hardness (η) parameters help one to explore the

nature of the reactions and reactivity. Theoretical calculated activation parameters

for 1,3DC reactions, their regioselectivity and exo/endo-, i.e., enantioselectivity

show good agreement with the experimental findings. In our pervious chapter, we

have reported the DFT study of 1,3DC reaction of azomethine ylides with

maleimide, maleic anahydride, methylacrylate and some simplesubstituted alkenes47

.

We have also explored both experimentally and theoretically48

the 1,3DC reaction of

1-pyrroline-1-oxide with methyl cinnamate and benzylidene acetophenone leading

to different exo/endo-adducts due to modification of functional group in the

dipolarophile moiety explained in chapter 4. In this work we have rationalized the

experimentally observed products ratio. A coordination by Mg2+

ion in the complex

formation process between benzonitrile oxides and acrylopyrazolidinone had

established49

that the complexation did not produce any change in mechanism which

was asynchronous, concerted and non-polar in character, thereby presenting a 5-

regioselectivity of the product.

5.3.1. Reaction of the Nitrones with Styrene

In this section we present our results for reaction between the N-phenylethyl

substituted nitrone (N1) and dipolarophile: styrene (E1) (Fig. 5.4) for which

experimental reports24,25

were available. Belzecki et.al. had studied the reaction

between 1-phenylethyl-2-methyl nitrone (N1) with styrene (E1) (Fig. 5.5)

experimentally. We have investigated theoretically the different reactive channels

(exo- and endo-) of styrene addition towards the re- and si- faces of nitrone which

are labeled in Fig. 5.4. and the reactions are exemplified pictorially in Fig. 5.5.

Structure symbols for the various products (psx, prx, psn, prn) together with their

corresponding TS (tsx, trx, tsn, trn) are shown in the scheme 5.1, so as to identify

the various stereochemical species. For the approaching orientation of reactants, the

structural naming system are same as our previous discussions.

Page 104: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

95

Scheme 5.1 Reaction of 1-phenylethyl-trans-2-methyl nitrone(N1)

with styrene (E1)a

Configuration of approaching Structure symbol, Structure symbol, Structure symbol,

reactants reactants products TS

si-face of nitrone + exo-ene 1sx 1psx 1tsx

si-face of nitrone + endo-ene 1sn 1psn 1tsn

re-face of nitrone + exo-ene 1rx 1prx 1trx

re-face of nitrone + endo-ene 1rn 1prn 1trn

aThere are no regio- products

Fig. 5.5 The transition states and products in different (re- and si-) facial attacks to the

substituted nitrone N1 (at the middle) by styrene E1 in exo- and endo- approaches

As each product contains two chiral centers in the isoxazolidene moiety, one coming

from the dipole and one from the dipolarophile, there should exist four stereo-

isomers among the products. It is found that the exo- path involves lesser activation

energy (Table 5.2) than the endo- path in both re- and si- faces with the normal

isomer (sustituent entering 5-position of the ring). The products prx and psx are thus

expected to generate in excess as the major kinetic products over prn and psn

agreeing well with experimental data. The electron withdrawing nature of phenyl

group in the substituent of the dipolarophile might be the reason for favouring the

exo- attack. Again any attempt for generating the corresponding regiomers with N1

and E1 had failed because all the starting reverse orientations of the reactants had

led to unrealistic and totally different structures having no relevance with the

C

N+

H

CN

O

Me

H

Ph

H

Ph

C

RPh

OMe

C

(R)

H

N

O

(R)

Me

Ph

H

R

C

rx

sx

(prx)

(psx)

trx

tsx

re & si face of N1 + exo attack of styrene

R

Me

Ph

(s)

H

CR =

C

N+

(R)

H

CN

O

MeH

Ph

H

Ph

C

Ph

OMe

sn

rn

CH

CN

O

Me

Ph

H

R

trn

tsn

(s)

(R)

(S)

(prn)

(psn)

R

R

re & si face of N1 + endo attack of styrene

1

1

2

2

3

3

4

4

5

5

(S)

(S)

23

4

5

4

5

12

3

4

5

45

1

1

1

2

2

3

3

4

4

5

5

Page 105: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

96

optimized product. This consequence has been supported by the experimental

existence of only two stereoisomers, in which the predominance of exo- product is

consistent with lower activation energy of the exo- isomer as shown in Table 5.2.

Adding further precision to our treatment, we have calculated the zero point

corrected (ZPE) Gibb‟s free energy, enthalpy of the reactants and TS in each case

and have calculated the free energies of activation G≠, enthalpy of activation H

and heat of the reaction rH at 298K (Table 5.3). Similar conclusions11-18,24,25,48

arrived by earlier investigators both theoretically and experimentally have indicated

that the substituents should enter preferentially at the 5-position of the

isoxazolidines.

Table 5.2 Energy data for the reaction: 1-phenylethyl-trans-2-methyl nitrone (N1)

with styrene (E1) normal product isomera

__________________________________________________________

Orientation Products Transition States

complex optimized -------------------------------------------------

optimized Energy Eact Eact

(Energy in a.u.) (Energy in a.u.) (in a.u.) (kcal/mol) (kcal/mol) [6-31G(d)] [6-311+G(d,p)]

1sx -828.454835 1psx -828.478962 -828.420823 18.47 22.39

1sn -828.455172 1psn -828.482870 -828.418012 20.23 24.88

1rx -828.456308 1prx -828.485254 -828.425407 15.59 19.09

1rn -828.457253 1prn -828.475033 -828.423839 16.58 21.04

__________________________________________________________________________ aThere was no regio-product, computationally

Table 5.3 Free energy of activation, enthalpy of activation, rate const. and enthalpy

of reaction: 1-phenylethyl-trans-2-methyl nitrone (N1) with styrene (E1)

__________________________________________________________ Reaction Free energy Enthalpy of Numerical values Enthalpy of

Considered of activation activation of the rate constant reaction

G ∆H

k1 ∆rH

(in kcal/mol) (in kcal/mol) (in kcal/mol)

____________________________________________________________________ 1sx to 1psx 33.37 19.30 1.7 10

-12 -15.14

1sn to 1psn 36.14 21.01 1.6 10-14

-23.79

1rx to 1prx 30.51 16.21 2.2 10-10

-19.10

1rn to 1prn 31.51 17.22 4.1 10-11

-12.63

Average, k1 = 6.6 10-11

Page 106: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

97

Now from the Table 5.4, we have found that in TS the newly forming C-C bond

distances are smaller (2.0Å) than the C-O bond distances (2.2Å). Moreover, the

PBO values and from the value of Wiberg bond index in the various TS are around

0.05 for C-O bonds and around 0.16 for C-C bonds which indicates that the TS are

asynchronous.

Table 5.4 Bond orders and bond distances in transition states of the reaction:

1-phenylethyl-trans-2-methyl nitrone (N1) with styrene (E1).

__________________________________________________________

Name of Pauling‟s bond order analysis Wiberg bond index

the TS

------------ ------------------------------------- -------------------------------

rC-O rC-C (PBO)C-O (PBO)C-C (NBO)C-O (NBO)C-C

__________________________________________________________

1tsx 2.37 2.05 0.046 0.192 0.2604 0.4578

1tsn 2.38 2.03 0.047 0.100 0.2542 0.4807

1trx 2.36 2.10 0.051 0.172 0.2513 0.4229

1trn 2.32 2.11 0.056 0.158 0.2594 0.4222

The values of rate constants obtained from eq. 5.1 have been provided in Table 5.3.

From these values of rate constants, we can calculate the products ratio, which can

be conveniently expressed according to the following expressions:

kexo/total = kexo/si+ kexo/re = 2.2 10-10

and kendo/total = kendo/si+ kendo/re = 4.1 10-11

Therefore, the ratio of overall exo to endo product formation is

kexo/total / kendo/total = 2.2 10 -10

/ 4.1 10 -11

= 5.48.

This result in excellent agreement with the experimental result (exo- and endo-

isomers in ratios between 68:32 to 87:13) as reported by Belzecki Panfil23

.

Page 107: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

98

Quantitative characterization of reactivity in DA and 1,3DC reactions in terms of

global electrophilicity power was pioneered33,38,39

by Domingo et al. In their

review30,41

Chattaraj et al. have reported that “Larger electrophilicity differences

correspond to faster34

reactions”. In our present study we observed similar trends:

the for reaction scheme 5.1 is 0.22 (eV) and for the reaction scheme 5.2 it is 0.43

(eV) (Table 5.1) while their average rate constants values were 6.6 10-11

and

4.8 10-7

respectively (Tables 5.3 and 5.5). Therefore, our investigation

accommodates the theory and experiment very well.

In Table 5.1 we have presented the HOMO and LUMO energies of N1, E1 and N2,

E2 along with their electronic chemical potential ( ), chemical hardness ( ) and the

global electrophilicity ( ). According to the absolute scale of electrophilicity38

based

on the global electrophilicity index, E1 can be classified as a strong electrophile

whereas the dipole N1 belongs to the realm of moderate electrophile for the reaction

scheme 5.1. But for the reaction scheme 5.2, N2 can be classified as a strong

electrophile where as the dipolarophile E2 belongs to the realm of moderate

electrophile. The electronic chemical potential ( ) value of N1 (-3.03 eV) is higher

than that of E1 (-3.43eV) implying that the CT will take place from the dipole to the

dipolarophile in this cycloaddition resulting in a normal electron demand (NED)

reaction34

. Whereas the electronic chemical potential ( ) value of E2 (-2.92 eV) is

higher than that of N2 (-3.28eV) (Table 5.1), this will imply that the CT will take

place from the dipolarophile to the dipole in this cycloaddition resulting in also a

normal electron demand (NED) reaction32

. The greater electrophilicity difference of

0.43eV between the pair of reactants N2 and E2 than that (0.22eV) of the reaction

between N1 and E1 provides the higher driving strength (k2) for the former reaction

(Tables 5.3, 5.5). It was experimentally observed that the cycloaddition reaction

between N1 and E1 produced poor yields due to slower reaction rate. Thus, it might

be concluded that the reactivity predicted in terms of global electrophilicity index

showed good agreement with the experimental findings.

The pair hardness50

* for the pair of reactants N1 and E1 in scheme 5.1 is lesser

than that for N2 and E2 given in scheme 5.2 (Table 5.1), reflecting the enhanced

exothermicity for the latter cycloaddition which is also in agreement with the

Page 108: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

99

calculated values of rH presented in Tables 5.3 and 5.5. This fact further

substantiates the reliability of our DFT based results.

As the hardness for N2 and E2 reaction increases, it can be observed the reaction

gets faster due to decrease in activation energy as compared to that of the N1-E1

reaction. This feature is a reflection of the “Hardness maximization principle.” It

should be highlighted additionally that the HOMO – LUMO gap, even for different

species, is a measure of stability through the maximum hardness principle51

. Hard

interactions are essentially electrostatic in nature. Charges or more appropriately

associated quantities such as molecular electrostatic potentials and local hardness are

supposed to be better descriptors for hard-hard reactions. From this out look one can

gain a qualitative perspective for the enhanced reactivity of the N2-E2 system.

5.3.2. Reaction of Nitrones with Allyl Alcohol

Tice and Ganem52

carried out the reaction of 1-phenylethyl nitrone (N2) with allyl

alcohol (E2) (Fig. 5.6), the dipolarophile containing relatively less (than phenyl)

electron withdrawing group –CH2OH, and being investigated computationally in our

present study4.

Structural naming systems similar to those in scheme 5.1 are used for reaction

between N2 and E2, given in the scheme 5.2.

Scheme 5.2 Reaction of 1-phenylethyl nitrone(N2) with allyl alcohol (E2)b

Configuration of Structure symbol Structure symbol Structure symbol

approaching reactants reactants products TS

si- face of ene + exo-nitrone 2sx 2ps 2tsx

si- face of ene + endo-nitrone 2sn 2ps 2tsn

re- face of ene + exo-nitrone 2rx 2pr 2trx

re- face of ene + endo-nitrone 2rn 2pr 2trn

bSince the nitrone C-atom is not prochiral, both exo- and endo- attacks of nitrone on si-face of allyl

alcohol give the same product. Similar case occurs for the re-face. Again there are no regio products.

Page 109: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

100

CH2OH

C

H

H

H

H

H

O

CN

+H

O

H

N+

CN

O

H

(R)

CH2OH

CN

OH

(S)

CH2OH

rn trn

sn tsn

(ps)

(pr)

re & si face of aa + endo attack of N2

CH2OH

C

H

H

H

H

(R)

H

O

CN

+H

O

H

N+

CN

O

H

MePh

(R)

CH2OH

CN

OH

(S)

CH2OH

C

rx trx

sx tsx

(ps)

(pr)

HR ' =

re & si face of aa + exo attack of N2

R'

R'

R'

R'

1

1

2

2

3

3

4

5

R'

R

R'

R'

12

3

45

4 5

1

23

1 2 3

12

3

4

5

1

1

2

2

3

3

4

4

5

5

Fig. 5.6 The transition states and products in different (re- and si-) facial attacks to allyl alcohol

(E2) (at the middle) by the substituted nitrone N2 in exo- and endo- approaches

In connection with regioselectivity of 1,3DC reactions, Magnuson et al.53

made the general remark that for electron donating groups in dipolarophile, the

favoured orientation would be that of the normal isomer with the substiuent at 5-

position of the ring, whereas for electron withdrawing groups it would be the

regioisomer with substituent at the 4-position. It has been reported52

experimentally

that the electron withdrawing phenyl group of styrene goes to the 5-position of ring

leading to the normal isomers and we have also found the same thing to occur from

our TS optimization (Fig. 5.6) calculations. With regard to Magnuson‟s observation,

the phenyl group is considered as having -donating effect as well as –R effect of

attracting electron density, the former dominating in overall, the phenyl could be

considered as normal orienting in this reaction. For allyl alcohol, the primary

alcoholic group –CH2OH being less withdrawing than phenyl has been found from

our calculations to be normal orienting and depicted in Fig. 5.6 which is in

compliance with experimental findings24

. It may be seen from our calculations that

for si-face of allyl alcohol (E2), the endo- attack by nitrone N2 is energetically

favourable whereas for the re-face the exo- attack is favoured (Table 5.6).

Page 110: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

101

Table 5.5 Free energy of activation, enthalpy of activation, rate const. and enthalpy

of reaction: 1-phenylethyl nitrone (N2) with allyl alcohol (E2)

_________________________________________________________

Reaction Free energy Enthalpy of Numerical values Enthalpy of

Studied of activation activation of the rate constant reaction

G ∆H

k2 ∆rH

(in kcal/mol) (in kcal/mol) (in kcal/mol)

____________________________________________________________________ 2sx to 2ps 26.39 12.75 2.4 10

-7 -26.51

2sn to 2ps 26.29 12.48 2.8 10-7

-26.74

2rx to 2pr 25.36 12.22 1.4 10-6

-27.99

2rn to 2pr 31.06 16.38 8.8 10-11

-27.99

Average, k2 = 4.8 10-7

____________________________________________________________________

Table 5.6 Energy data for the reaction: 1-phenylethyl nitrone (N2) with allyl

alcohol (E2) normal product isomerb

____________________________________________________________________

Orientation Products Transition States

complex optimized ------------------------------------------------

optimized Energy Eact Eact

(Energy in a.u.) (Energy in a.u.) (in a.u.) (kcal/mol) (kcal/mol) [6-31G(d)] [6-311+G(d,p)]__

2sx -672.594015 2ps -672.636686 -672.570344 11.77 17.15

2sn -672.598137 2ps -672.636684 -672.570974 11.37 16.67

2rx -672.596509 2pr -672.639134 -672.571198 11.23 15.72

2rn -672.596769 2pr -672.639134 -672.564967 15.14 21.15

__________________________________________________________________________ b There was no regio- product, computationally.

In Fig. 5.6 the different attacks by nitrone N2 to the two faces of allyl alcohol

molecule E2 possessing one prochiral centre have been shown. It follows from

molecular symmetry as evident from Fig. 5.6 that exo- and endo- attacks on each of

the re- and si- faces of the alcohol lead to the same product in each face.

Experimentally, the two diastereomers pr and ps were obtained in 1:1 ratio. From the

values of Eact in Table 5.6, we can observe that in the si- face the endo attack is

favoured, while in the re- face the exo attack is favoured. Other things remaining

identical we may assume that their frequency factors are almost equal and the ratio

Page 111: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

102

of their products should be very close to1:1, as may seen from their comparable

values of G (Table 5.5). The product ratio obtained experimentally can be

explained theoretically through our computational results as are given below4:

kps = kps(si/exo)+ kps(si/endo) = 5.2 10 -7

10 – 6

and

kpr = kpr(re/exo) + kpr(re/endo) = 1.3 10-6

10 – 6

Therefore, the ratio of formation of total exo- product and total endo- product is,

kps / kpr = 1.

This value is good agreement with the experimental result as was reported by Tice

and Ganem52

.

According to the quantitative characterization of reactivity in connection

with DA and 1,3DC reactions in terms of global electrophilicity “the larger

electrophilicity differences correspond to faster42

reactions”. In our present study we

observed similar trends: the for reaction scheme 5.2 is 0.43 (eV) and for reaction

scheme 5.1 it is 0.22 (eV) (Table 5.1) and their average rate constants values are

respectively 6.6 10-11

and 4.8 10-7

. Therefore, our investigation results correlate

with the theory and experiment very well.

Now from the Table 5.7, we found that in TS the newly forming C–C bond distances

are smaller (2.0 Å) than the C–O distances ( 2.2 Å). Moreover the PBO values in the

TS in different reactive channels are around 0.08 for C–O bonds and around 0.16 for

C–C bonds which indicates that the TS is asynchronous. From a similar analysis of

NBO based Wiberg bond indexes6 given in Table 5.7, it is also indicated that the TS

is asynchronous.

Page 112: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

103

Table 5.7 Bond orders and bond distances in transition states of the reaction:

1-phenylethyl nitrone (N2) with allyl alcohol (E2)

__________________________________________________________________

Pauling‟s bond order analysis Wiberg bond index

Name of ------------------------------------------- ------------------------------------

the TS rC-O rC-C (PBO)C-O (PBO)C-C (NBO)C-O (NBO)C-C

____________________________________________________________________

2tsx 2.26 2.09 0.071 0.168 0.2929 0.4275

2tsn 2.20 2.15 0.089 0.137 0.3093 0.4005

2trx 2.23 2.13 0.075 0.146 0.2955 0.4023

2trn 2.17 2.08 0.093 0.172 0.3365 0.4493

------------------------------------------------------------------------------------------------------

5.4. Nature of Transition State in the Reactions

While such cycloaddition reactions pass through a transition sate there remains to

answer the question as to whether the reactions considered follow a concerted or a

diradical path. Although the general verdict in this regard was in favour of

concerted mechanism, at a certain stage R.Huisgen18,54

reported the well-

documented example of a step-wise 1,3DC involving an intermediate which

encouraged Firestones‟s contention55

that „no degree of stereospecificity could rule

out diradical mechanism‟ gaining support from his proposal. That the activation

energy for single bond rotation was greater than that for either formation of the

second bond leading to the adduct or reversion to the reactants. In this context we

have calculated (Tables 5.4, 4.7) the PBOs for C-C and C-O bonds in the TS. It can

be seen from Table 5.4 that for TS with nitrone N1 and styrene (E1), the C-C bond is

formed early with a shorter rC-C distance than the rC-O distance, the bond order values

agreeing correspondingly with bond distances. The reaction in this case can be

considered to be asynchronous and concerted.

In the case of nitrone N2 reacting with allyl alcohol, the pattern of activation

energies and the trend of relative PBO values (Fig. 5.6, Table 5.7) are similar to

those of nitrone N1 and E1 (Fig. 5.5, Table 5.4). Even if the possibility of a diradical

mechanism is cancelled, it may be concluded that the process is highly asynchronous

Page 113: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

104

which was at some stage predicted by Dewar18

. In our present work we reported

only about our observations. On the basis of classification of 1,3DC in terms of

FMOs, the interaction of styrene (E1) with the nitrones N1 and N2 with allyl alcohol

(E2) appears to be (Fig. 5.6) controlled by both HOMOdipole - LUMOalkene and

LUMOdipole – HOMOalkene and are of type-I for scheme 5.1 where as type-II for

reaction scheme 5.2.

5.5. Conclusion

The 1,3-dipolar cycloaddition reactions of two well-known nitrones with two

selected alkenes have been studied in detail using the B3LYP/6-31G(d) method. The

experimentally observed products, their interactions, TS and the relative proportion

of yields of different have been rationalized using calculated potential energy

barriers for the reactions, rate constants and reactivity parameters. This type of

investigation can be easily extended to larger natural systems of stereochemical

significance in asymmetric synthesis. Further quantification about the products ratio

might be achieved through an evaluation of the local electrophilicity descriptors. But

calculation of local electrophicility using the Mulliken population sometime fails to

predict the preferred regioselective attacks. Other type of population analysis

scheme, such as electrostatic potential driven charge, may be explored in this matter.

Page 114: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

105

References

1. T. Curtius, Ber. Dtsch. Chem. Ges. 16 (1883) 2230.

2. R. Huisgen, in: A. Padwa (Ed.), 1,3-Dipolar Cycloaddition Chemistry,

Wiley, New York, 1984.

3. K.V. Gothelf, K.A. Jorgensen, Chem. Rev. 98 (1998) 863.

4. T. K. Das, S. Salampuria, M. Banerjee, J. Mol. Struct.: THEOCHEM: 959

(2010) 22.

5. L. Pauling, in The Nature of Chemical Bond, Cornell University, ITHACA,

NY, 3rd

.ed. 1960, p. 239

6. K. B. Wiberg, Tetrahedron 24 (1968) 1083.

7. M.J. Frisch et al., Gaussian 03, Revision D. 01, Gaussian Inc., Wallingford,

CT, 2004.

8. K.N. Houk, J. Gonzalez, Y. Li, Acc. Chem. Res. 28 (1995) 81.

9. P. Merino, T. Tejero, U. Chiaccio, G. Romeo, A. Rescifina, Tetrahedron 63

(2007) 1448.

10. L.R. Domingo, M.J. Aurell, M. Arnó, J.A. Sáez, J. Mol. Struct.:

THEOCHEM 852 (2008) 46.

11. M.T. Nguyen, A.K. Chandra, S. Sakai, K. Morokuma, J. Org. Chem., 64

(1999) 65.

12. M.A. Silva, J.M. Goodman, Tetrahedron, 56 (2002) 3667.

13. C. Di Valentin, M. Freccero, R. Gandolfi, A. Rastelli, J. Org. Chem., 65

(2000) 6112.

14. M. Carda, R. Portoles, J. Murga, H. Roper, J. Org. Chem., 65 (2000) 700.

15. J. Liu, S. Niwayama, Y. You, K.N. Houk, J. Org. Chem., 63 (1998) 1064.

16. F.P. Cossio, I. Morao, H. Jiao, P.V.R. Scheleyer, J. Am. Chem. Soc., 121

(1999) 6737.

17. A. Banerji, P. Sengupta, J. Indian Inst. Sci., 81 (2001) 313.

18. R. Huisgen, J. Org. Chem., 33 (1968) 2291.

19. M.J.S. Dewar, J. Am. Chem. Soc., 106 (1984) 209.

20. K. Fukui, Acc. Chem. Res., 4 (1971) 57.

21. R. Sustmann, Tetrahedron Lett., (1971) 2717.

22. R. Sustmann, Pure Appl. Chem., 40 (1974) 569.

Page 115: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

106

23. S. Sakai, M.T. Nguyen, J. Phys. Chem. ,A 108 (2004) 9169.

24. C. Belzecki, I. Panfil, J. Chem. Soc. Chem. Commun., (1977) 303.

25. C. Belzecki, I. Panfil, J. Org. Chem., 44 (1979) 1212.

26. R.S. Kumar, S. Perumal, K.A. Shetty, P. Yogeeswari, D. Sriram, Eur. J.

Med. Chem., 45 (2010) 124.

27. C. Najera, J.M. Sansano, J. Org. Biomol. Chem., 7 (2009) 4567.

28. A.K. Chandra, M.T. Nguyen, J. Phys. Chem., A 102 (1998) 6181.

29. T.N. Le, L.T. Nguyen, A.K. Chandra, F.D. Proft, P. Geerlings, M.T.

Nguyen, (J. Chem. Soc. Perkin Trans. 2, 2 (1999) 1249.

30. L.T. Nguyen, F.D. Proft, A.K. Chandra, T. Uchimaru, M.T. Nguyen, P.

Geerlings, J. Org. Chem., 66 (2001) 6096.

31. A.K. Chandra, M.T. Nguyen, J. Comput. Chem., 19 (1998) 195.

32. J. Korchowiec, A.K. Chandra, T. Uchimaru, J. Mol. Struct. THEOCHEM

572 (2001) 193.

33. L.R. Domingo, Eur. J. Org. Chem. (2000) 2273.

34. M.L. Kuznetsov, L.V. Kozlova, A.I. Dementev, Russian J. Inorg. Chem., 51

(2006) 1602.

35. P. Merino, J. Revuelta, T. Tejero, U. Chiacchio, A. Rescifina, G. Romeo,

Tetrahedron 59 (2003) 3581.

36. P. Pérez, L.R. Domingo, M.J. Aurell, R. Contreras, Tetrahedron 59 (2003)

3117.

37. P. Pérez, L.R. Domingo, A. Aziman, R. Contreras, in: A. Toro-Labbe (Ed.),

Theoretical Aspects of Chemical Reactivity, Elsevier Science, New York,

2007.

38. L.R. Domingo, E. Chamorro, P. Perez, J. Phys.Chem., A 112 (2008) 4946.

39. L.R. Domingo, M.J. Aurell, P. Pérez, R. Contreras, Tetrahedron 58 (2002)

4417.

40. P.K. Chattaraj, D.R. Roy, Chem. Rev., 107 (2007) 46.

41. P.K. Chattaraj, U. Sarkar, D.R. Roy, Chem. Rev., 106 (2006) 2065.

42. R.G. Parr, L.V. Szenpaly, S. Liu, J. Am. Chem. Soc., 121 (1999) 1922.

43. P. Geerlings, F.De. Proft, W. Langenaeker, Chem. Rev., 103 (2003) 1793.

44. H. Chermette, J. Comput. Chem., 20 (1999) 129.

Page 116: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

1,3DC of 1-phenylethyl-trans-2-methyl nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol

107

45. P.W. Ayers, J.S.M. Anderson, L.J. Bartolotti, Int. J. Quantum Chem., 101

(2005) 520.

46. G.S. Hammond, J. Am. Chem. Soc., 77 (1955) 334.

47. T.K. Das, M. Banerjee, J. Phys. Org. Chem., 23 (2009) 148,

48. N. Acharjee, T.K. Das, M. Banerjee, A. Banerji, T. Prangé, J. Phys. Org.

Chem. 23 (2010) 1187

49. L.R. Domingo, M.J. Aurell, R. Jalal, M. Esseffar, J. Mol. Struct.:

THEOCHEM, 942 (2010) 26.

50. P.K. Chattaraj, A. Cedillo, R.G. Parr, E.M. Arnett, J. Org. Chem., 60 (1995)

4707.

51. R.G. Parr, Pratim K. Chattaraj, J. Am. Chem. Soc., 113 (1991) 1854.

52. C.M. Tice, B. Ganem, J. Org. Chem., 48 (1983) 5048.

53. E.C. Magnuson, J. Pranata, J. Comput. Chem., 19 (1998) 1795.

54. R. Huisgen, G. Molston, E. Langhals, J. Am. Chem. Soc., 108 (1986) 6401.

55. R.A. Firestone, Heterocycles, 25 (1987) 61.

Page 117: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Chapter: 6

Theoretical studies on cyclization of

azomethine imines with electron

deficient dipolarophiles

Page 118: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

109

6.1. Introduction

We are interested for stereospecific synthesis of 5-membered different substituted

pyrazolidine rings, which could be useful for the stereoselective synthesis of C-

nucleosides. The azomethine imines cyclizing with alkenes forms pyrazolidines,

which have synthetic application for bioactive products. For this purpose the 1,3-

dipolar cycloaddition (1,3DC) reaction of imines and electron deficient

dipolarophiles, have been investigated theoretically with the help of Quantum

chemical computation. The azomethine imines are very much unstable and so it is

prepared in situ during the study of the reactions. But this reactant entity is very

much interesting for the preparation of important products. As less stability or

shorter life span puts no additional difficulty, at least in principle, for computational

study, we plan to compute different important data required to study these types of

chemical reactions. Further, our interest grows from the fact that the intermolecular

cycloadditions through 1,3DC reaction by the use of different substituted

azomethine imines and different substituted alkenes have been relatively less

explored. Again we have examined the scope and limitations of this azomethine

imines and alkenes reaction through 1,3DC reaction, investigating the effects of

varying the nature of different components. The 1,3DC reactions of azomethine

imines with alkenes lead to formation of pyrazolidines, which is important for the

synthesis of our biologically active important products. Moreover the use of imines

in asymmetric 1,3DC reactions alkenes is very important, and attention has been

focused on the use of chiral azomethine imines for the stereoselective synthesis of

C-nucleosides1. The dihydropyrazole derivative has been transformed into chiral

azomethine imines, such as by the reaction with carbohydrate derivative aldehydes.

The 1,3DC reactions of azomethine imines with some electron deficient

dipolarophiles viz. acrylonitrile, methylpropenoate, and dimethylmaleate leading

predominantly to 4-substituted pyrazolidines have been computationally studied2

which can be useful for the stereoselective synthesis of C-nucleosides. All the

necessary computed data of this study have been provided in the annexure 4.

Page 119: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

110

6.2. Computational Method

Using the Gaussian03 program3 together with Gaussview03 we have performed

DFT computation for this reacting system. Again, by considering the complexity of

the reacting systems, we have adopted the same basis set as in chapter 5. All the

reacting systems are studied by locating the correct TS through vibrational analysis

producing only one imaginary frequency followed by an IRC4 calculation in each

case, one such plot being presented in Fig. 6.1. This would ensure that the obtained

TS is a first order saddle point on the PES5. The DFT based indices chemical

potential (μ), chemical hardness (η), global electrophilicity (ω), global

nucleophilicity (N) etc. are computed from the calculated HOMO, LUMO energies

obtained within a Kohn Sham6 orbital model in density functional theory. Apart

from TST calculation of the activation barrier, it would be much desirable to

evaluate theoretically the values of rate constant for elementary bimolecular

reactions in the gas phase. These together with the Gaussian calculated value of

activation energy (Ea), the theoretical magnitude of rate constant (k) were calculated

at different temperatures. A further plot of -log(k) vs 1000/T gave a good liner plot

in each case, a representative plot being shown in Fig. 2 in chapter 2. Again from the

slope of the plot the value of Ea for the reactions were recomputed as explained in

chapter 2 section 2.8.n. We also calculated Wiberg7 bond index and Charge Transfer

(CT)8 at transition states in order to predict the polarity of the 1,3DC reaction.

Fig. 6.1

Page 120: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

111

6.3. Results and Discussion

The results of our calculations are presented in the three following sections:

The backbone structure of 1,3-dipole, azomethine imines are shown in Fig. 6.2.

C N+

N1 32

Fig. 6.2

The reaction mechanisms of the regioselectivity, chemoselectivity and

diastereofacial selectivity are studied through the evaluation of activation parameters

and philicity indices on the assumption of a concerted mechanism. The local and

global electrophilicity and nucleophilicity indices have been used regularly for

predicting regioselectivity and reactivity. The reactions are considered to be

nonpolar or at the most weakly polar on the basis of charge transfer calculated in the

transition states. In the present cases, no facial selectivity could be observed due to

energetic identity of the different enantiomeric transition states. A rationalization of

the trends in regio- and chemo-selectivity were also attempted in terms of μ, η, ω, N

global electrophilicity differences ( ω), local electrophilicity (ωk), local

nucleophilicity (Nk), Pauling’s bond order (PBO)9 and Wiberg bond indices

7 in the

transition state. Theoretical evaluation of rate constants for elementary reaction steps

employing the transition state theory is very much useful for getting quantitative

idea about the kinetic rates associated with those steps. In addition, the recomputed

activation energies as discussed in section 2.8.n become more effective to explain

the product ratios.

Although the 1,3DC reactions have been a well-studied field of organic

cycloadditions but it always evokes interest among researchers for its better

understanding. In addition to having interesting problems in understanding

mechanism, those reactions have enormous applications10,11

in the synthesis of

Page 121: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

112

pharmaceuticals and intermediates. The requirement for stereo-specific synthesis of

organic compounds, commonly known as asymmetric synthesis, has encouraged the

growth of this particular branch of 1,3DC chemistry. The different classes of

compounds under this category comprising the nitrones, ylides, imines, azimines

principally known as the dipoles undergo ring cyclization with unsaturated

compounds known as the dipolarophiles. In the present study, we have considered

the reactions 1, 2 and 3 between the azomethine imine (AI) and three electron

deficient alkenes E1, E2, E3 respectively; those have been presented in Table 6.1.

Considering the fact that the reactions are practically carried out in solutions, some

calculations are performed in solvents of different polarity to examine its influence

on the activation barrier or the reaction rate. For this conceptual clarity about this

matter, one model reaction involving the simple (methyl) substituted azomethine

imine (AI0) and the dipolarophile propene (E0) has been studied with varying

solvent of different polarity.

Table 6.1 Abbreviations for the reagents: -----------------------------------------------------------------

Reactant Abbreviation

CH3

O

NNH3C

Ph

+ -

12

3= AI

C=CH-CN

45

H

H= E1

C CHCOOMeH

H

45= E2

CHCOOMeZ-MeOOCCH

5 4= E3

CH

Me 3 2

NH+

NH1

= AI0

C CH2

H

45= E0 Me ___

AI0 and E0 refer to model reactants for looking

into aspects of planarity of transition states and

products of cycloaddition.

Page 122: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

113

In spite of the fact that theoretically 1,3DC reactions are generally studied in the gas

phase, the question remains about how those reactions proceed in solution since all

such reactions are carried out experimentally in the solution phase. The theoretical

simplicity of gas phase model might be complicated by so many factors in the

solution. Keeping this in mind one can expect that the reaction barrier may be

different in solvents of varying polarity and moreover, the reaction mechanism can

be different which is obviously reflected through the calculated asynchronicity and

bond orders at the reacting sites. In this respect we have performed in-solvent

calculations using the SCI-PCM12

model employing the solvents like CCl4, ethanol

and acetonitrile considering polarity and solubility factors. The findings of those

calculations do not lead to any major deviation in the mechanism, but there are

significant changes in the barrier heights with almost no change in asynchronicity of

the reactions. The findings are discussed in the result section. All these reactions

involving imines are much less explored compared to the nitrones counterpart. The

1,3DC reactions of AI have found potential application in the efficient regio- and

stereo- controlled synthesis of pyrazolidine rings using the appropriately substituted

alkenes, thus having the possibility to generate three new chiral centers at C-3, C-4

and C-5 as shown in Table 6.1. Although cases of azomethine imines entering

asymmetric cycloaddition reaction with alkenes are limited, we have focused our

attention to the chiral azomethine imines for the stereoselective synthesis of C-

nucleosides playing very important role in the synthesis of cyclic or bicyclic natural

and bio-organic compounds1 with a very high or complete selectivity. The present

work helps us to understand the processes of regio- and enantio- selectivity through

ground state Density Functional Theory (DFT)13

calculations. DFT can provide the

parameters like local electrophilicity ( k), local nucleophilicity (Nk), and

additionally potential energy barriers in good agreement with experimental results1.

Theoretically calculated rate constant values are obtained using the rate standard

Transition State Theory (TST) and are found to be in good agreement with

experiment. Over the last twenty years, success and popularity of DFT has

encouraged many groups in making use of the soft-hard-acid-base (SHAB)

principle14

, the DFT-based reactivity descriptors like condensed Fukui function15

and philicity indexes16

.

Page 123: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

114

The calculation of Fukui functions of an atom in a molecule proves to be an useful

criterion to characterize the reactive sites within a chemical species and the local

electrophilicity index is very helpful to explain the regio-selectivity of the 1,3DC

reaction. To describe the site selectivity or reactivity of an atom in a molecule, it is

necessary to condense the values of Fukui function )(rf around each atomic site

into a single value that characterizes the atom in a molecule. This can be achieved

through electronic population analysis as described in section 2.8.d.

It is known that the control of stereochemistry in the addition step of a reaction leads

to enantioselectivity and diastereoselectivity of the product. Historitically, the

stereospecificity dispute was settled in favour of the concerted, asynchronous and

early transition state17

. The control for such reactions is indeed not solely perceptible

from the FMOs of the reactants, but certain other parameters like the DFT philicity

indices related to the IP and EA of the reagents18

could be indicative of the reactive

mode. The reactivity indices are based on molecular properties calculated in the

ground equilibrium states of reagents, but stereoselectivity predominantly depends

on the course of the reaction through the TS and thereby depends on the activation

energy. The philicity indices nevertheless having definite dependence on the HOMO

and LUMO energies but do not explicitly exhibit their connection with the frontier

(FMO) controlled reactions19-21

. The electrophilicity scale employed to classify

reagents in 1,3DC reactions was used for the first time by Domingo et al.21

.

Chattaraj et al.22

have extensively reviewed the diverse arena of reactive and

physicochemical processes with the help of electrophilicity index defined earlier by

Parr et al.23

Geerlings et al.24

have reviewed the conceptual aspects of DFT and have

shown how the various physicochemical parameters could be derived from theory

and applied successfully to chemical systems. Chemical reactivity has been

correlated25

in terms of local softness, hardness, Fukui functions and certain other

response functions. Among these new concepts are the perturbative perspectives26

on chemical reactivity. The thermodynamic analog such as the electronic chemical

potential (μ), although not an observable physical quantity, has its origin buried

under the electron density which is pivotal in bearing most information about the

ground state.

Page 124: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

115

Table 6.2

Global and local properties of the isolated dipole (AI) and dipolarophiles (E1, E2, E3) [k is the atom site in the molecules in accordance with Figs. 6.4, 6.5 and 6.6 where the local property

is evaluated]

Global properties Local properties _____________________________________________________________ ___________________________________

Reagents Optimized

energy HOMO Nmax N k f k+ fk k Nk

(a.u) (eV) (eV) (eV) (eV) (eV)

AI -572.961695 -5.526 -3.808 3.435 2.111 1.108 3.574 1 -0.176 -0.250 -0.371 -0.629

2 0.180 -0.442 0.380 0.643

3 -0.201 -0.132 -0.424 -0.718

E1 -170.834988 -7.740 -4.558 6.364 1.632 0.716 1.472 4 -0.372 -0.205 -0.607 -0.547

5 -0.706 -0.152 -1.152 -1.039

E2 -306.466612 -7.399 -4.314 6.169 1.508 0.699 1.813 4 -0.462 0.079 -0.696 -0.838

5 -0.699 0.115 -1.054 -1.267

E3 -534.333724 -7.386 -4.578 5.616 1.866 0.797 1.826 4 -0.491 0.008 -0.916 -0.896

5 -0.491 0.008 -0.916 -0.896

AI0 -189.242652 -4.742 -2.318 4.847 0.554 0.478 4.379 1 -0.179 -0.295 -0.100 -0.784

2 -0.053 0.561 -0.030 -0.232

3 -0.415 -0.164 -0.230 -1.817

E0 -117.907556 -6.797 -3.013 7.567 0.599 0.398 2.324 4 -0.142 -0.167 -0.085 -0.330

5 -0.087 -0.098 -0.052 -0.202

On the basis of DFT we have computed the chemical potential, hardness,

global and local electrophilicity and nucleophilicity for our reagents have been

presented in Table 6.2. The bond orders in TS(s) of the corresponding reactions have

been presented in Table 6.3. The transition state (TS) according to Huisgen27

is

concerted for pericylic reactions which Dewar28

has suggested to be asynchronous

and aromatic. Fukui attributed the control of 1,3DC to the Frontier Molecular

Orbitals (FMOs) of the substrates.

The inadequacy of FMO theory vis-à-vis the global and local reactivity indices has

become obvious from our results. It appears from Table 6.4 that in the reaction

system 3sn to p3sn the activation energy is 4.6 kcal.mol-1

while the HOMO-LUMO

energy gap in Fig. 6.3 for this reaction 3 is calculated 87 kcal.mol-1

(3.76eV). Since

activation energy for the reaction is 4.6 kcal.mol-1

, the HOMO electrons of AI can

not reach the LUMO of the dipolarophile. Thus, the LUMO does not possess the

Page 125: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

116

control of regioselectivity and in this respect FMO theory is not suitable for

explaining reactivity.

Table 6.3 Bond order and bond distances in transition states.

The notation –r in the transition state symbol represents regio- conformation.

Fig. 6.3 HOMO-LUMO energy gaps.

Transition

state Distances Pauling’s bond order Wiberg bond index

rC-C (Å) rC-N (Å) (PBO)C-C (PBO)C-N (NBO)C-C (NBO)C-N T1rx

T1rn

2.70089

2.76287

2.05097

2.02972

0.0251

0.0210

0.1546

0.1667

0.2137

0.1493

0.4342

0.3734

T1rx-r

T1rn-r

2.29191

2.29309

2.27272

2.23904

0.0881

0.0885

0.0762

0.0863

0.2498

0.3265

0.1849

0.2613

T2rx

T2rn

2.48585

2.53858

2.01906

1.98663

0.0477

0.0418

0.1697

0.1815

0.1651

0.1481

0.3183

0.3367

T2rx-r

T2rn-r

2.26241

2.10906

2.29290

2.34241

0.0974

0.1595

0.0705

0.0599

0.3206

0.4144

0.2484

0.2402

T3sx

T3sn

2.58475

2.54662

1.94548

1.99559

0.0393

0.0388

0.2058

0.1784

0.1534

0.1983

0.4538

0.4171

T0rx

T0rn

T0rxsol ccl4

T0rnsol ccl4

T0rxsol EtOH

T0rnsol EtOH

T0rxsol Acetonitrile

T0rnsol Acetonitrile

2.30458

2.30351

2.23672

2.35914

2.30548

2.30351

2.30548

2.30351

2.31213

2.29968

2.23730

2.28883

2.31213

2.29968

2.31213

2.29968

0.0877

0.0911

0.1079

0.0752

0.0874

0.0911

0.0875

0.0911

0.0684

0.0686

0.0866

0.0727

0.0684

0.0686

0.0684

0.0712

0.3272

0.3281

0.3624

0.2727

0.3223

0.3231

0.3222

0.3230

0.3128

0.3165

0.3504

0.2859

0.3092

0.3132

0.3090

0.3130

0

Energy

-7.386eV

-1.770eV

-7.399eV

-1.230eV

-7.740eV

-1.376eV

-5.526eV

-2.091eV

Diff of

&LUMO

HOMO

energy

4.15eV

5.649eV 5.295eV5.308eV

HOMO

HOMOHOMO HOMO

LUMO

LUMO LUMOLUMO

E1 E2 E3

4.296eV 3.756eV

AI

Page 126: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

117

In our present work we have considered C- and N- substituted AI as the dipole

which was prepared1 form addition of an aldehyde with 1,2-disubstituted hydrazine

resulting in the formation of an aminol, that loses the elements of water to form the

dipole. This further produced the pyrazolidine rings via 1,3DC reaction of the

dipole: AI with the unsymmetrically substituted ethylenes: acrylonitrile,

methylpropenoate and the symmetrically substituted dimethylmaleate2. This type of

intermolecular cycloadditions can be controlled to exhibit regio- and stereo-

chemistry of the products. Experimental results for the reaction of azomethine imine

AI with E1, E2, and E3 are available in literature1. A diagrammatic scheme for such

cycloaddition reactions has been very concisely presented by Belzecki et al.29,30

We

have carried out theoretical calculations based on their schematic approach and

enumerated results which are given in the subsequent sections.

Several workers31-37

have explored the 1,3DC reactions by DFT employing the

associated tools of hardness and softness. It is attractive from the point of an organic

chemist to examine the proximity of TS to the reactant or product over the reaction

coordinate during the course of reaction. In this respect the Hammond postulate38

tells that TS for exothermic reactions are reactant-like, and those for endothermic

ones are product-like. Global electrophilicity ( ), nucleophilicity (N), chemical

potential ( ), hardness ( ) indices for the reagents AI, E1, E2 and E3 are calculated

and presented in Table 6.2 to assess their reactivity. We have presented the Pauling’s

partial bond order (PBO)9 and Wiberg bond indices

7 of the TSs in Table 6.3 and also

the thermo-chemical parameters like energy of activation ( E ) in Table-6.4, the

free energy ( G ) and enthalpy ( H ) of activation, the free energy ( rG) and

enthalpy ( rH) of reaction in Table 6.5. All these data enable to acquire precise

knowledge about the TS. The values of rate constants for the different reactions on

different faces (re- or si-) through the different channels (exo- or endo-) and also the

regio- course at different temperatures are calculated from TST rate equation using

total partition functions and the results are presented in Table 6.6. The schemes 6.1-

6.3 are employed to define the various reaction channels describing paths from

reactants to the selected products.

Page 127: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

118

Table 6.4 Optimized activation energy

Configuration of

approaching

reagents

Transition state parameters

Activation Activation

TS energy energy

(kcal.mol-1

) (kcal.mol-1

)

[6-31G(d)] [6-311+G(d,p)]

AI (re face) + E1 (exo)

[1rx]

AI (re face) + E1(endo)

[1rn]

AI (re face) + E1 (exo)

[1rx-r]

AI (re face) + E1(endo)

[1rn-r]

AI (re face) + E2 (exo)

[2rx]

AI (re face) + E2 (endo)

[2rn]

AI (re face) + E2(exo)

[2rx-r]

AI (re face) + E2(endo)

[2rn-r]

AI (si face) + E3 (exo)

[3sx]

AI (si face) + E3 (endo)

[3sn]

AI0 (re face) + E0 (exo)

[0rx]

AI0(re face) + E0 (endo)

[0rn]

AI0 (re face) + E0 (exo)

[0rx] in sol ccl4.

AI0(re face) + E0 (endo)

[0rn] in sol ccl4.

AI0 (re face) + E0 (exo)

[0rx] in sol EtOH.

AI0(re face) + E0 (endo)

[0rn] in sol EtOH.

AI0 (re face) + E0 (exo)

[0rx] in sol Acetonitrile.

AI0(re face) + E0 (endo)

[0rx] in sol Acetonitrile

T1rx

T1rn

T1rx-r

T1rn-r

T2rx

T2rn

T2rx-r

T2rn-r

T3sx

T3sn

T0rx

T0rn

T0rxsol ccl4

T0rnsol ccl4

T0rxsol EtOH

T0rnsol EtOH

T0rxsol Acetonitrile

T0rnsol Acetonitrile

13.7

11.6

19.7

18.5

7.0

6.3

18.1

7.9

9.7

4.6

12.4

12.1

13.6

13.2

15.0

14.6

15.1

14.7

16.0

14.3

22.2

21.3

9.8

9.6

21.1

12.4

13.9

8.8

16.3

15.6

17.6

16.9

19.0

18.4

19.0

18.5

Page 128: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

119

6.3.1. Reaction of Azomethine Imine with Unsymmetrically

Substituted Alkenes (E1 and E2)

In Table 6.1 we have abbreviated the names of our reactants. This describes the

reactions between the azomethine imine (AI) and the ‘Alkenes’ (i) acrylonitrile (E1)

in scheme 6.1, (ii) methylpropenoate (E2) in scheme 6.2, (iii) dimethylmaleate (E3)

in scheme 6.3. For all these reacting systems we have explored the different

approaches (exo- and endo-) of dipolarophile towards the re- and si- faces of the

dipole and described the same as the four possible reactive channels. The systems

were labeled for the faces and channels of reaction according to schemes 6.1-6.2.

Structural symbols for the various products (psx, prx, psn, prn) and their

corresponding TSs (Tsx, Trx, Tsn, Trn) were mentioned in the schemes so as to

suitably describe the various stereochemical species involved in different channels

as like as discussed in chapter 3 section 3.3.2. Recently, we have explored the 1,3DC

reaction of some azomethine ylides with maleimide, maleic anhydride,

methylacrylate and some simple substituted alkenes39

and also the reaction of the

nitrone of 1-pyrroline-1-oxide with methyl cinnamate and benzylidene

acetophenone40

. We have also explored the 1,3DC of 1-phenylethyl-trans-2-methyl

nitrone to styrene and of 1-phenylethyl nitrone to allyl alcohol in order to rationalize

the product ratios41

calculated on the basis of their rate constants of reaction.

Schemes 6.1-6.3 Reagents: Azomethine imine (AI) and the dipolarophiles

(EN)a acrylonitrile, methyl propenoate and methyl maleate

Configuration of approaching Structure symbol, Structure symbol, Structure symbol,

reactants reactants products TS

si-face of imine + exo-ene Nsx pNsx TNsx

si-face of imine + endo-ene Nsn pNsn TNsn

re-face of imine + exo-ene Nrx pNrx TNrx

re-face of imine + endo-ene Nrn pNrn TNrn

a Chosen system: N=1 for scheme 6.1, N=2 for scheme 6.2 and N=3 for scheme 6.3, in the reacting

AI-EN systems. Both exo- and endo- approaches on a particular face give structurally

different products.

Page 129: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

120

The simplest substituted azomethine imine AI0 chosen as a model is planar because

the 1,3-dipole is extended over the atoms 1-2-3 of the imine, shown in Table 6.1.

With increased substitution the overall molecular structure of the N2-methyl C3-

phenyl AI gets twisted. In this case the overall molecular symmetry plane is lost.

The C3 terminal end of AI is pro-chiral. Attack by the incoming ethylenic reagent to

the opposite faces of AI leads to distinctly different enantiomeric products with the

same energy and on this consideration we have opted for either si- or re- face

attacks. However, energetic identity between TSs in re- and si- face approaches

appeared in the idealized planar AI0 example. In this AI0 – E0 model reaction, a

particular enantio channel (exo- or endo-) over the different faces led to the same TS

energy in Table 6.4. In the higher substituted ethylenes and imines we might also get

equivalent TS energies, viz. the T1rn and T1sn from the two opposite facial attacks

by the reagents. The AI appears to be slightly twisted due to repulsion between the

bulky substituents generating chirality in the structure and consequently an obvious

energetic identity between the optimized enantiomeric pairs occurs. The

enantiometric pairs are energetically degenerate. The 1,3DC attack to a particular

face of AI by the dipolarophiles E1-E3 in either exo- or endo- channel would result

in stereoisomeric conformations with the same energy as with the other face (data

have been provided in Annexure 4). Hence, there will be no facial selectivity in

these reactions. If there is any scope for regioselectivity, there would have been four

isomers in total, two arising from exo- and endo- channels in the normal path and

two from the regio- path.

For the azomethine imine (AI) reacting with acrylonitrile (E1),

according to scheme 6.1, the dipole (AI) having only one prochiral center at C3 is

placed in the Figs. 6.4.1 and 6.4.2 to distinguish between the exo- and endo-

approaches by dipolarophile on the re- face of the dipole. It is found from

calculations that exo- and endo- attacks on the re- face led to different energies of

the TS as are given in Table 6.4.

Page 130: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

121

Ph

N+H3C N COCH3

NNH3C

COCH3

Ph

CNCN

RR

11

2 2

33

4

45 5

p1rx

T1rx

Fig. 6.4.1 exo- attack of acrylonitrile (E1) on

re- face of azomethine imine (AI).

Ph

N+H3C N COCH3 NN

H3CCOCH3

Ph

CNNC

RS

1 122

3 34

4

5

5p1rn

T1rn

(major) .

Fig. 6.4.2 endo- attack of acrylonitrile (E1) on

re- face of azomethine imine (AI).

It may be noted from Table 5.3 that very low PBO values and larger interatomic

distances rC-C and rC-N for the newly forming bonds in the transition state indicate the

formation of an early transition state, as has been similarly reported by Domingo42

in

connection with azomethine ylides as in chapter 3. The control for such reactions is

not lying with the FMOs, but certain other parameters such as hardness,

electrophilicity and nucleophilicity albeit having definite dependence on the HOMO

and LUMO energies have more direct influence on the control. From the results of

calculation presented in Tables 6.4, 6.5 we observe that in presence of electron

withdrawing groups on the alkene moiety in all the three systems in schemes 6.1-

6.3, the endo- path always involves lesser energy and enthalpy of activation on re-

Page 131: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

122

face than in the exo- path, as shown in Tables 6.4, 6.5. The products (p1rx) and

(p1rn) differing (yield: p1rn>p1rx) in chirality, are obtained as the major yields from

activation energy calculation and presented in Figs. 6.4.1 and 6.4.1, which are also

corroborated form the values of calculated rate constants in Table 6.6. For reaction

of acrylonitrile (E1) with azomethine imine (AI) we have calculated the TS in which

both the C-C distances are around 2.68Å and C-N distances around 2.02Å, which

suggest that the transition states are early and asynchronous. Similar findings are

also indicated form the results of Wiberg bond index7 and bond orders of the

transition states in Table 6.3, which further confirm the early and asynchronous

nature of transition states.

Moreover, from the value of local electrophilicity ( k), values in Table 6.2 indicate

that the bimolecular addition takes place through linking the N1 atom of the dipole

AI to C5 atom of the dipolarophile E1 and simultaneously the C3 atom of AI to C4

atom of E1 as described in Table 6.1. Experimental results1 reveal that 4-substituted

products are obtained and there is no regio- product.

According to reaction scheme 6.2, calculations for the reaction 2 reveal that the

endo- path on both the faces involve lesser extents of energy and enthalpy of

activation than in the exo- path, given in Tables 6.4, 6.5. On consideration of

activation energies, the product p2rn should thus be obtained with greater yields.

However, since the differences between activation energies are very little for p2rn

and p2rx, these two isomers are obtainable almost in similar amounts which are

supported from their calculated rate constants in Table 6.6. For more consistent

values of activation energy are recomputed as previously discussed and the data

obtained is presented in Table 6.6. From that result the reactions of scheme 6.2 are

pictorially exemplified in Figs. 6.5.1 and 6.5.2. Similar to the previous reaction

system 1 the present system also exhibits an early and asynchronous TS concluded

in terms of C-C, C-N distances and bond orders, given in Table 6.3.

Page 132: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

123

Ph

N+H3C N COCH3

CO2CH3

NNH3C

COCH3

Ph

CO2CH3

RR

1

2

3

4

5

12

34

5

p2rx

T2rx

Fig. 6.5.1 exo- attack of methylpropenoate (E2)

on re- face of azomethine imine (AI).

Ph

N+

H3C N COCH3

NNH3C

COCH3

Ph

CO2CH3

H3CO2C

RS

12

34

5

12

3

4

5

p2rn

T2rn

(major)

Fig. 6.5.2 endo- attack of methylpropenoate (E2)

on re- face of azomethine imine (AI).

6.3.2. Reaction of Azomethine Imine (AI) with the Symmetrically

Ssubstituted Alkene ( E3)

In this section we present the results of calculation for the reaction of the

dipolarophile: dimethyl maleate (E3) with azeomethine imine (AI) for which

experimental reports from Jones et al.1 were available. The different approaches

(exo- and endo-) of the dipolarophile towards any of the faces re- and si- of the AI

are labeled according to schemes 6.3 and depicted in Figs. 6.6.1 and 6.6.2.

Structures of the various products (p3sx, p3sn) together with their corresponding

TSs (T3sx, T3sn) are shown in the figures to identify the different stereochemical

Page 133: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

124

species. We have followed a naming system as used in the previous section 3.2.1, as

in scheme 6.1-6.3. In the reaction 3 we observe that the endo- path on both the si- or

re- faces involve lesser amounts of energy and enthalpy of activation than in the

exo- channel, given in Tables 6.4, 6.5. Thus, the product p3rn should be obtainable

with major yields. All these results are supported by the calculated rate constants

presented in Table 6.6. Similar observation and conclusions can be made concerning

geometry of the TS as described previously for the two previous systems 1 and 2.

Ph

N+H3C N COCH3

NNH3C

COCH3

Ph

CO2CH3

CO2CH3

CO2CH3

CO2CH3

Rs s

1

45

1

2

2

3

3

4

5

p3sx

T3sx

Fig. 6.6.1 exo- attack of dimethylmaleate (E3)

on si- face of azomethine imine (AI)

Ph

N+H3C N COCH3

NNH3C

COCH3

Ph

CO2CH3

CO2CH3

H3CO2C

H3CO2C

SS

R

1

2

3

4

512

34

5

p3sn

T3sn

(major)

Fig. 6.6.2 endo- attack of dimethylmaleate (E3)

on si- face of azomethine imine (AI)

From a consideration of local electrophilicity ( k) and nucleophilicity (Nk) values in

Table 6.2, it is evident that the bimolecular addition takes place through linking each

Page 134: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

125

of N1 and C3 atoms of the dipole to any one of the C4 and C5 of the dipolarophile,

because these latter ones have similar local electrophilicity (0.92) and local

nucleophilicity (0.896) values. E3 has both ends substituted by methyl ester group

and hence it makes no difference between the normal and regio- adducts.

6.4. Reactivity in Terms of Global and Local Electrophilicity and

Nucleophilicity of the Reactants

The electronic chemical potential is an index pointing to the direction of the

electronic flux during the cycloaddition i.e. the Charge Transfer (CT) within the

system in the ground state. This can be represented by a very simple operational

formulation given by an expression in terms of the one-electron FMO energies,

particularly the HOMO and LUMO energies, within the Kohn Sham6 orbital

approximation. Since the play field of the highest energy electrons within the

occupied subspace of a molecule in ground state is generally the HOMO, we have

presented in Table 6.2 the HOMO energies only of the reagents N1, E1, E2 and E3

together with their electronic chemical potential, chemical hardness, the global

electrophilicity and the nucleophilicity. According to the absolute scale of

electrophilicity based on the index, AI can be classified as a good electrophile

whereas all the dipolarophiles belong to the realm of weak electrophiles. The

electronic chemical potential of AI (-3.808eV) is higher than those of E1 (-4.558eV),

E2 (-4.314eV) and E3 (-4.578eV) implying that the CT would take place from the

dipole to the dipolarophiles in these cycloadditions resulting in normal electron

demand (NED) 1,3DC. The extents of charge transfer have been presented in Table

6.5. The 1,3DC reaction can be classified for the computed value of Charge Transfer

from Natural Bond Order analysis8 at transition states. From the calculated value of

CT (as discussed in chapter 2 in section 2.8.r) presented in Table 6.5, we can classify

our reactions as: the reaction 1 & 2 for the scheme 1 & 2 are nonpolar and the

reaction 3 for scheme 3 is polar.

Page 135: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

126

Table 6.5 Free energy and enthalpy changes in the different reaction channels

Reacting systems Free energy Enthalpy of Free energy Enthalpy of N Charge

along different of activation activation of reaction reaction (eV) (eV) (eV) Transfer

reactive channels G ∆H rG ∆rH (e)

(reagent to product) (kcal.mol-1) (kcal.mol-1) (kcal.mol-1) (kcal.mol-1)

1rx to p1rx 27.469 14.566 -16.170 -30.549 0.134

1rn to p1rn 26.128 12.440 -13.743 -28.776 2.929 0.468 2.102 0.153

1rx-r to p1rx-r 33.724 20.248 -12.815 -24.848 0.066

1rn-r to p1rn-r 45.220 19.083 -15.908 -30.277 0.077

2rx to p2rx 21.998 7.972 -18.031 -35.448 0.132

2rn to p2rn 21.857 7.379 -14.526 -29.583 2.734 0.603 1.761 0.152

2rx-r to p2rx-r 32.270 18.700 -17.450 -32. 670 0.032

2rn-r to p2rn-r 23.369 8.870 -13.852 -28.229 0.068

3sx to p3sx 25.361 10.447 -14.768 -30.930 0.225

3sn to p3sn 21.273 5.577 -7.143 -19.886 2.181 0.245 1.748 0.193

We have calculated the Gibb’s free energies of the reactants and TS in

each case and also the corresponding free energies of activation G≠ at 298K.

Moreover, the heats of reaction rH and free energies of reaction rG at 298K are

calculated by taking difference of the product energy from the sum of those of the

corresponding reactants. As we look to the reactions 1 and 2, we find that Δω in

Table 6.5 increases although the individual ω values in Table 6.2 decrease from E1

to E2. Also the reaction gets faster from E1 to E2 due to decrease in activation

energy and consequential increase in the rate constants, as may be seen from Table

6.6. Similarly in passing from E3 to E2 reacting with AI, Δω increases accompanied

with increase in the rate constant k in Table-6.6 and decrease in average activation

energy Ea in kcal/mol (12.65 for 1, 6.65 for 2 and 7.15 for 3). It may be noted that

switching the dipolarophile from E1 to E2 is tantamount to replacing the more

electron withdrawing -CN by the lesser withdrawing –COOMe group. Similar

observation is made in changing the reagent from E3 to E2 where also the more

withdrawing –COOMe group is introduced in E3 by replacing one hydrogen of E2.

Page 136: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

127

Table 6.6 Gas phase rate constants in different facial (re/si-) attacks in

different enantio (exo/endo-) channels at various temperatures

Activation

Temp Rate constant 1000/T -log(k) slope Energy

K (cm3 molecule

-1s

-1) ( kcal. mol

-1 )

T1rx

298.00 0.13410E-25 3.356 25.8726

323.00 0.88353E-25 3.096 25.0538

348.00 0.44935E-24 2.874 24.3474 3.18383 14.66

373.00 0.18574E-23 2.681 23.7311

398.00 0.64861E-23 2.513 23.1880

T1rx-r

298.00 0.74259E-32 3.356 32.1292

323.00 0.15099E-30 3.096 30.8210

348.00 0.20189E-29 2.874 29.6949 5.0724 23.4

373.00 0.19301E-28 2.681 28.7144

398.00 0.14046E-27 2.513 27.8524

T1rn-r

298.00 0.24398E-31 3.356 31.6126

323.00 0.43336E-30 3.096 30.3632

348.00 0.51597E-29 2.874 29.2874 4.84577 22.3

373.00 0.44605E-28 2.681 28.3506

398.00 0.29724E-27 2.513 27.5269

T2rx

298.00 0.47515E-21 3.356 21.3232

323.00 0.12657E-20 3.096 20.8977

348.00 0.29673E-20 2.874 20.5276 1.67192 7.5

373.00 0.62776E-20 2.681 20.2022

398.00 0.12213E-19 2.513 19.9132

T2rn

298.00 0.35269E-21 3.356 21.4526

323.00 0.88334E-21 3.096 21.0539

348.00 0.19640E-20 2.874 20.7069 1.56836 7.2

373.00 0.39682E-20 2.681 20.4014

398.00 0.74150E-20 2.513 20.1299

T2rx-r

298.00 0.18262E-31 3.356 31.7384

323.00 0.32234E-30 3.096 30.4917

348.00 0.38206E-29 2.874 29.4179 4.8374 22.3

373.00 0.32925E-28 2.681 28.4825

398.00 0.21894E-27 2.513 27.6597

T2rn-r

298.00 0.11859E-25 3.356 25.9260

323.00 0.65739E-25 3.096 25.1822

348.00 0.28857E-24 2.874 24.5397 2.89685 13.3

373.00 0.10507E-23 2.681 23.9785

398.00 0.32859E-23 2.513 23.4833

T3sx

298.00 0.45184E-24 3.356 24.3450

323.00 0.18152E-23 3.096 23.7411

348.00 0.60563E-23 2.874 23.2178 2.36161 10.9

373.00 0.17408E-22 2.681 22.7593

398.00 0.44307E-22 2.513 22.3535

T3sn

298.00 0.75099E-21 3.356 21.1244

323.00 0.15341E-20 3.096 20.8142

348.00 0.28672E-20 2.874 20.5425 1.22978 5.7

373.00 0.49882E-20 2.681 20.3021

398.00 0.81833E-20 2.513 20.0871

Page 137: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

128

The condensed Fukui functions (electrophilic and nucleophilic) of the reactants

helps us to understand the reactivity and are calculated for the atomic sites in order

to rationalize the observed regioselectivity in respect of the cycloadditions. The local

nucleophilicity Nk has been calculated on the basis of global nucleophilicity N and

Fukui function fk+. In this respect the atom N1 in AI prefers to attach with C5 of E1

or E2. Since the molecule E3 is symmetrical, the attachment can take place to either

end. The nucleophilicity guidance to regioselective attack suggests that

regioisomeric cyclization will not be favoured in the present case as may be seen

from the corresponding higher activation energies in Table 6.4.

The dipole AI may be classified as a strong electrophile since its site N1 shows

greater local electrophilicity than that at C3 in Table 6.2. Therefore, N1 should be

the preferred site for nucleophilic attack by the dipolarophile site C5 in both the

schemes 6.1 and 6.2. In the reaction scheme 6.3, the dipolarophile E3 is

symmetrically substituted and it will have no preferred selectivity for site. This

observation in terms of local electrophilicity and nucleophilicity indices is found in

conformity with the experimental findings.

6.5. Nature of the Transition State:

Although the mechanistic interpretations by Huisgen43

and Firestone44

as discussed

in chapter 3 had invoked controversies, numerous experimental and theoretical

studies have established that the four-center concerted pathway is very promising to

explain the reactivities and selectivities of a wide range of 1,3DC. Huisgen

discovered the most convincing exceptions to the concerted path. On these grounds,

we hold it reasonably safe to attempt the transition state optimizations on the basis

of a concerted mechanistic pathway. A similar theoretical investigation of

Page 138: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

129

mechanism and regioselectivity for 1,3DC of diazomethane with methylacrylate has

concluded the process to be asynchronous and concerted. The work has also

attempted to rationalize regioselectivity by FMO model and density derived philicity

indexes

Our calculated results show remarkable agreement with the experimental findings.

We are successful in characterizing the proper transition states through frequency

analysis, because each such transition state corresponds to a single imaginary

frequency. Finally, we conclude that these reactions proceed through an early and

asynchronous transition state in the gas phase calculations. It will be interesting to

observe the situation when the reaction is occurring in solution. Theoretical

calculations of a reaction process in solvent media having definite polarity and

dielectric property, certainly involve complicated mechanism which demands either

a simulation study with solvent dynamics or a simple TS type calculation within a

solvent continuum. The latter approach might be non-relevant, however it is

straightforward to implement. Test optimization calculation on the small model

system AI0-E0 has been carried out in the solvents CCl4, ethanol, and acetonitrile in

order to explore whether the asynchronicity and reaction rates will be very different

in solution from the gas phase. It is observed from Table 6.3 that there is almost no

change in the rC-C and rC-N distances as also in the PBO and NBO bond orders for any

particular mode (exo- and endo-) of the reaction over the various solvents, indicating

that asynchronicity of the reaction is insensitive towards solvent change. Had there

been considerable effect on asynchronicity, this might help in elucidating whether

the reaction in solution involves a concerted or a two-step mechanism. The

calculated results in Table 6.4 indicate that the activation barriers have increased

with increasing polarity of the solvent indicating that the reaction would become

slower in polar solvent media than in the gas phase. The trend of endoselectivity is

obvious from the values of activation barriers calculated in gas phase and in the

different solvents. It appears that the endoselectivity remains almost unchanged in

solution as compared to the gas phase, the exo-endo difference in barriers is about

0.4 kcal/mol.

Page 139: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

130

6.6. Selectivity and Reactivity of the Cycloadditions

From the knowledge of selectivity obtained from the local electrophilicity and

nucleophilicity data, the corresponding regio- modes of attack are not considered for

saving unnecessary computational labour. Still, we take up computing the regio-

modes to show that those are unviable due to their higher energy of activation. Some

times the results are not in agreement with the experimental findings for the

cycloaddition. In several calculations, DFT results predicted a different regioisomer

due to very small differences in calculated energy. M. Carda and coworkers45

also

reported the inability for transition state calculations to predict accurately the

observed regioselectivities of 1,3DC reactions. On the other hand the

regioselectivities predicted by local electrophilicity and nucleophilicity indices in

Table 6.2 are found to be in accurate agreement with experimental observations

which are discussed in section 6.4.

6.7. Conclusion

The 1,3-dipolar cycloaddition reactions of the well-known azomethine imine with

three selected alkenes have been studied using the DFT/B3LYP/6-31G(d) method.

The experimentally obtained products, their relative selectivity of addition have been

rationalized utilizing calculated potential energy barriers, theoretical rate constants

and reactivity parameters. We have noted that with increasing electron withdrawing

power of the dipolarophile substituents, the activation barrier increases and thus rate

of reactions with the same imine become slower. This type of investigation can be

easily extended to larger natural systems of stereochemical significance and be used

in asymmetric synthesis and stereoselective synthesis of C-nucleosides. The

reactions become slower in polar solvent media, but the asynchronicity of

cycloaddition is not changed appreciably from the gas phase.

Page 140: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

131

References

1. R. C. F. Jones, S.J. Hollis, J.N. Iley, ARKIVOC, v (2007) 152.

2. T. K. Das, Sneha Salampuria, Manas Banerjee, Comput. Theor. Chem. 979

(2012) 102.

3. M. J. Frisch et al., Gaussian 03, Revision D. 01, Gaussian Inc., Wallingford,

CT, 2004.

4. A. Frisch, M.J. Frisch and G.W. Trucks, Gaussian 03 user’s Reference, 2003,

Ver. 7.0.

5. C. Peng, P. Y. Ayala, H.B. Schlegel and M.J. Frisch, J. Comput. Chem. 17

(1996) 49.

6. W. Kohn and L. Sham, Phys. Rev., 140 (1965) A1133.

7. K. B. Wiberg, Tetrahedron 24 (1968) 1083.

8. Luis R. Domingo and José A. Sáez, Org. Biomol. Chem., 7 (2009) 3576.

9. L. Pauling, in The Nature of Chemical Bond, Cornell University, ITHACA,

NY, 3rd

.ed. 1960, p. 239

10. R. Huisgen, 1,3- Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley,

New York, 1984.

11. K. V. Gothelf and K.A. Jorgensen, Chem. Rev. 98 (1998) 863.

12. J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, M. J. Frisch, J.

Phys. Chem. 100 (1996) 1609.

13. R. G. Parr, W. Yang in Density Functional Theory of Atoms and Molecules,

Oxford Science Publication, N.Y. 1989.

14. R. G. Parr, Pratim K Chattaraj, J. Am. Chem. Soc. 113 (1991) 185.

15. K. Fukui, Acc. Chem. Res., 4 (1971) 57.

16. L. R. Domingo, E. Chamorro, P. Pérez, J. Org. Chem. 73 (2008) 4615.

17. L. R. Domingo, M. Arno, J. Andres, J. Am. Chem. Soc. 120 (1998) 1617.

18. P. Pérez, L.R. Domingo, M.J. Aurell, R. Contreras, Tetrahedron 59 (2003)

3117.

19. P. Pérez, L.R. Domingo, A. Aziman, R. Contreras, Theoretical Aspects of

Chemical Reactivity, ed. A. Toro-Labbe, Elsevier Science, New York, 2007.

Page 141: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

132

20. R. Domingo, E. Chamorro, P. Perez, J. Phys. Chem. A 112 (2008) 4946.

21. L. R. Domingo, M. J. Aurell, P. Pérez, R. Contreras, Tetrahedron 58 (2002)

4417.

22. R. G. Parr, Pratim K Chattaraj, J. Am. Chem. Soc. 113 (1991) 185.

23. R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512.

24. P. Geerlings, F.De. Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793.

25. H. Chermette, J. Comput. Chem. 20 (1999) 129.

26. P. W. Ayers, J.S.M. Anderson, L.J. Bartolotti, Int. J. Quantum Chem. 101

(2005) 520.

27. R. Huisgen, J. Org. Chem. 33 (1968) 2291.

28. M. J. S. Dewar, J. Am. Chem. Soc. 106 (1984) 209.

29. C. Belzecki and I. Panfil, J. Chem. Soc. Chem. Commun. (1977) 302.

30. C. Belzecki and I. Panfil, J. Org. Chem. 44 (1979) 1212.

31. P. Merino, T.Tejero, U. Chiaccio, G. Romeo, A. Rescifina, Tetrahedron 63

(2007) 1448.

32. L. R. Domingo, M.J. Aurell, M. Arnó, J.A. Sáez, J. Mol. Struct.:

THEOCHEM852 (2008) 46-53.

33. M. T. Nguyen, A.K. Chandra, S. Sakai, K. Morokuma, J. Org. Chem. 64

(1999) 65.

34. M. A. Silva, J. M. Goodman, Tetrahedron 56 (2002) 3667.

35. C. Di Valentin, M. Freccero, R. Gandolfi, A.Rastelli, J. Org. Chem. 65

(2000) 6112.

36. J. Liu, S. Niwayama, Y. You, K.N. Houk, J. Org. Chem. 63 (1998) 1064.

37. F. P. Cossio, I. Morao, H. Jiao, P.V.R. Scheleyer, J. Am. Chem. Soc. 121

(1999) 6737.

38. G. S. Hammond, J. Am. Chem.Soc. 77 (1955) 334.

39. T. K. Das, M. Banerjee, J. Phys. Org. Chem. 23 (2009) 148.

40. N. Acharjee, T. K. Das, M.Banerjee, A. Banerji, T. Prangé, J. Phys. Org.

Chem. 23 (2010) 1187.

41. T. K. Das, S. Salampuria, M. Banerjee, J. Mol. Struct.: THEOCHEM. 959

(2010) 22.

42. L. R. Domingo, J. Org. Chem. 64 (1999) 3922.

43. R. Huisgen, J. Org. Chem., 33 (1968) 2291.

Page 142: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Theoretical studies on cyclization of azomethine imines with electron deficient dipolarophiles

133

44. R.A. Firestone, Heterocycles, 25 (1987) 61.

45. M. Carda, R. Portolés, J. Murga, S. Uriel, J. A. Marco, L. R. Domingo, R. J.

Zaragoźa, H. Röper, J. Org. Chem. 65 (2000) 7000.

Page 143: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

List of Publications

Page 144: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

List of Publications

135

1. DFT study of the 1,3-dipolar cycloaddition of azomethine ylides

with maleimide, maleic anhydride, methylacrylate and some simple

substituted alkenes

Tapas Kumar Das, Manas Banerjee,

J. Phys. Org. Chem. 23 (2010) 148-155

2. A DFT-based exploration augmented by X-ray and NMR of the

stereoselectivity in the 1,3-dipolar cycloaddition of 1-pyrroline-1-

oxide to methyl cinnamate and benzylidene acetophenon

Nivedita Acharjee, Tapas Kumar Das, Avijit Banerji, Manas Banerjee and

Theirry prangé,

J. Phys. Org. Chem. 23 (2010) 1187-1195

3. Computational DFT study of the 1,3-dipolar cycloadditions of 1-

phenylethyltrans-2-methyl nitrone to styrene and 1-phenylethyl

nitrone to allyl alcohol

Tapas Kumar Das, Sneha Salampuria, Manas Banerjee,

J. Mol. Struct.: THEOCHEM: 959 (2010) 22–29

Page 145: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

List of Publications

136

4. DFT study of 1,3-dipolar cycloaddition of azomethine imines with

electron deficient dipolarophiles acrylonitrile, methylpropenoate,

and dimethylmaleate

Tapas Kumar Das, Sneha Salampuria, Manas Banerjee,

Comput. Theor. Chem. 979 (2012) 102–111

5. 1,3-Dipolar cycloadditions. Part XVII: Experimental and

theoretical spectroscopic investigations of C-aryl-N-methyl nitrones

Nivedita Acharjee, Avijit Banerji, Manas Banerjee and

Tapas Kumar Das,

Ind. J. Chem. 48A (2009) 1627- 1637*

*Serial no. 5 is not included in this thesis.

Page 146: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

ANNEXURE

Page 147: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

Page 148: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

1

Molecule= 1EN, Final optimized geometry with frequency analysis.

----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

Total Energy=E(RB+HF-LYP) = -78.5874581821 A.U.

------------------------------------------------------------------------

Standard orientation:

------------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.000000 0.665544 0.000000

2 1 0 0.923524 1.239972 0.000000

3 1 0 -0.923520 1.239976 0.000000

4 6 0 0.000000 -0.665544 0.000000

5 1 0 -0.923524 -1.239972 0.000000

6 1 0 0.923520 -1.239976 0.000000

-----------------------------------------------------------------------------

Rotational constants (GHZ): 146.9865319 30.0302047 24.9356966

-----------------------------------------------------------------------------

Zero-point correction= 0.051221 (Hartree/Particle)

Thermal correction to Energy= 0.054263

Thermal correction to Enthalpy= 0.055207

Thermal correction to Gibbs Free Energy= 0.029691

Sum of electronic and zero-point Energies= -78.536237

Sum of electronic and thermal Energies= -78.533195

Sum of electronic and thermal Enthalpies= -78.532251

Sum of electronic and thermal Free Energies= -78.557767

----------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------------------------------------------

E(RB+HF-LYP) = -78.6083461552 A.U.

______________________________________________________________________________________

Molecule= 1P, Final optimized geometry with frequency analysis.

----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------------------------

E(RB+HF-LYP) = -212.582016908 A.U.

----------------------------------------------------------------

Standard orientation:

------------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

------------------------------------------------------------------------

1 6 0 -1.156844 -0.452787 0.193004

2 1 0 -1.335673 -0.610888 1.264795

3 1 0 -2.056733 -0.776242 -0.339391

4 7 0 -0.000708 -1.273887 -0.200237

5 1 0 -0.000649 -1.354698 -1.217986

6 1 0 2.055924 -0.778812 -0.338715

7 6 0 1.156234 -0.454091 0.193245

8 1 0 1.334465 -0.612074 1.265154

9 1 0 -1.164631 1.362857 -1.040107

10 6 0 -0.777128 1.030946 -0.070156

11 6 0 0.778390 1.029995 -0.070484

12 1 0 -1.196078 1.701410 0.687845

13 1 0 1.198468 1.700236 0.687107

14 1 0 1.165951 1.361036 -1.040694

------------------------------------------------------------------------------

Rotational constants (GHZ): 6.8272669 6.6373612 3.8625092

-------------------------------------------------------------------------------

Zero-point correction= 0.130388 (Hartree/Particle)

Thermal correction to Energy= 0.135361

Thermal correction to Enthalpy= 0.136305

Thermal correction to Gibbs Free Energy= 0.101979

Sum of electronic and zero-point Energies= -212.451629

Sum of electronic and thermal Energies= -212.446656

Sum of electronic and thermal Enthalpies= -212.445712

Sum of electronic and thermal Free Energies= -212.480038

_____________________________________________________________________________________

Molecule= 1TS, Final optimized geometry with frequency analysis.

------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

-----------------------------------------------------------

E(RB+HF-LYP) = -212.470832931 A.U.

Page 149: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

2

--------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.907885 1.206045 0.198217

2 1 0 -0.741048 1.289713 1.263214

3 1 0 -1.264005 2.072322 -0.344187

4 7 0 -1.266933 0.000034 -0.277887

5 1 0 -1.568562 0.000052 -1.247116

6 1 0 -1.264214 -2.072254 -0.344199

7 6 0 -0.908016 -1.206015 0.198214

8 1 0 -0.741151 -1.289703 1.263204

9 1 0 1.564499 1.248223 -0.986035

10 6 0 1.556890 0.679994 -0.061138

11 6 0 1.556900 -0.680062 -0.061142

12 1 0 1.765607 1.247850 0.840728

13 1 0 1.765542 -1.247923 0.840737

14 1 0 1.564535 -1.248292 -0.986039

---------------------------------------------------------------------

Rotational constants (GHZ): 6.7556557 3.9187632 2.7654813

------------------------------------------------------------------------------

Zero-point correction= 0.122436 (Hartree/Particle)

Thermal correction to Energy= 0.128660

Thermal correction to Enthalpy= 0.129604

Thermal correction to Gibbs Free Energy= 0.093536

Sum of electronic and zero-point Energies= -212.348397

Sum of electronic and thermal Energies= -212.342173

Sum of electronic and thermal Enthalpies= -212.341229

Sum of electronic and thermal Free Energies= -212.377297

----------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

----------------------------------------------------------------------------

E(RB+HF-LYP) = -212.528602786 A.U. after

______________________________________________________________________________________

Molecule = 1AY, Final optimized geometry with frequency analysis.

----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

-------------------------------------------

E(RB+HF-LYP) = -133.885273876 A.U.

---------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 1.229011 0.183763 0.000012

2 1 0 1.342722 1.258169 0.000016

3 1 0 2.072345 -0.487823 -0.000038

4 7 0 0.000000 -0.341090 0.000002

5 1 0 -0.000001 -1.358227 -0.000003

6 1 0 -2.072339 -0.487830 0.000116

7 6 0 -1.229014 0.183765 -0.000035

8 1 0 -1.342713 1.258172 0.000034

---------------------------------------------------------------------

Rotational constants (GHZ): 63.4221347 10.4112251 8.9431407

---------------------------------------------------------------------------

Zero-point correction= 0.067454 (Hartree/Particle)

Thermal correction to Energy= 0.071739

Thermal correction to Enthalpy= 0.072683

Thermal correction to Gibbs Free Energy= 0.042639

Sum of electronic and zero-point Energies= -133.817819

Sum of electronic and thermal Energies= -133.813535

Sum of electronic and thermal Enthalpies= -133.812591

Sum of electronic and thermal Free Energies= -133.842635

------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

-------------------------------------------------------------------------------

E(RB+HF-LYP) = -133.924900450 A.U.

______________________________________________________________________________________

Molecule= 2EN, Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

---------------------------------------

Page 150: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

3

Total Energy=E(RB+HF-LYP) = -117.907556164 A.U.

-------------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.283017 0.220426 -0.000060

2 1 0 -1.305444 1.308653 0.000126

3 1 0 -2.245239 -0.284685 0.000345

4 6 0 -0.133775 -0.455618 -0.000142

5 1 0 -0.164062 -1.546334 0.000286

6 6 0 1.234975 0.162915 0.000013

7 1 0 1.811896 -0.150024 0.880802

8 1 0 1.812558 -0.150704 -0.880076

9 1 0 1.181189 1.256755 -0.000348

---------------------------------------------------------------------

Rotational constants (GHZ): 46.7720468 9.2464777 8.1072629

-----------------------------------------------------------------------------

Zero-point correction= 0.080082 (Hartree/Particle)

Thermal correction to Energy= 0.084160

Thermal correction to Enthalpy= 0.085104

Thermal correction to Gibbs Free Energy= 0.055079

Sum of electronic and zero-point Energies= -117.827474

Sum of electronic and thermal Energies= -117.823397

Sum of electronic and thermal Enthalpies= -117.822452

Sum of electronic and thermal Free Energies= -117.852477

------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

------------------------------------------------------------------------------

E(RB+HF-LYP) = -117.936126780 A.U.

_____________________________________________________________________________________

Molecule =2PRN. Final optimized geometry with frequency analysis.

------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -291.209969094 A.U

-----------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.742476 1.308684 -0.082974

2 1 0 -1.279140 1.704454 0.786570

3 1 0 -0.947027 1.981488 -0.921596

4 6 0 -1.192564 -0.146928 -0.412606

5 1 0 -1.326360 -0.230243 -1.497999

6 6 0 -2.485591 -0.581996 0.277516

7 1 0 -3.329476 0.047986 -0.027758

8 1 0 -2.741922 -1.619806 0.031267

9 1 0 -2.394094 -0.510651 1.368777

10 1 0 0.118763 -1.921037 -0.595454

11 6 0 0.040005 -0.984285 -0.030474

12 7 0 1.158447 -0.099724 -0.337809

13 1 0 0.002437 -1.247895 1.049099

14 6 0 0.772139 1.202259 0.208472

15 6 0 2.450772 -0.573393 0.114000

16 1 0 1.364544 2.001219 -0.253177

17 1 0 0.953270 1.250557 1.301699

18 1 0 2.507189 -0.699827 1.214707

19 1 0 2.677166 -1.539650 -0.350790

20 1 0 3.231802 0.135429 -0.184286

---------------------------------------------------------------------

Rotational constants (GHZ): 5.1893223 1.8899467 1.5168729

-------------------------------------------------------------------------------

Zero-point correction= 0.186130 (Hartree/Particle)

Thermal correction to Energy= 0.193778

Thermal correction to Enthalpy= 0.194722

Thermal correction to Gibbs Free Energy= 0.154312

Sum of electronic and zero-point Energies= -291.023839

Sum of electronic and thermal Energies= -291.016191

Sum of electronic and thermal Enthalpies= -291.015247

Sum of electronic and thermal Free Energies= -291.055657

_____________________________________________________________________________________

Molecule = 2PRX. Final optimised geometry with frequency analysis.

Page 151: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

4

--------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -291.209968959 A.U.

-----------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.742446 1.308456 -0.080873

2 1 0 -1.277108 1.701511 0.791125

3 1 0 -0.950065 1.983130 -0.917249

4 6 0 -1.192352 -0.146711 -0.412189

5 1 0 -1.324775 -0.229219 -1.497803

6 6 0 -2.486318 -0.581871 0.276081

7 1 0 -3.329544 0.048830 -0.029521

8 1 0 -2.742900 -1.619317 0.028593

9 1 0 -2.395955 -0.511574 1.367499

10 1 0 0.002002 -1.246457 1.050632

11 6 0 0.039682 -0.984130 -0.029294

12 7 0 1.158417 -0.100330 -0.337756

13 1 0 0.118260 -1.921601 -0.593089

14 6 0 0.773053 1.202911 0.206397

15 6 0 2.450701 -0.574011 0.113992

16 1 0 0.957494 1.254185 1.298917

17 1 0 1.363868 2.000833 -0.259091

18 1 0 2.676183 -1.541221 -0.349249

19 1 0 3.231961 0.133818 -0.186049

20 1 0 2.507744 -0.698471 1.214900

---------------------------------------------------------------------

Rotational constants (GHZ): 5.1903001 1.8897639 1.5164907

-----------------------------------------------------------------------------

Zero-point correction= 0.186133 (Hartree/Particle)

Thermal correction to Energy= 0.193780

Thermal correction to Enthalpy= 0.194725

Thermal correction to Gibbs Free Energy= 0.154318

Sum of electronic and zero-point Energies= -291.023836

Sum of electronic and thermal Energies= -291.016189

Sum of electronic and thermal Enthalpies= -291.015244

Sum of electronic and thermal Free Energies= -291.055651

_____________________________________________________________________________________

Molecule = 2PSN. Final optimized geometry with frequency analysis.

----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -291.209969038 A.U.

---------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.742422 1.308623 -0.081503

2 1 0 1.277550 1.702760 0.789738

3 1 0 0.949212 1.982572 -0.918662

4 6 0 1.192373 -0.146726 -0.412062

5 1 0 1.324684 -0.229622 -1.497687

6 6 0 2.486348 -0.581823 0.276189

7 1 0 3.329597 0.048784 -0.029574

8 1 0 2.396148 -0.511419 1.367622

9 1 0 2.742856 -1.619306 0.028750

10 1 0 -0.118004 -1.921587 -0.593164

11 6 0 -0.039791 -0.984222 -0.029123

12 7 0 -1.158360 -0.100290 -0.337952

13 1 0 -0.002464 -1.246600 1.050726

14 6 0 -0.772858 1.202494 0.207104

15 6 0 -2.450828 -0.573698 0.113767

16 1 0 -1.364439 2.000693 -0.256931

17 1 0 -0.956202 1.252556 1.299888

18 1 0 -2.507790 -0.698963 1.214566

19 1 0 -3.231769 0.134737 -0.185678

20 1 0 -2.676860 -1.540457 -0.350156

---------------------------------------------------------------------

Rotational constants (GHZ): 5.1906365 1.8896706 1.5165242

----------------------------------------------------------------------------

Zero-point correction= 0.178932 (Hartree/Particle)

Thermal correction to Energy= 0.187967

Page 152: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

5

Thermal correction to Enthalpy= 0.188911

Thermal correction to Gibbs Free Energy= 0.145924

Sum of electronic and zero-point Energies= -290.917689

Sum of electronic and thermal Energies= -290.908653

Sum of electronic and thermal Enthalpies= -290.907709

Sum of electronic and thermal Free Energies= -290.950696

_____________________________________________________________________________________

Molecule = 2PSX. Final optimized geometry with frequency analysis.

-----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------------------------

Total energy = E(RB+HF-LYP) = -291.209969018 A.U.

----------------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.742411 1.308547 -0.080848

2 1 0 1.276931 1.701760 0.791183

3 1 0 0.950135 1.983128 -0.917266

4 6 0 1.192322 -0.146635 -0.412024

5 1 0 1.324258 -0.229266 -1.497712

6 6 0 2.486527 -0.581831 0.275744

7 1 0 3.329646 0.048939 -0.030026

8 1 0 2.396578 -0.511766 1.367215

9 1 0 2.743044 -1.619217 0.027920

10 1 0 -0.002115 -1.246045 1.051248

11 6 0 -0.039675 -0.984109 -0.028736

12 7 0 -1.158328 -0.100466 -0.337832

13 1 0 -0.117875 -1.921748 -0.592331

14 6 0 -0.773166 1.202761 0.206472

15 6 0 -2.450797 -0.573956 0.113701

16 1 0 -0.957466 1.253766 1.299020

17 1 0 -1.364198 2.000663 -0.258771

18 1 0 -2.676387 -1.541082 -0.349670

19 1 0 -2.508098 -0.698555 1.214574

20 1 0 -3.231895 0.134021 -0.186414

---------------------------------------------------------------------

Rotational constants (GHZ): 5.1908154 1.8896431 1.5164133

----------------------------------------------------------------------------------------

Zero-point correction= 0.186133 (Hartree/Particle)

Thermal correction to Energy= 0.193779

Thermal correction to Enthalpy= 0.194723

Thermal correction to Gibbs Free Energy= 0.154328

Sum of electronic and zero-point Energies= -291.023836

Sum of electronic and thermal Energies= -291.016190

Sum of electronic and thermal Enthalpies= -291.015246

Sum of electronic and thermal Free Energies= -291.055641

_____________________________________________________________________________________

Molecule = 2TRN. Final optimised geometry with frequency analysis.

-------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------

E(RB+HF-LYP) = -291.096620558 A.U.

-------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 1.119281 1.340774 -0.448437

2 1 0 1.018409 1.255799 -1.527660

3 1 0 1.078789 2.349496 -0.051056

4 6 0 1.591288 0.297398 0.298577

5 1 0 1.921698 0.496606 1.316441

6 6 0 2.108099 -0.987352 -0.309370

7 1 0 1.668804 -1.166163 -1.298580

8 1 0 3.199308 -0.942655 -0.450168

9 1 0 1.902082 -1.864588 0.313262

10 1 0 -0.418952 0.185487 2.120578

11 6 0 -0.563282 -0.501378 1.297312

12 7 0 -1.301859 -0.059566 0.257696

13 1 0 -0.598391 -1.561522 1.513615

14 6 0 -1.344607 1.236125 -0.107269

15 6 0 -1.632293 -1.042080 -0.783250

Page 153: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

6

16 1 0 -1.239060 1.973675 0.676102

17 1 0 -1.937034 1.488666 -0.977080

18 1 0 -0.797126 -1.136080 -1.484565

19 1 0 -1.832102 -2.009631 -0.319863

20 1 0 -2.524332 -0.713054 -1.320277

---------------------------------------------------------------------

Rotational constants (GHZ): 3.4130858 1.8673474 1.6020358

---------------------------------------------------------------------------

Zero-point correction= 0.178931 (Hartree/Particle)

Thermal correction to Energy= 0.187967

Thermal correction to Enthalpy= 0.188911

Thermal correction to Gibbs Free Energy= 0.145922

Sum of electronic and zero-point Energies= -290.917690

Sum of electronic and thermal Energies= -290.908654

Sum of electronic and thermal Enthalpies= -290.907709

Sum of electronic and thermal Free Energies= -290.950698

-----------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

-------------------------------------------------------------------

E(RB+HF-LYP) = -291.167982342 A.U.

______________________________________________________________________________________

Molecule =2TRX. Final optimized geometry with frequency analysis.

-------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

-------------------------------------------------------------------

E(RB+HF-LYP) = -291.097819026 A.U.

----------------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.977273 1.343696 -0.406035

2 1 0 -1.380750 1.954353 0.397652

3 1 0 -0.382706 1.872413 -1.144543

4 6 0 -1.445889 0.082629 -0.636559

5 1 0 -1.203742 -0.401761 -1.580350

6 6 0 -2.585417 -0.528032 0.144778

7 1 0 -2.649032 -0.100729 1.153359

8 1 0 -3.551506 -0.336535 -0.346504

9 1 0 -2.490306 -1.615094 0.247442

10 1 0 -0.193979 -1.337160 1.302510

11 6 0 0.425173 -1.268891 0.418594

12 7 0 1.298660 -0.244725 0.354270

13 1 0 0.688692 -2.180254 -0.102414

14 6 0 1.082464 0.945201 0.947122

15 6 0 2.228710 -0.249045 -0.782244

16 1 0 0.483427 0.948197 1.847076

17 1 0 1.838730 1.709089 0.823688

18 1 0 2.586136 -1.265797 -0.955177

19 1 0 1.716942 0.117786 -1.678541

20 1 0 3.080865 0.395220 -0.558033

---------------------------------------------------------------------

Rotational constants (GHZ): 4.0905057 1.6110768 1.4496628

----------------------------------------------------------------------------

Zero-point correction= 0.178843 (Hartree/Particle)

Thermal correction to Energy= 0.187901

Thermal correction to Enthalpy= 0.188846

Thermal correction to Gibbs Free Energy= 0.145803

Sum of electronic and zero-point Energies= -290.918976

Sum of electronic and thermal Energies= -290.909918

Sum of electronic and thermal Enthalpies= -290.908973

Sum of electronic and thermal Free Energies= -290.952016

------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

-------------------------------------------------------------------------

E(RB+HF-LYP) = -291.169557780 A.U.

______________________________________________________________________________________

Molecule = 2TSN. Final optimised geometry with frequency analysis.

------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------

E(RB+HF-LYP) = -291.096620435 A.U.

-------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Page 154: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

7

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.118881 1.340829 -0.448931

2 1 0 -1.017395 1.255208 -1.528048

3 1 0 -1.079410 2.349888 -0.052282

4 6 0 -1.591070 0.297721 0.298372

5 1 0 -1.922230 0.497250 1.315927

6 6 0 -2.106318 -0.987837 -0.309143

7 1 0 -3.197411 -0.943872 -0.451243

8 1 0 -1.665945 -1.167026 -1.297810

9 1 0 -1.900520 -1.864479 0.314367

10 1 0 0.418695 0.186982 2.120562

11 6 0 0.562616 -0.500490 1.297720

12 7 0 1.301291 -0.059562 0.257837

13 1 0 0.597677 -1.560476 1.514817

14 6 0 1.344411 1.236015 -0.107556

15 6 0 1.631166 -1.042542 -0.782975

16 1 0 1.239708 1.973805 0.675652

17 1 0 1.936526 1.488001 -0.977735

18 1 0 1.827001 -2.011015 -0.319851

19 1 0 0.797338 -1.133613 -1.486270

20 1 0 2.525384 -0.715893 -1.317865

---------------------------------------------------------------------

Rotational constants (GHZ): 3.4123515 1.8688410 1.6031148

-------------------------------------------------------------------------------

Zero-point correction= 0.178932 (Hartree/Particle)

Thermal correction to Energy= 0.187967

Thermal correction to Enthalpy= 0.188911

Thermal correction to Gibbs Free Energy= 0.145924

Sum of electronic and zero-point Energies= -290.917689

Sum of electronic and thermal Energies= -290.908653

Sum of electronic and thermal Enthalpies= -290.907709

Sum of electronic and thermal Free Energies= -290.950696

--------------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

------------------------------------------------------------------------------------

E(RB+HF-LYP) = -291.167978321 A.U

______________________________________________________________________________________

Molecule=2TSX. Final optimised geometry with frequency analysis.

-------------------------------------------------------------------

# freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------

E(RB+HF-LYP) = -291.097818386 A.U.

-------------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.976520 1.342960 -0.405911

2 1 0 1.380024 1.953802 0.397609

3 1 0 0.381879 1.871456 -1.144536

4 6 0 1.446043 0.082171 -0.636767

5 1 0 1.206064 -0.401192 -1.581693

6 6 0 2.586000 -0.527410 0.144865

7 1 0 3.551108 -0.342459 -0.350792

8 1 0 2.654031 -0.093349 1.150253

9 1 0 2.487682 -1.613463 0.255232

10 1 0 0.194421 -1.337637 1.300935

11 6 0 -0.425868 -1.269408 0.417819

12 7 0 -1.299010 -0.244802 0.354448

13 1 0 -0.691019 -2.180977 -0.102049

14 6 0 -1.081516 0.944634 0.947603

15 6 0 -2.229070 -0.248016 -0.781998

16 1 0 -0.482528 0.946899 1.847573

17 1 0 -1.836227 1.709950 0.823709

18 1 0 -2.589564 -1.263978 -0.953330

19 1 0 -3.079264 0.399186 -0.558831

20 1 0 -1.716196 0.115799 -1.678885

---------------------------------------------------------------------

Rotational constants (GHZ): 4.0917722 1.6108028 1.4496245

------------------------------------------------------------------------------------------------------------

Zero-point correction= 0.178841 (Hartree/Particle)

Thermal correction to Energy= 0.187901

Thermal correction to Enthalpy= 0.188845

Thermal correction to Gibbs Free Energy= 0.145798

Sum of electronic and zero-point Energies= -290.918977

Sum of electronic and thermal Energies= -290.909918

Page 155: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

8

Sum of electronic and thermal Enthalpies= -290.908973

Sum of electronic and thermal Free Energies= -290.952020

------------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

-------------------------------------------------------------------------

E(RB+HF-LYP) = -291.169553545 A.U. after

______________________________________________________________________________________

Molecule =2AY. Final optimised geometry with frequency analysis.

------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------------

Total Energy = E(RB+HF-LYP) = -173.195280634 A.U.

---------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.709202 1.207845 -0.003256

2 1 0 -1.786677 1.270924 0.048229

3 1 0 -0.084261 2.085703 -0.010755

4 7 0 -0.132895 0.000059 -0.019264

5 1 0 -0.086577 -2.085640 -0.009807

6 6 0 -0.710548 -1.207087 -0.003480

7 1 0 -1.788095 -1.268956 0.048001

8 6 0 1.346118 -0.000722 0.009985

9 1 0 1.714324 0.887692 -0.504258

10 1 0 1.689952 -0.000108 1.046919

11 1 0 1.713392 -0.890251 -0.502975

---------------------------------------------------------------------

Rotational constants (GHZ): 10.0612963 9.9223083 5.1616720

------------------------------------------------------------------------------

Zero-point correction= 0.095452 (Hartree/Particle)

Thermal correction to Energy= 0.101163

Thermal correction to Enthalpy= 0.102107

Thermal correction to Gibbs Free Energy= 0.067630

Sum of electronic and zero-point Energies= -173.099829

Sum of electronic and thermal Energies= -173.094118

Sum of electronic and thermal Enthalpies= -173.093174

Sum of electronic and thermal Free Energies= -173.127650

------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

------------------------------------------------------------------------------

E(RB+HF-LYP) = -173.241496957 A.U.

______________________________________________________________________________________

Molecule =3EN. Final potimised geometry with frequency analysis.

----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -157.220381370 A.U.

----------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.536274 -0.586518 -0.000014

2 1 0 -1.044748 -1.555780 0.000265

3 1 0 -2.622864 -0.598532 0.000041

4 6 0 -0.855799 0.560642 -0.000051

5 1 0 -1.415826 1.497508 -0.000169

6 6 0 0.643430 0.721675 0.000072

7 1 0 0.926421 1.331603 -0.871803

8 1 0 0.926309 1.331423 0.872096

9 6 0 1.454217 -0.575794 -0.000045

10 1 0 2.527996 -0.360074 -0.000190

11 1 0 1.234744 -1.183078 0.885421

12 1 0 1.234526 -1.183099 -0.885440

---------------------------------------------------------------------

Rotational constants (GHZ): 15.4002874 5.5045302 4.2683243

----------------------------------------------------------------------------------

Zero-point correction= 0.109231 (Hartree/Particle)

Thermal correction to Energy= 0.114346

Thermal correction to Enthalpy= 0.115291

Thermal correction to Gibbs Free Energy= 0.082038

Sum of electronic and zero-point Energies= -157.111150

Sum of electronic and thermal Energies= -157.106035

Page 156: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

9

Sum of electronic and thermal Enthalpies= -157.105091

Sum of electronic and thermal Free Energies= -157.138344

-------------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -157.257081159 A.U.

______________________________________________________________________________________

Molecule = 3PRN. Final optimized geometry with frequency analysis.

-------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -369.836112375 A.U.

-------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 1.137614 1.518488 -0.297742

2 1 0 1.636447 1.244235 -1.232841

3 1 0 1.565801 2.470768 0.030865

4 6 0 1.310451 0.393833 0.768481

5 1 0 1.681281 0.829193 1.704061

6 6 0 2.308477 -0.710044 0.360155

7 1 0 3.293975 -0.246235 0.209751

8 1 0 2.427291 -1.397429 1.209869

9 6 0 1.937878 -1.521847 -0.886937

10 1 0 2.691148 -2.295734 -1.075287

11 1 0 0.967081 -2.015030 -0.775071

12 1 0 1.878219 -0.893781 -1.782196

13 1 0 -3.903749 -1.297625 -0.028166

14 6 0 -2.808565 -1.269576 -0.005090

15 6 0 -2.311379 0.171413 -0.126896

16 1 0 -2.428500 -1.876982 -0.833499

17 1 0 -2.486653 -1.733607 0.933485

18 7 0 -0.860744 0.269087 -0.214234

19 1 0 -2.725992 0.616873 -1.040318

20 1 0 -2.701869 0.772171 0.721901

21 6 0 -0.380189 1.617836 -0.514776

22 6 0 -0.134548 -0.117111 0.997167

23 1 0 -0.819002 2.369843 0.173882

24 1 0 -0.658075 1.906577 -1.535350

25 1 0 -0.179675 -1.199993 1.155654

26 1 0 -0.570944 0.365194 1.896721

---------------------------------------------------------------------

Rotational constants (GHZ): 2.3723492 1.1146409 0.9135125

---------------------------------------------------------------------------

Zero-point correction= 0.243774 (Hartree/Particle)

Thermal correction to Energy= 0.253929

Thermal correction to Enthalpy= 0.254873

Thermal correction to Gibbs Free Energy= 0.208312

Sum of electronic and zero-point Energies= -369.592338

Sum of electronic and thermal Energies= -369.582184

Sum of electronic and thermal Enthalpies= -369.581240

Sum of electronic and thermal Free Energies= -369.627800

____________________________________________________________________________________

Molecule=3PRX. Final optimized geometry with frequency analysis.

-----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -369.830034635 A.U.

-----------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.494473 1.189081 0.649017

2 1 0 1.292839 1.894728 0.395930

3 1 0 0.119783 1.479223 1.636366

4 6 0 0.985151 -0.288496 0.659081

5 1 0 0.662095 -0.747957 1.602423

6 6 0 2.510272 -0.495466 0.571141

7 1 0 2.971056 -0.054849 1.466102

8 1 0 2.718430 -1.573461 0.631230

9 6 0 3.207650 0.072691 -0.672534

Page 157: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

10

10 1 0 4.288560 -0.098709 -0.614038

11 1 0 2.853589 -0.396962 -1.596719

12 1 0 3.054083 1.153604 -0.771126

13 1 0 -4.277850 -0.424361 0.638338

14 6 0 -3.512470 -0.057686 -0.055895

15 6 0 -2.132705 -0.582873 0.342838

16 1 0 -3.552840 1.037394 -0.041776

17 1 0 -3.765843 -0.389681 -1.067878

18 7 0 -1.091457 -0.172116 -0.610157

19 1 0 -1.910320 -0.280742 1.384586

20 1 0 -2.160410 -1.679001 0.338772

21 6 0 -0.638463 1.216856 -0.418169

22 6 0 0.156250 -0.938246 -0.485215

23 1 0 -0.241665 1.583749 -1.373686

24 1 0 -1.474748 1.866615 -0.145969

25 1 0 -0.054729 -1.999078 -0.315287

26 1 0 0.697224 -0.860872 -1.437745

---------------------------------------------------------------------

Rotational constants (GHZ): 3.8929138 0.8425642 0.8037224

--------------------------------------------------------------------------------

Zero-point correction= 0.243805 (Hartree/Particle)

Thermal correction to Energy= 0.254053

Thermal correction to Enthalpy= 0.254997

Thermal correction to Gibbs Free Energy= 0.207849

Sum of electronic and zero-point Energies= -369.586229

Sum of electronic and thermal Energies= -369.575982

Sum of electronic and thermal Enthalpies= -369.575037

Sum of electronic and thermal Free Energies= -369.622186

______________________________________________________________________________________

Molecule = 3PSN. Final optimized geometry with frequency analysis.

------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -369.836112376 A.U.

------------------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.137615 1.518488 -0.297741

2 1 0 -1.636449 1.244235 -1.232841

3 1 0 -1.565801 2.470768 0.030867

4 6 0 -1.310451 0.393833 0.768482

5 1 0 -1.681282 0.829192 1.704061

6 6 0 -2.308476 -0.710045 0.360155

7 1 0 -2.427290 -1.397430 1.209868

8 1 0 -3.293974 -0.246237 0.209749

9 6 0 -1.937876 -1.521848 -0.886938

10 1 0 -2.691144 -2.295735 -1.075288

11 1 0 -1.878215 -0.893782 -1.782196

12 1 0 -0.967079 -2.015030 -0.775071

13 1 0 3.903749 -1.297624 -0.028166

14 6 0 2.808565 -1.269575 -0.005089

15 6 0 2.311379 0.171413 -0.126897

16 1 0 2.486654 -1.733606 0.933487

17 1 0 2.428499 -1.876983 -0.833498

18 7 0 0.860744 0.269087 -0.214234

19 1 0 2.701869 0.772172 0.721899

20 1 0 2.725990 0.616872 -1.040319

21 6 0 0.134548 -0.117110 0.997168

22 6 0 0.380188 1.617836 -0.514777

23 1 0 0.570944 0.365197 1.896721

24 1 0 0.179676 -1.199992 1.155656

25 1 0 0.658073 1.906576 -1.535352

26 1 0 0.819002 2.369843 0.173880

---------------------------------------------------------------------

Rotational constants (GHZ): 2.3723485 1.1146414 0.9135129

--------------------------------------------------------------------------------

Zero-point correction= 0.243774 (Hartree/Particle)

Thermal correction to Energy= 0.253929

Thermal correction to Enthalpy= 0.254873

Thermal correction to Gibbs Free Energy= 0.208312

Sum of electronic and zero-point Energies= -369.592338

Sum of electronic and thermal Energies= -369.582184

Sum of electronic and thermal Enthalpies= -369.581240

Sum of electronic and thermal Free Energies= -369.627800

_____________________________________________________________________________________

Page 158: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

11

Molecule = 3PSX. Final optimised geometry with frequency analysis.

---------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -369.832677529 A.U

------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.575317 1.226132 -0.095552

2 1 0 1.288459 1.840856 0.466696

3 1 0 0.499614 1.664560 -1.095878

4 6 0 1.028089 -0.260440 -0.158847

5 1 0 0.918315 -0.621447 -1.191146

6 6 0 2.471217 -0.525075 0.287172

7 1 0 2.607998 -0.128071 1.304113

8 1 0 2.629206 -1.610838 0.361523

9 6 0 3.532471 0.071065 -0.644123

10 1 0 4.544852 -0.151073 -0.287362

11 1 0 3.440273 -0.336094 -1.658738

12 1 0 3.437122 1.160942 -0.715745

13 1 0 -4.093732 -0.358195 -1.351269

14 6 0 -3.512283 -0.046250 -0.475565

15 6 0 -2.070780 -0.544658 -0.584944

16 1 0 -3.985517 -0.451434 0.424678

17 1 0 -3.563545 1.047048 -0.418694

18 7 0 -1.280135 -0.207487 0.607308

19 1 0 -2.083286 -1.638042 -0.666353

20 1 0 -1.620331 -0.167477 -1.523348

21 6 0 -0.033652 -0.973131 0.720594

22 6 0 -0.809382 1.188761 0.624427

23 1 0 0.291560 -0.951118 1.771978

24 1 0 -0.193228 -2.021818 0.449372

25 1 0 -1.548730 1.854053 0.170056

26 1 0 -0.694065 1.502128 1.669980

---------------------------------------------------------------------

Rotational constants (GHZ): 3.9208915 0.7952969 0.7572803

----------------------------------------------------------------------------

Zero-point correction= 0.243516 (Hartree/Particle)

Thermal correction to Energy= 0.253848

Thermal correction to Enthalpy= 0.254792

Thermal correction to Gibbs Free Energy= 0.207346

Sum of electronic and zero-point Energies= -369.589162

Sum of electronic and thermal Energies= -369.578830

Sum of electronic and thermal Enthalpies= -369.577886

Sum of electronic and thermal Free Energies= -369.625332

_____________________________________________________________________________________

Molecule =3TRN. Final optimized geometry with frequency analysis.

-----------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------

E(RB+HF-LYP) = -369.723444969 A.U.

------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.433093 -1.314494 -0.820814

2 1 0 -1.411320 -0.753326 -1.749801

3 1 0 -1.425199 -2.393571 -0.932427

4 6 0 -1.805723 -0.733794 0.363978

5 1 0 -2.058600 -1.396276 1.190738

6 6 0 -2.378721 0.666164 0.511356

7 1 0 -3.477158 0.577444 0.566523

8 1 0 -2.076421 1.093967 1.475563

9 6 0 -2.045191 1.658670 -0.606339

10 1 0 -2.510835 2.631344 -0.409251

11 1 0 -0.965137 1.818380 -0.698034

12 1 0 -2.412220 1.309172 -1.577784

13 1 0 3.662146 0.064113 -0.698449

14 6 0 3.205463 0.842117 -0.078689

15 6 0 1.682074 0.823725 -0.204556

16 1 0 3.597214 1.812817 -0.403003

Page 159: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

12

17 1 0 3.511556 0.676538 0.959438

18 7 0 1.103695 -0.460002 0.239927

19 1 0 1.374861 0.988755 -1.242274

20 1 0 1.235554 1.617627 0.398587

21 6 0 1.005957 -1.447226 -0.673890

22 6 0 0.428721 -0.487727 1.410953

23 1 0 0.889244 -2.456378 -0.302930

24 1 0 1.543959 -1.310525 -1.604314

25 1 0 0.571149 0.355077 2.076989

26 1 0 0.268428 -1.459758 1.858952

---------------------------------------------------------------------

Rotational constants (GHZ): 2.2434964 0.9582575 0.8325705

-----------------------------------------------------------------------------------

Zero-point correction= 0.236776 (Hartree/Particle)

Thermal correction to Energy= 0.248204

Thermal correction to Enthalpy= 0.249148

Thermal correction to Gibbs Free Energy= 0.199807

Sum of electronic and zero-point Energies= -369.486669

Sum of electronic and thermal Energies= -369.475241

Sum of electronic and thermal Enthalpies= -369.474297

Sum of electronic and thermal Free Energies= -369.523638

-------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -369.809866179 A.U

_____________________________________________________________________________________

Molecule =3TRX. Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------

E(RB+HF-LYP) = -369.725103279 A.U.

--------------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 1.141290 1.370045 0.657532

2 1 0 1.708363 1.916659 -0.089321

3 1 0 0.511820 1.978535 1.298477

4 6 0 1.444639 0.078478 0.994051

5 1 0 1.027605 -0.320832 1.916619

6 6 0 2.626927 -0.705851 0.453009

7 1 0 3.442188 -0.664950 1.194457

8 1 0 2.362471 -1.769252 0.377801

9 6 0 3.181330 -0.232865 -0.895074

10 1 0 4.011900 -0.870948 -1.218101

11 1 0 2.415331 -0.259833 -1.679572

12 1 0 3.557976 0.794374 -0.837952

13 1 0 -4.487495 -0.367428 0.513679

14 6 0 -3.623485 -0.430203 -0.157416

15 6 0 -2.362695 0.046406 0.563308

16 1 0 -3.826873 0.187055 -1.038441

17 1 0 -3.517272 -1.469347 -0.484903

18 7 0 -1.167453 -0.021076 -0.301824

19 1 0 -2.472922 1.081460 0.898495

20 1 0 -2.165685 -0.564036 1.449447

21 6 0 -0.754874 1.119776 -0.891066

22 6 0 -0.385971 -1.117047 -0.204308

23 1 0 -0.057411 1.030050 -1.712718

24 1 0 -1.451595 1.949030 -0.902558

25 1 0 -0.801235 -1.971364 0.316663

26 1 0 0.312033 -1.304072 -1.009516

---------------------------------------------------------------------

Rotational constants (GHZ): 3.2684610 0.7420102 0.7178936

------------------------------------------------------------------------------

Zero-point correction= 0.236523 (Hartree/Particle)

Thermal correction to Energy= 0.248099

Thermal correction to Enthalpy= 0.249043

Thermal correction to Gibbs Free Energy= 0.196848

Sum of electronic and zero-point Energies= -369.488580

Sum of electronic and thermal Energies= -369.477004

Sum of electronic and thermal Enthalpies= -369.476060

Sum of electronic and thermal Free Energies= -369.528255

----------------------------------------------------------------------------

b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------------------

E(RB+HF-LYP) = -369.811787491 A.U

Page 160: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

13

_____________________________________________________________________________________

Molecule = 3TSN. Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------

E(RB+HF-LYP) = -369.723445063 A.U.

---------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 1.433296 -1.314648 -0.820910

2 1 0 1.410977 -0.753410 -1.749842

3 1 0 1.425244 -2.393714 -0.932576

4 6 0 1.805635 -0.733819 0.363879

5 1 0 2.058652 -1.396191 1.190687

6 6 0 2.378761 0.666135 0.511013

7 1 0 2.077038 1.093892 1.475420

8 1 0 3.477221 0.577336 0.565507

9 6 0 2.044648 1.658699 -0.606463

10 1 0 2.509602 2.631644 -0.409075

11 1 0 2.412007 1.309704 -1.577967

12 1 0 0.964499 1.817704 -0.698230

13 1 0 -3.597440 1.812431 -0.403005

14 6 0 -3.205472 0.841837 -0.078635

15 6 0 -1.682104 0.823639 -0.204821

16 1 0 -3.662204 0.063679 -0.698165

17 1 0 -3.511295 0.676369 0.959592

18 7 0 -1.103499 -0.459833 0.240122

19 1 0 -1.375110 0.988216 -1.242678

20 1 0 -1.235571 1.617856 0.397886

21 6 0 -0.427899 -0.486914 1.410801

22 6 0 -1.006390 -1.447632 -0.673124

23 1 0 -0.267833 -1.458661 1.859483

24 1 0 -0.569714 0.356423 2.076291

25 1 0 -1.545384 -1.311756 -1.603098

26 1 0 -0.889044 -2.456472 -0.301530

---------------------------------------------------------------------

Rotational constants (GHZ): 2.2437061 0.9583460 0.8326049

---------------------------------------------------------------------------------

Zero-point correction= 0.236779 (Hartree/Particle)

Thermal correction to Energy= 0.248205

Thermal correction to Enthalpy= 0.249150

Thermal correction to Gibbs Free Energy= 0.199815

Sum of electronic and zero-point Energies= -369.486666

Sum of electronic and thermal Energies= -369.475240

Sum of electronic and thermal Enthalpies= -369.474295

Sum of electronic and thermal Free Energies= -369.523630

------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

------------------------------------------------------------------------------

E(RB+HF-LYP) = -369.809915704 A.U.

_____________________________________________________________________________________

Molecule =3TSX. Final optimised geometry with frequency analysis.

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------

E(RB+HF-LYP) = -369.725101985 A.U

------------------------------------------------------

Standard orientation: ---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.129806 1.366136 0.663550

2 1 0 -1.685178 1.923173 -0.084373

3 1 0 -0.496609 1.964089 1.310788

4 6 0 -1.452583 0.077666 0.993912

5 1 0 -1.046212 -0.330525 1.917286

6 6 0 -2.641838 -0.688962 0.442771

7 1 0 -2.390750 -1.755418 0.364750

8 1 0 -3.460863 -0.640539 1.179593

9 6 0 -3.182187 -0.203589 -0.906625

10 1 0 -4.020345 -0.828425 -1.235872

Page 161: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

14

11 1 0 -3.544013 0.828878 -0.848148

12 1 0 -2.412747 -0.239386 -1.687408

13 1 0 4.500741 -0.324589 0.491838

14 6 0 3.636448 -0.372637 -0.180109

15 6 0 2.361848 0.002863 0.575573

16 1 0 3.567537 -1.389309 -0.580241

17 1 0 3.811963 0.312812 -1.015346

18 7 0 1.165930 -0.050205 -0.289605

19 1 0 2.193725 -0.674868 1.416941

20 1 0 2.434031 1.016062 0.981977

21 6 0 0.370085 -1.136188 -0.198204

22 6 0 0.769931 1.097790 -0.876723

23 1 0 -0.330139 -1.308786 -1.004669

24 1 0 0.772495 -1.999006 0.318618

25 1 0 1.476438 1.918888 -0.880009

26 1 0 0.077027 1.019898 -1.703361

---------------------------------------------------------------------

Rotational constants (GHZ): 3.2979139 0.7390023 0.7167551

---------------------------------------------------------------------------------

Zero-point correction= 0.236601 (Hartree/Particle)

Thermal correction to Energy= 0.248123

Thermal correction to Enthalpy= 0.249067

Thermal correction to Gibbs Free Energy= 0.198868

Sum of electronic and zero-point Energies= -369.488501

Sum of electronic and thermal Energies= -369.476979

Sum of electronic and thermal Enthalpies= -369.476035

Sum of electronic and thermal Free Energies= -369.526234

---------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -369.811800183 A.U.

______________________________________________________________________________________

Molecule = 3AY. Final optimization geometry with frequency analysis.

--------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

----------------------------------------------------------------------------

E(RB+HF-LYP) = -212.511793935 A.U.

----------------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 1.145804 1.208052 -0.122240

2 1 0 2.123084 1.273981 -0.578650

3 1 0 0.574703 2.085435 0.134645

4 7 0 0.619461 0.000152 0.114054

5 1 0 0.581308 -2.085293 0.134273

6 6 0 1.148858 -1.206064 -0.124131

7 1 0 2.126481 -1.268718 -0.580264

8 6 0 -0.768717 -0.001954 0.653359

9 1 0 -0.867919 0.878532 1.292339

10 1 0 -0.866896 -0.885462 1.288279

11 6 0 -1.818097 -0.000111 -0.456346

12 1 0 -2.822062 -0.002619 -0.017510

13 1 0 -1.717166 0.889249 -1.085206

14 1 0 -1.714856 -0.885709 -1.090138

---------------------------------------------------------------------

Rotational constants (GHZ): 7.8039262 4.0921078 3.1777804

----------------------------------------------------------------------------

Zero-point correction= 0.124045 (Hartree/Particle)

Thermal correction to Energy= 0.130994

Thermal correction to Enthalpy= 0.131938

Thermal correction to Gibbs Free Energy= 0.093730

Sum of electronic and zero-point Energies= -212.387749

Sum of electronic and thermal Energies= -212.380800

Sum of electronic and thermal Enthalpies= -212.379856

Sum of electronic and thermal Free Energies= -212.418064

--------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -212.565082771 A.U.

_____________________________________________________________________________________

Molecule = 4EN. Final optimised geometry with frequency analysis.

----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

Page 162: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

15

E(RB+HF-LYP) = -235.848215453 A.U.

----------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 2.208551 -0.081691 -0.000074

2 1 0 2.335466 0.997402 0.000239

3 1 0 3.121562 -0.671461 -0.000346

4 6 0 1.009955 -0.666345 -0.000266

5 1 0 0.967645 -1.758163 -0.000632

6 6 0 -0.353480 0.001384 -0.000021

7 6 0 -0.256389 1.535235 -0.000007

8 1 0 -1.258294 1.980112 -0.000498

9 1 0 0.271760 1.902796 0.887202

10 1 0 0.272635 1.902686 -0.886747

11 6 0 -1.120956 -0.465318 1.258787

12 1 0 -2.136376 -0.050061 1.269638

13 1 0 -1.206397 -1.558367 1.289711

14 1 0 -0.610054 -0.142589 2.172972

15 6 0 -1.121505 -0.465213 -1.258459

16 1 0 -2.137217 -0.050646 -1.268423

17 1 0 -0.611515 -0.141712 -2.172902

18 1 0 -1.206268 -1.558310 -1.289977

---------------------------------------------------------------------

Rotational constants (GHZ): 4.3815310 2.6625327 2.6089311

------------------------------------------------------------------------------

Zero-point correction= 0.165513 (Hartree/Particle)

Thermal correction to Energy= 0.173167

Thermal correction to Enthalpy= 0.174111

Thermal correction to Gibbs Free Energy= 0.134943

Sum of electronic and zero-point Energies= -235.682702

Sum of electronic and thermal Energies= -235.675049

Sum of electronic and thermal Enthalpies= -235.674104

Sum of electronic and thermal Free Energies= -235.713272

------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -235.901116513 A.U.

______________________________________________________________________________________

Molecule = 4TRN. Final optimised geometry with frequency analysis.

--------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -527.086247293 A.U

-----------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.796038 1.621856 -0.139263

2 1 0 1.060729 1.904857 -1.177976

3 1 0 1.326390 2.305299 0.531092

4 7 0 1.096412 0.228225 0.184404

5 1 0 -0.147766 -1.476124 0.185462

6 6 0 0.042820 -0.591133 -0.430618

7 1 0 0.316899 -0.960993 -1.434703

8 6 0 2.493704 -0.241122 0.054974

9 6 0 3.391667 0.630140 0.955452

10 1 0 4.407881 0.221226 0.984332

11 1 0 3.464496 1.660158 0.591098

12 1 0 2.997599 0.653778 1.977251

13 6 0 3.026455 -0.185778 -1.397715

14 1 0 4.056508 -0.558177 -1.443168

15 1 0 2.423682 -0.802367 -2.073799

16 1 0 3.029113 0.838814 -1.785696

17 6 0 2.567517 -1.692010 0.569144

18 1 0 2.012215 -2.383046 -0.073598

19 1 0 3.608870 -2.031668 0.594810

20 1 0 2.156491 -1.758921 1.582544

21 1 0 -4.617175 0.408257 0.180902

22 6 0 -3.653919 0.805466 -0.161820

23 6 0 -2.531922 -0.234015 0.039539

24 1 0 -3.457893 1.726823 0.398083

25 1 0 -3.761900 1.071980 -1.220889

26 6 0 -1.204825 0.336172 -0.543039

Page 163: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

16

27 6 0 -2.425775 -0.567463 1.541376

28 6 0 -2.910239 -1.515493 -0.732839

29 6 0 -0.720496 1.681864 0.050012

30 1 0 -1.394575 0.502002 -1.612820

31 1 0 -3.372168 -0.990472 1.899831

32 1 0 -1.639642 -1.302428 1.746230

33 1 0 -2.215509 0.321631 2.145704

34 1 0 -3.867074 -1.916380 -0.376507

35 1 0 -3.011983 -1.314755 -1.806845

36 1 0 -2.157111 -2.302257 -0.608939

37 1 0 -0.945723 1.747062 1.119689

38 1 0 -1.173395 2.547237 -0.444130

---------------------------------------------------------------------

Rotational constants (GHZ): 1.5205473 0.4285443 0.3990738

------------------------------------------------------------------------------

Zero-point correction= 0.355673 (Hartree/Particle)

Thermal correction to Energy= 0.370350

Thermal correction to Enthalpy= 0.371295

Thermal correction to Gibbs Free Energy= 0.316269

Sum of electronic and zero-point Energies= -526.730574

Sum of electronic and thermal Energies= -526.715897

Sum of electronic and thermal Enthalpies= -526.714953

Sum of electronic and thermal Free Energies= -526.769978

_____________________________________________________________________________________

Molecule = 4PRX. Final optimised geometry with frequency analysis.

--------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -527.085766223 A.U

----------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.768240 -1.566360 0.151598

2 1 0 -0.892453 -1.650990 1.248049

3 1 0 -1.360639 -2.365962 -0.302887

4 7 0 -1.178186 -0.255419 -0.363354

5 1 0 -0.127245 1.554851 -0.675589

6 6 0 -0.042277 0.630021 -0.098900

7 1 0 0.040189 0.911212 0.968135

8 6 0 -2.533325 0.229282 -0.008626

9 6 0 -2.714639 0.516334 1.501708

10 1 0 -3.737116 0.854737 1.705897

11 1 0 -2.537831 -0.378738 2.108473

12 1 0 -2.033218 1.301050 1.848624

13 6 0 -3.559525 -0.833424 -0.448468

14 1 0 -4.577397 -0.445669 -0.331191

15 1 0 -3.408532 -1.096739 -1.501130

16 1 0 -3.486899 -1.748183 0.148991

17 6 0 -2.813208 1.518751 -0.806268

18 1 0 -2.627451 1.353216 -1.873027

19 1 0 -3.857915 1.823446 -0.678588

20 1 0 -2.187652 2.353803 -0.473811

21 1 0 4.647127 -0.361483 -0.276063

22 6 0 3.647837 -0.676776 -0.600528

23 6 0 2.561120 0.230908 0.012545

24 1 0 3.517357 -1.722979 -0.300783

25 1 0 3.624867 -0.637173 -1.696782

26 6 0 1.173775 -0.212559 -0.535671

27 6 0 2.657657 0.150921 1.550070

28 6 0 2.833290 1.685490 -0.425310

29 6 0 0.729690 -1.669862 -0.211760

30 1 0 1.233923 -0.124542 -1.628466

31 1 0 3.660933 0.447559 1.879601

32 1 0 1.941219 0.817577 2.042167

33 1 0 2.481097 -0.864454 1.922652

34 1 0 3.838275 2.002935 -0.120792

35 1 0 2.767125 1.790228 -1.515587

36 1 0 2.117421 2.384379 0.022809

37 1 0 1.295869 -2.104733 0.617484

38 1 0 0.883309 -2.321781 -1.077043

---------------------------------------------------------------------

Rotational constants (GHZ): 1.5430179 0.4200197 0.3918247

-------------------------------------------------------------------------

Zero-point correction= 0.349104 (Hartree/Particle)

Thermal correction to Energy= 0.365602

Page 164: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

17

Thermal correction to Enthalpy= 0.366546

Thermal correction to Gibbs Free Energy= 0.307120

Sum of electronic and zero-point Energies= -526.623684

Sum of electronic and thermal Energies= -526.607186

Sum of electronic and thermal Enthalpies= -526.606241

Sum of electronic and thermal Free Energies= -526.665667

______________________________________________________________________________________

Molecule =4PSN. Final optimised geometry with frequency analysis.

--------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

---------------------------------------

E(RB+HF-LYP) = -527.086219299 A.U.

---------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.793149 1.626981 -0.134554

2 1 0 -1.075323 1.922887 -1.164831

3 1 0 -1.317217 2.296779 0.554067

4 7 0 -1.081404 0.225737 0.170381

5 1 0 0.141437 -1.490269 0.059631

6 6 0 -0.043542 -0.568650 -0.500952

7 1 0 -0.330790 -0.874279 -1.523142

8 6 0 -2.481172 -0.244019 0.060703

9 6 0 -3.054096 -0.141085 -1.373942

10 1 0 -4.081768 -0.521241 -1.404320

11 1 0 -3.076690 0.896777 -1.724221

12 1 0 -2.465480 -0.727011 -2.088608

13 6 0 -3.354893 0.593887 1.014902

14 1 0 -4.370064 0.183762 1.057177

15 1 0 -2.932823 0.582485 2.025652

16 1 0 -3.437593 1.635968 0.688783

17 6 0 -2.538549 -1.711943 0.526448

18 1 0 -2.095419 -1.814289 1.523268

19 1 0 -3.578802 -2.052373 0.574150

20 1 0 -2.005300 -2.380523 -0.157426

21 1 0 3.863203 -1.915561 -0.358034

22 6 0 2.918735 -1.506052 -0.736924

23 6 0 2.518631 -0.238148 0.046529

24 1 0 2.161447 -2.293897 -0.652082

25 1 0 3.055029 -1.285919 -1.803300

26 6 0 1.213769 0.350449 -0.569460

27 6 0 2.357996 -0.599407 1.536948

28 6 0 3.651756 0.798745 -0.097799

29 6 0 0.725692 1.691819 0.033169

30 1 0 1.436937 0.526861 -1.630665

31 1 0 3.284530 -1.046320 1.917569

32 1 0 2.143253 0.280950 2.152216

33 1 0 1.551992 -1.323082 1.700510

34 1 0 4.600310 0.391857 0.273502

35 1 0 3.799396 1.080683 -1.148101

36 1 0 3.439821 1.712571 0.468513

37 1 0 0.965479 1.755598 1.099602

38 1 0 1.167192 2.561960 -0.462990

------------------------------------------------------------------------------

Rotational constants (GHZ): 1.5134610 0.4316331 0.4018811

--------------------------------------------------------------------------------

Zero-point correction= 0.355742 (Hartree/Particle)

Thermal correction to Energy= 0.370405

Thermal correction to Enthalpy= 0.371349

Thermal correction to Gibbs Free Energy= 0.316345

Sum of electronic and zero-point Energies= -526.730478

Sum of electronic and thermal Energies= -526.715815

Sum of electronic and thermal Enthalpies= -526.714871

Sum of electronic and thermal Free Energies= -526.769874

______________________________________________________________________________________

Molecule = 4PSX. Final optimised geometry with frequency analysis.

-------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

-------------------------------------------------------------------

E(RB+HF-LYP) = -527.079024562 A.U

---------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Page 165: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

18

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.756464 -1.571622 -0.549013

2 1 0 -0.476494 -1.964082 -1.537511

3 1 0 -1.532812 -2.231551 -0.157283

4 7 0 -1.244945 -0.194435 -0.719221

5 1 0 -0.230544 1.656966 -0.443357

6 6 0 -0.019201 0.614893 -0.684797

7 1 0 0.417923 0.608333 -1.693726

8 6 0 -2.422353 0.234641 0.081740

9 6 0 -2.228784 0.130982 1.614235

10 1 0 -3.136133 0.445264 2.144743

11 1 0 -2.008432 -0.897877 1.920952

12 1 0 -1.408400 0.771999 1.955691

13 6 0 -3.626299 -0.635545 -0.338567

14 1 0 -4.540487 -0.273689 0.145535

15 1 0 -3.763623 -0.590959 -1.423811

16 1 0 -3.505030 -1.685600 -0.054241

17 6 0 -2.771470 1.691950 -0.284340

18 1 0 -2.821654 1.810160 -1.371843

19 1 0 -3.746268 1.957645 0.139038

20 1 0 -2.045558 2.411756 0.107568

21 1 0 3.819618 1.932176 -0.086958

22 6 0 2.749058 1.724307 0.031284

23 6 0 2.484557 0.203711 0.047062

24 1 0 2.224480 2.219970 -0.793673

25 1 0 2.420854 2.192885 0.967874

26 6 0 0.970324 -0.043152 0.322264

27 6 0 2.958058 -0.396144 -1.292958

28 6 0 3.309998 -0.422542 1.190174

29 6 0 0.501387 -1.525595 0.360300

30 1 0 0.774242 0.396983 1.309302

31 1 0 4.029316 -0.205356 -1.431716

32 1 0 2.813570 -1.481695 -1.332288

33 1 0 2.435922 0.042229 -2.150427

34 1 0 4.380105 -0.221867 1.054153

35 1 0 3.014406 -0.010322 2.163198

36 1 0 3.179989 -1.509869 1.234736

37 1 0 1.266623 -2.220403 -0.000628

38 1 0 0.260144 -1.827365 1.384919

------------------------------------------------------------------------------

Rotational constants (GHZ): 1.5201443 0.4407954 0.4165665

-------------------------------------------------------------------------------

Zero-point correction= 0.356017 (Hartree/Particle)

Thermal correction to Energy= 0.371476

Thermal correction to Enthalpy= 0.372420

Thermal correction to Gibbs Free Energy= 0.314869

Sum of electronic and zero-point Energies= -526.723007

Sum of electronic and thermal Energies= -526.707549

Sum of electronic and thermal Enthalpies= -526.706605

Sum of electronic and thermal Free Energies= -526.764155

______________________________________________________________________________________

Molecule = 4TRN. Final optimised geometry with frequency analysis.

------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------

E(RB+HF-LYP) = -526.969146429 A.U.

------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 1.288710 1.855592 -0.193374

2 1 0 1.005292 2.582842 -0.942421

3 1 0 1.989475 2.187157 0.560092

4 7 0 1.371686 0.571416 -0.614180

5 1 0 0.619264 -0.885427 -1.918698

6 6 0 0.514767 0.125682 -1.561054

7 1 0 0.163912 0.863606 -2.268491

8 6 0 2.272361 -0.375468 0.156365

9 6 0 2.048574 -1.839726 -0.253660

10 1 0 2.704089 -2.469820 0.355457

11 1 0 1.018547 -2.164094 -0.083422

12 1 0 2.305792 -2.017059 -1.302365

13 6 0 2.019877 -0.244139 1.670838

14 1 0 2.648573 -0.966218 2.203051

15 1 0 2.267858 0.749654 2.050755

Page 166: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

19

16 1 0 0.975478 -0.451049 1.915136

17 6 0 3.726382 0.009499 -0.181467

18 1 0 3.951330 1.035098 0.124262

19 1 0 4.421534 -0.661925 0.334955

20 1 0 3.904568 -0.072454 -1.258994

21 1 0 -4.498594 -0.654089 0.674597

22 6 0 -3.849481 0.194307 0.418487

23 6 0 -2.420009 -0.286746 0.049102

24 1 0 -3.820555 0.877710 1.274184

25 1 0 -4.312922 0.729823 -0.419021

26 6 0 -1.628137 0.954908 -0.368720

27 6 0 -1.826751 -1.013000 1.266577

28 6 0 -2.543684 -1.280088 -1.122858

29 6 0 -1.003686 1.843474 0.472442

30 1 0 -1.956909 1.346161 -1.333226

31 1 0 -2.472771 -1.847559 1.566798

32 1 0 -0.837387 -1.422729 1.040059

33 1 0 -1.730795 -0.347476 2.132010

34 1 0 -3.219469 -2.106845 -0.868671

35 1 0 -2.946564 -0.785057 -2.015686

36 1 0 -1.568879 -1.700370 -1.387271

37 1 0 -0.845535 1.615545 1.523205

38 1 0 -0.960660 2.898897 0.226898

---------------------------------------------------------------------------

Rotational constants (GHZ): 1.2880531 0.4513155 0.4229226

-----------------------------------------------------------------------------

Zero-point correction= 0.349377 (Hartree/Particle)

Thermal correction to Energy= 0.365816

Thermal correction to Enthalpy= 0.366761

Thermal correction to Gibbs Free Energy= 0.307453

Sum of electronic and zero-point Energies= -526.619769

Sum of electronic and thermal Energies= -526.603330

Sum of electronic and thermal Enthalpies= -526.602386

Sum of electronic and thermal Free Energies= -526.661693

------------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -527.085884551 A.U.

_____________________________________________________________________________________

Molecule = 4TRX. Final optimised geometry with frequency analysis.

------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

-------------------------------------------------------

E(RB+HF-LYP) = -526.972787616 A.U.

---------------------------------------------------------------

Standard orientation:

------------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

------------------------------------------------------------------------

1 6 0 0.995392 -1.359630 -1.016765

2 1 0 0.245305 -1.456599 -1.789370

3 1 0 1.730947 -2.143256 -0.939837

4 7 0 1.341002 -0.097303 -0.684714

5 1 0 0.748013 1.906436 -0.557004

6 6 0 0.452107 0.908724 -0.845806

7 1 0 -0.250134 0.807713 -1.660117

8 6 0 2.570716 0.175872 0.162111

9 6 0 3.429885 1.218216 -0.579417

10 1 0 4.350936 1.407464 -0.017210

11 1 0 3.703363 0.852338 -1.574794

12 1 0 2.907226 2.170700 -0.699713

13 6 0 3.414902 -1.091961 0.364547

14 1 0 4.290708 -0.827701 0.965369

15 1 0 2.865460 -1.870506 0.901410

16 1 0 3.775105 -1.502019 -0.584153

17 6 0 2.140841 0.702359 1.544410

18 1 0 1.513206 -0.030751 2.059602

19 1 0 3.030438 0.884096 2.157708

20 1 0 1.581865 1.637969 1.472938

21 1 0 -4.779336 0.060708 0.702234

22 6 0 -3.789370 -0.262730 1.051919

23 6 0 -2.677080 0.170524 0.061386

24 1 0 -3.803415 -1.351893 1.168423

25 1 0 -3.623702 0.175474 2.043611

26 6 0 -1.334456 -0.261500 0.658088

27 6 0 -2.960571 -0.480089 -1.305453

28 6 0 -2.741744 1.704845 -0.079620

Page 167: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

20

29 6 0 -0.816671 -1.526309 0.593781

30 1 0 -0.975394 0.395871 1.447839

31 1 0 -3.939140 -0.160993 -1.685425

32 1 0 -2.207630 -0.200199 -2.050799

33 1 0 -2.977634 -1.573550 -1.239292

34 1 0 -3.741794 2.025067 -0.398453

35 1 0 -2.526180 2.193771 0.878830

36 1 0 -2.018452 2.075794 -0.812004

37 1 0 -1.294123 -2.314773 0.019221

38 1 0 -0.096355 -1.869984 1.328895

----------------------------------------------------------------------------

Rotational constants (GHZ): 1.4748852 0.3902317 0.3772372

------------------------------------------------------------------------------

Zero-point correction= 0.349104 (Hartree/Particle)

Thermal correction to Energy= 0.365602

Thermal correction to Enthalpy= 0.366546

Thermal correction to Gibbs Free Energy= 0.307120

Sum of electronic and zero-point Energies= -526.623684

Sum of electronic and thermal Energies= -526.607186

Sum of electronic and thermal Enthalpies= -526.606241

Sum of electronic and thermal Free Energies= -526.665667

---------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------------------------

E(RB+HF-LYP) = -527.090380751 A.U.

______________________________________________________________________________________

Molecule = 4TSN. Final optimised geometry with frequency analysis.

------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

-------------------------------------------------

E(RB+HF-LYP) = -526.969146807 A.U.

------------------------------------------------------------

Standard orientation:

--------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

-----------------------------------------------------------------------

1 6 0 -1.289600 1.856081 -0.192046

2 1 0 -1.006298 2.584062 -0.940397

3 1 0 -1.990343 2.186619 0.561860

4 7 0 -1.371511 0.572164 -0.613634

5 1 0 -0.618739 -0.883251 -1.919610

6 6 0 -0.514695 0.127596 -1.561113

7 1 0 -0.163974 0.866272 -2.267831

8 6 0 -2.271711 -0.375784 0.156185

9 6 0 -3.725914 0.007850 -0.182334

10 1 0 -4.420683 -0.664797 0.333004

11 1 0 -3.952184 1.032935 0.124152

12 1 0 -3.903254 -0.073339 -1.260057

13 6 0 -2.020252 -0.244615 1.670857

14 1 0 -2.648535 -0.967525 2.202432

15 1 0 -0.975808 -0.450490 1.915785

16 1 0 -2.269539 0.748771 2.050970

17 6 0 -2.046137 -1.839695 -0.254033

18 1 0 -1.015981 -2.163150 -0.082798

19 1 0 -2.701793 -2.470566 0.354125

20 1 0 -2.301943 -2.017118 -1.303023

21 1 0 3.220031 -2.106051 -0.869312

22 6 0 2.543481 -1.279824 -1.123194

23 6 0 2.419343 -0.286833 0.049029

24 1 0 1.569047 -1.701080 -1.387503

25 1 0 2.945743 -0.784302 -2.016023

26 6 0 1.628157 0.955323 -0.368819

27 6 0 1.825002 -1.013528 1.265754

28 6 0 3.848763 0.193497 0.419499

29 6 0 1.004493 1.844114 0.472529

30 1 0 1.956986 1.346296 -1.333407

31 1 0 2.469825 -1.849323 1.565097

32 1 0 1.729908 -0.348803 2.131904

33 1 0 0.835090 -1.421595 1.038639

34 1 0 4.496371 -0.654993 0.679096

35 1 0 4.314303 0.726034 -0.418752

36 1 0 3.819241 0.879355 1.273193

37 1 0 0.846647 1.616381 1.523379

38 1 0 0.960891 2.899419 0.226631

-----------------------------------------------------------------------------

Rotational constants (GHZ): 1.2877801 0.4514830 0.4230323

-------------------------------------------------------------------------------

Page 168: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

21

Zero-point correction= 0.349369 (Hartree/Particle)

Thermal correction to Energy= 0.365813

Thermal correction to Enthalpy= 0.366757

Thermal correction to Gibbs Free Energy= 0.307433

Sum of electronic and zero-point Energies= -526.619777

Sum of electronic and thermal Energies= -526.603334

Sum of electronic and thermal Enthalpies= -526.602389

Sum of electronic and thermal Free Energies= -526.661714

-----------------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

------------------------------------------------------------------------------------

E(RB+HF-LYP) = -527.085889096 A.U.

__________________________________________________________________________________

Molecule = 4TSX. Final optimised geometry with frequency analysis.

------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

--------------------------------------------------------------------

E(RB+HF-LYP) = -526.972788296 A.U

---------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.993514 -1.356131 -1.018992

2 1 0 -0.242463 -1.450924 -1.790878

3 1 0 -1.727989 -2.140919 -0.943678

4 7 0 -1.340716 -0.094952 -0.684571

5 1 0 -0.750794 1.909345 -0.552593

6 6 0 -0.453077 0.912679 -0.843161

7 1 0 0.249677 0.814724 -1.657399

8 6 0 -2.571296 0.174933 0.162179

9 6 0 -2.142722 0.697963 1.546190

10 1 0 -3.032957 0.879639 2.158584

11 1 0 -1.516811 -0.037065 2.060759

12 1 0 -1.582321 1.632916 1.477452

13 6 0 -3.414597 -1.094123 0.360576

14 1 0 -4.291257 -0.832081 0.961138

15 1 0 -3.773458 -1.502139 -0.589512

16 1 0 -2.865122 -1.873538 0.896138

17 6 0 -3.430982 1.218532 -0.576968

18 1 0 -3.704941 0.854457 -1.572874

19 1 0 -4.351754 1.406566 -0.013903

20 1 0 -2.908593 2.171332 -0.695805

21 1 0 3.743577 2.025569 -0.392064

22 6 0 2.742693 1.704766 -0.076448

23 6 0 2.677618 0.170228 0.061787

24 1 0 2.021468 2.076549 -0.810447

25 1 0 2.524349 2.192261 0.882091

26 6 0 1.335279 -0.262250 0.658702

27 6 0 2.959510 -0.477457 -1.306780

28 6 0 3.790569 -0.265823 1.050329

29 6 0 0.816759 -1.526543 0.591944

30 1 0 0.975964 0.394387 1.448907

31 1 0 3.937894 -0.157999 -1.686936

32 1 0 2.976087 -1.571083 -1.243211

33 1 0 2.206007 -0.195341 -2.050699

34 1 0 4.780362 0.058068 0.700581

35 1 0 3.625909 0.169995 2.043239

36 1 0 3.804281 -1.355274 1.164152

37 1 0 1.294202 -2.314271 0.016332

38 1 0 0.096265 -1.871150 1.326474

-----------------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.4752666 0.3901289 0.3771482

------------------------------------------------------------------------------------------------

Zero-point correction= 0.349116 (Hartree/Particle)

Thermal correction to Energy= 0.365611

Thermal correction to Enthalpy= 0.366555

Thermal correction to Gibbs Free Energy= 0.307143

Sum of electronic and zero-point Energies= -526.623672

Sum of electronic and thermal Energies= -526.607178

Sum of electronic and thermal Enthalpies= -526.606233

Sum of electronic and thermal Free Energies= -526.665645

---------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

------------------------------------------------------------------------

E(RB+HF-LYP) = -527.090385241 A.U.

_____________________________________________________________________________________

Page 169: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

22

Molecule =4AY.Final optimised geometry with frequency analysis.

--------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------------------------

E(RB+HF-LYP) = -291.133618961 A.U

-------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.582940 1.236907 0.024822

2 1 0 -2.664974 1.233556 0.052822

3 1 0 -1.053229 2.131411 -0.246035

4 7 0 -0.974033 0.041510 -0.023855

5 1 0 -1.066892 -2.043577 0.184766

6 6 0 -1.606921 -1.142084 -0.051357

7 1 0 -2.688324 -1.134093 -0.059790

8 6 0 0.555453 -0.012326 -0.001353

9 6 0 0.981795 -0.632382 1.342856

10 1 0 2.074424 -0.623498 1.422873

11 1 0 0.570686 -0.050156 2.174033

12 1 0 0.643939 -1.666158 1.447738

13 6 0 1.183024 1.385664 -0.108839

14 1 0 2.270813 1.271153 -0.072370

15 1 0 0.932521 1.876489 -1.054202

16 1 0 0.884282 2.033405 0.719375

17 6 0 1.038169 -0.857763 -1.192519

18 1 0 0.692513 -0.422732 -2.136046

19 1 0 2.133565 -0.877652 -1.203727

20 1 0 0.677425 -1.886814 -1.144112

----------------------------------------------------------------------------------------

Rotational constants (GHZ): 3.2325943 2.4027464 1.9989612

----------------------------------------------------------------------------------------------

Zero-point correction= 0.181036 (Hartree/Particle)

Thermal correction to Energy= 0.189948

Thermal correction to Enthalpy= 0.190892

Thermal correction to Gibbs Free Energy= 0.148897

Sum of electronic and zero-point Energies= -290.952583

Sum of electronic and thermal Energies= -290.943671

Sum of electronic and thermal Enthalpies= -290.942727

Sum of electronic and thermal Free Energies= -290.984722

-----------------------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------------------------------------------------------------

E(RB+HF-LYP) = -291.202185447 A.U.

_____________________________________________________________________________________

Molecule = 5EN. Final optimised geometry with frequency analysis.

--------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

----------------------------------------------------------

E(RB+HF-LYP) = -306.466612335 A.U

----------------------------------------------------------

Standard orientation:

------------------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

-----------------------------------------------------------------------------

1 6 0 2.174514 -0.764248 -0.000122

2 1 0 1.671026 -1.725656 -0.000375

3 1 0 3.260892 -0.771163 -0.000212

4 6 0 1.490291 0.382451 0.000116

5 1 0 1.988501 1.347531 0.000254

6 6 0 0.010336 0.485109 0.000079

7 8 0 -0.588403 1.542773 -0.000121

8 8 0 -0.605434 -0.720382 0.000252

9 6 0 -2.039590 -0.671968 -0.000106

10 1 0 -2.367601 -1.711992 -0.001373

11 1 0 -2.407989 -0.154031 0.889677

12 1 0 -2.407437 -0.151881 -0.888829

-----------------------------------------------------------------------------------

Rotational constants (GHZ): 6.8994590 2.7891060 2.0113889

-------------------------------------------------------------------------------------

Zero-point correction= 0.095853 (Hartree/Particle)

Thermal correction to Energy= 0.102488

Thermal correction to Enthalpy= 0.103432

Thermal correction to Gibbs Free Energy= 0.065386

Page 170: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

23

Sum of electronic and zero-point Energies= -306.370759

Sum of electronic and thermal Energies= -306.364125

Sum of electronic and thermal Enthalpies= -306.363180

Sum of electronic and thermal Free Energies= -306.401226

-----------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

------------------------------------------------------------------------

E(RB+HF-LYP) = -306.553540194 A.U.

_____________________________________________________________________________________

Molecule = 5PRN-R. Final optimised geometry.

----------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

: E(RB+HF-LYP) = -706.427688181 A.U.

-----------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.483754 -0.094859 1.723084

2 1 0 1.057785 0.816342 1.910079

3 1 0 0.409452 -0.641142 2.670459

4 7 0 -0.864946 0.242712 1.256901

5 6 0 -1.264308 -0.879759 0.399240

6 1 0 -1.584911 -1.712423 1.038551

7 6 0 -2.422492 -0.618788 -0.558892

8 8 0 -2.880075 -1.511248 -1.231989

9 8 0 -2.899940 0.639829 -0.697336

10 6 0 -2.442354 1.694051 0.176102

11 1 0 -3.072694 1.697685 1.072340

12 1 0 -2.606014 2.618937 -0.382287

13 6 0 -0.986285 1.520460 0.557827

14 1 0 -0.347091 1.602559 -0.337814

15 1 0 -0.700710 2.326746 1.242858

16 6 0 0.019742 -1.310694 -0.369043

17 1 0 -0.025916 -2.353109 -0.690398

18 1 0 0.147735 -0.691018 -1.261297

19 6 0 1.153588 -1.039595 0.652966

20 1 0 1.471779 -1.969187 1.130017

21 6 0 2.406676 -0.458049 0.030874

22 8 0 3.507494 -0.961779 0.076149

23 8 0 2.159998 0.725485 -0.587512

24 1 0 2.927525 2.271978 -1.645381

25 1 0 4.074612 1.553013 -0.465365

26 6 0 3.299644 1.345211 -1.207713

27 1 0 3.715464 0.694461 -1.981237

---------------------------------------------------------------------

Rotational constants (GHZ): 1.2784729 0.4366385 0.4061387

---------------------------------------------------------------------------

Zero-point correction= 0.224595 (Hartree/Particle)

Thermal correction to Energy= 0.237444

Thermal correction to Enthalpy= 0.238388

Thermal correction to Gibbs Free Energy= 0.183908

Sum of electronic and zero-point Energies= -706.203094

Sum of electronic and thermal Energies= -706.190244

Sum of electronic and thermal Enthalpies= -706.189300

Sum of electronic and thermal Free Energies= -706.243780

_____________________________________________________________________________________

Molecule = 5PRN. Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

----------------------------------------

E(RB+HF-LYP) = -706.426627511 A.U.

--------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.050777 2.278099 0.270453

2 1 0 -0.343159 2.037320 1.297166

3 1 0 -0.452100 3.267046 0.031002

4 6 0 -0.569947 1.187772 -0.706133

5 1 0 -0.901909 1.635464 -1.644217

6 6 0 -1.781306 0.453090 -0.164105

7 8 0 -2.899236 0.529002 -0.618412

Page 171: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

24

8 8 0 -1.468967 -0.276096 0.936972

9 6 0 -2.544626 -1.065823 1.473799

10 1 0 -2.125824 -1.583471 2.337207

11 1 0 -3.377547 -0.424742 1.773323

12 1 0 -2.890954 -1.782963 0.725821

13 8 0 -0.410998 -1.696035 -1.625769

14 6 0 0.457661 -1.204824 -0.943894

15 6 0 0.720418 0.301076 -0.983475

16 8 0 1.214404 -1.994925 -0.153066

17 7 0 1.801629 0.790300 -0.117088

18 1 0 1.004406 0.499848 -2.024647

19 6 0 2.276315 -1.433443 0.645713

20 6 0 1.483931 2.200914 0.120694

21 6 0 1.958289 -0.019750 1.087984

22 1 0 2.383588 -2.110388 1.496836

23 1 0 3.198675 -1.448216 0.054305

24 1 0 2.029832 2.575938 0.991708

25 1 0 1.807544 2.784559 -0.751791

26 1 0 1.070452 -0.030349 1.742957

27 1 0 2.804237 0.369617 1.665923

---------------------------------------------------------------------

Rotational constants (GHZ): 0.9530324 0.6942529 0.5440803

-------------------------------------------------------------------------------------------

Zero-point correction= 0.224577 (Hartree/Particle)

Thermal correction to Energy= 0.237319

Thermal correction to Enthalpy= 0.238263

Thermal correction to Gibbs Free Energy= 0.184836

Sum of electronic and zero-point Energies= -706.202050

Sum of electronic and thermal Energies= -706.189308

Sum of electronic and thermal Enthalpies= -706.188364

Sum of electronic and thermal Free Energies= -706.241791

______________________________________________________________________________________

Molecule = 5PRX-R. Final optimised geometry with frequency analysis.

---------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

----------------------------------------

E(RB+HF-LYP) = -706.427815403 A.U.

----------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.421119 -1.286266 -0.672788

2 1 0 0.492979 -2.376249 -0.620319

3 1 0 0.956873 -0.949268 -1.567056

4 7 0 -0.973289 -0.859900 -0.779829

5 6 0 -0.938838 0.559991 -0.401096

6 1 0 -0.600595 1.136208 -1.269729

7 6 0 -2.268795 1.174922 0.018724

8 8 0 -2.360727 2.357825 0.243681

9 8 0 -3.345235 0.372472 0.199883

10 6 0 -3.288276 -1.021282 -0.166835

11 1 0 -3.572096 -1.114763 -1.220972

12 1 0 -4.041563 -1.512800 0.453551

13 6 0 -1.908372 -1.607829 0.055379

14 1 0 -1.667540 -1.584135 1.135136

15 1 0 -1.908904 -2.656997 -0.260730

16 6 0 0.139745 0.703633 0.730207

17 1 0 -0.324958 0.740751 1.719412

18 1 0 0.706658 1.626675 0.601799

19 6 0 1.018002 -0.571000 0.588126

20 1 0 0.909670 -1.212056 1.465747

21 6 0 2.503490 -0.305150 0.457371

22 8 0 3.367809 -0.819975 1.132980

23 8 0 2.763695 0.573711 -0.541213

24 1 0 4.175387 1.596107 -1.570166

25 1 0 4.587506 1.316178 0.154609

26 6 0 4.152793 0.879844 -0.748419

27 1 0 4.710062 -0.023795 -1.009138

---------------------------------------------------------------------

Rotational constants (GHZ): 1.5310256 0.3864552 0.3416751

-----------------------------------------------------------------------------------

Zero-point correction= 0.224602 (Hartree/Particle)

Thermal correction to Energy= 0.237474

Thermal correction to Enthalpy= 0.238419

Thermal correction to Gibbs Free Energy= 0.183569

Sum of electronic and zero-point Energies= -706.203213

Page 172: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

25

Sum of electronic and thermal Energies= -706.190341

Sum of electronic and thermal Enthalpies= -706.189397

Sum of electronic and thermal Free Energies= -706.244246

_____________________________________________________________________________________

Molecule =5PRX. Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -706.426976672 A.U

-----------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.640554 2.239691 -0.453240

2 1 0 1.295766 3.087019 -0.230181

3 1 0 0.117681 2.459525 -1.391556

4 7 0 1.429882 1.018401 -0.647332

5 6 0 0.457132 -0.062297 -0.464503

6 1 0 -0.139491 -0.152478 -1.377652

7 6 0 1.032507 -1.445280 -0.189291

8 8 0 0.315786 -2.416815 -0.155769

9 8 0 2.352770 -1.572439 0.081717

10 6 0 3.243025 -0.447664 -0.073928

11 1 0 3.602933 -0.433649 -1.108621

12 1 0 4.081814 -0.650983 0.596136

13 6 0 2.564483 0.866789 0.259054

14 1 0 3.271023 1.686379 0.086337

15 1 0 2.292053 0.882186 1.331579

16 6 0 -0.395258 1.943717 0.667824

17 1 0 -0.051723 2.310502 1.639459

18 1 0 -1.354474 2.424307 0.457382

19 6 0 -0.510076 0.389751 0.697181

20 1 0 -0.160644 -0.000601 1.655378

21 6 0 -1.929626 -0.120119 0.548372

22 8 0 -2.560184 -0.683152 1.413980

23 8 0 -2.432325 0.165878 -0.677538

24 6 0 -3.777966 -0.284257 -0.907942

25 1 0 -3.841182 -1.368978 -0.791655

26 1 0 -4.013435 0.007857 -1.931823

27 1 0 -4.466526 0.190348 -0.203749

-------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.1837441 0.5266945 0.4216203

------------------------------------------------------------------------------------

Zero-point correction= 0.224531 (Hartree/Particle)

Thermal correction to Energy= 0.237437

Thermal correction to Enthalpy= 0.238381

Thermal correction to Gibbs Free Energy= 0.183608

Sum of electronic and zero-point Energies= -706.202446

Sum of electronic and thermal Energies= -706.189540

Sum of electronic and thermal Enthalpies= -706.188595

Sum of electronic and thermal Free Energies= -706.243369

_____________________________________________________________________________________

Molecule = 5PSN-R. Final optimised geometry with frequency analysis .

---------------------------------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------------------

E(RB+HF-LYP) = -706.422633389 A.U.

-----------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.452477 -0.762220 1.607922

2 1 0 -1.039626 0.049288 2.047891

3 1 0 -0.456520 -1.591699 2.327163

4 7 0 0.917598 -0.321585 1.353447

5 6 0 1.375595 -0.984040 0.128817

6 1 0 1.788973 -1.971538 0.365869

7 6 0 2.465362 -0.250388 -0.645939

8 8 0 3.309959 -0.833327 -1.281025

9 8 0 2.422333 1.105742 -0.659055

10 6 0 1.403397 1.772146 0.117777

11 1 0 0.458986 1.771390 -0.437499

12 1 0 1.753514 2.802778 0.220131

Page 173: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

26

13 6 0 1.247781 1.095079 1.472019

14 1 0 2.189919 1.213373 2.027232

15 1 0 0.469659 1.603814 2.050239

16 6 0 0.107403 -1.166590 -0.761475

17 1 0 0.190973 -2.045582 -1.405585

18 1 0 -0.032321 -0.294557 -1.406449

19 6 0 -1.058622 -1.281225 0.253032

20 1 0 -1.375256 -2.320638 0.361384

21 6 0 -2.300580 -0.519860 -0.165255

22 8 0 -3.402159 -1.001702 -0.308376

23 8 0 -2.043072 0.803004 -0.347849

24 1 0 -2.797248 2.618683 -0.835501

25 1 0 -3.586995 1.247684 -1.683288

26 6 0 -3.175796 1.601123 -0.734374

27 1 0 -3.956106 1.554212 0.029563

-------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.2413501 0.4645122 0.4338639

---------------------------------------------------------------------------------------

Zero-point correction= 0.224584 (Hartree/Particle)

Thermal correction to Energy= 0.237494

Thermal correction to Enthalpy= 0.238438

Thermal correction to Gibbs Free Energy= 0.183225

Sum of electronic and zero-point Energies= -706.198049

Sum of electronic and thermal Energies= -706.185139

Sum of electronic and thermal Enthalpies= -706.184195

Sum of electronic and thermal Free Energies= -706.239408

____________________________________________________________________________________

Molecule = 5PSN. Final optimised geometry with frequency analysis.

------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

------------------------------------------------------------

E(RB+HF-LYP) = -706.426558082 A.U.

-------------------------------------------------------------

Standard orientation:

------------------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

----------------------------------------------------------------------------------

1 6 0 -1.045877 2.291273 0.278584

2 1 0 -1.311777 2.801586 1.210319

3 1 0 -1.618049 2.761811 -0.545908

4 7 0 -1.303099 0.862106 0.375486

5 6 0 -0.622003 0.286010 -0.774969

6 1 0 -1.157434 0.557043 -1.713848

7 6 0 -0.637319 -1.234183 -0.767873

8 8 0 0.179677 -1.906569 -1.348212

9 8 0 -1.713105 -1.826670 -0.189125

10 6 0 -2.577351 -1.119471 0.729182

11 1 0 -2.187266 -1.288027 1.738379

12 1 0 -3.553363 -1.603133 0.636341

13 6 0 -2.662917 0.378127 0.459726

14 1 0 -3.244136 0.581106 -0.463100

15 1 0 -3.185558 0.856769 1.295901

16 6 0 0.467059 2.325758 -0.021420

17 1 0 0.759990 3.211947 -0.589711

18 1 0 1.026632 2.325286 0.917502

19 6 0 0.749415 1.003698 -0.819038

20 1 0 1.031936 1.217752 -1.850241

21 6 0 1.915934 0.224863 -0.233052

22 8 0 3.019089 0.176433 -0.728605

23 8 0 1.592467 -0.361204 0.940632

24 1 0 2.212386 -1.542821 2.462079

25 1 0 2.896641 -1.984380 0.862383

26 6 0 2.630923 -1.161144 1.530306

27 1 0 3.519473 -0.555188 1.725318

----------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.0075831 0.6367818 0.4969926

----------------------------------------------------------------------------

Zero-point correction= 0.224199 (Hartree/Particle)

Thermal correction to Energy= 0.236997

Thermal correction to Enthalpy= 0.237942

Thermal correction to Gibbs Free Energy= 0.184259

Sum of electronic and zero-point Energies= -706.202359

Sum of electronic and thermal Energies= -706.189561

Sum of electronic and thermal Enthalpies= -706.188616

Sum of electronic and thermal Free Energies= -706.242299

______________________________________________________________________________________

Page 174: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

27

Molecule = 5PSX-R. Final optimised geometry with frequency analysis.

--------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

-------------------------------------------------------

E(RB+HF-LYP) = -706.428692875 A.U.

--------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.396432 -1.448024 -0.301063

2 1 0 0.473769 -2.391616 -0.850692

3 1 0 0.790603 -1.606670 0.719026

4 7 0 -0.979861 -0.966675 -0.282623

5 6 0 -0.877062 0.438553 0.099289

6 1 0 -0.555363 0.533921 1.160025

7 6 0 -2.214998 1.151938 0.022661

8 8 0 -2.324510 2.336596 -0.177566

9 8 0 -3.316975 0.409827 0.315037

10 6 0 -3.304849 -1.034197 0.256607

11 1 0 -3.627549 -1.320640 -0.750212

12 1 0 -4.059023 -1.359946 0.977906

13 6 0 -1.943377 -1.653474 0.551891

14 1 0 -1.697299 -1.574293 1.630030

15 1 0 -1.979938 -2.718504 0.294937

16 6 0 0.242206 0.965432 -0.805276

17 1 0 -0.167622 1.287784 -1.765286

18 1 0 0.760583 1.813903 -0.356816

19 6 0 1.164679 -0.284459 -1.000703

20 1 0 1.284938 -0.504937 -2.062438

21 6 0 2.567550 -0.106504 -0.452597

22 8 0 3.589380 -0.294668 -1.075283

23 8 0 2.548558 0.288950 0.843784

24 1 0 3.637580 0.793404 2.474000

25 1 0 4.414066 -0.445577 1.431488

26 6 0 3.838485 0.483664 1.448090

27 1 0 4.398265 1.256688 0.915237

------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.4495360 0.3864378 0.3515802

------------------------------------------------------------------------------

Zero-point correction= 0.224182 (Hartree/Particle)

Thermal correction to Energy= 0.237124

Thermal correction to Enthalpy= 0.238068

Thermal correction to Gibbs Free Energy= 0.183008

Sum of electronic and zero-point Energies= -706.204511

Sum of electronic and thermal Energies= -706.191569

Sum of electronic and thermal Enthalpies= -706.190625

Sum of electronic and thermal Free Energies= -706.245685

__________________________________________________________________________________

Molecule =5PSX. Final optimised geometry with frequency analysis.

----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

-------------------------------------------

E(RB+HF-LYP) = -706.428218165 A.U.

-------------------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.838302 2.283982 0.120522

2 1 0 1.411409 3.108883 -0.316134

3 1 0 0.710223 2.494155 1.199210

4 7 0 1.518580 1.010645 -0.101751

5 6 0 0.485919 0.000074 0.101738

6 1 0 0.156151 -0.027925 1.161219

7 6 0 0.970713 -1.404282 -0.206208

8 8 0 0.228910 -2.296816 -0.537598

9 8 0 2.284013 -1.663206 0.025471

10 6 0 3.261935 -0.604370 0.141743

11 1 0 3.679294 -0.436940 -0.856950

12 1 0 4.044173 -1.003854 0.792458

13 6 0 2.694026 0.702123 0.684346

14 1 0 2.466783 0.616094 1.766307

15 1 0 3.448434 1.488348 0.563886

16 6 0 -0.545668 2.077425 -0.551570

17 1 0 -0.612091 2.593433 -1.512247

Page 175: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

28

18 1 0 -1.346198 2.459468 0.087390

19 6 0 -0.670237 0.529087 -0.760140

20 1 0 -0.486616 0.276594 -1.805965

21 6 0 -2.048764 -0.008388 -0.432169

22 8 0 -2.885187 -0.299775 -1.256440

23 8 0 -2.262374 -0.072257 0.903913

24 1 0 -3.551955 -0.566957 2.383708

25 1 0 -4.345471 0.088174 0.911741

26 6 0 -3.555726 -0.564494 1.293256

27 1 0 -3.710107 -1.574502 0.905761

---------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.1533464 0.5145378 0.4162658

------------------------------------------------------------------------------------

Zero-point correction= 0.224084 (Hartree/Particle)

Thermal correction to Energy= 0.237079

Thermal correction to Enthalpy= 0.238023

Thermal correction to Gibbs Free Energy= 0.183397

Sum of electronic and zero-point Energies= -706.204134

Sum of electronic and thermal Energies= -706.191140

Sum of electronic and thermal Enthalpies= -706.190195

Sum of electronic and thermal Free Energies= -706.244821

_____________________________________________________________________________________

Molecule = 5TRN-R. Final optimised geometry with frequency analysis.

---------------------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

-------------------------------------------------------------------------

E(RB+HF-LYP) = -706.350489248 A.U.

----------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.259445 -0.392034 1.963687

2 1 0 0.881663 0.348424 2.448660

3 1 0 0.217980 -1.394531 2.364573

4 7 0 -0.752066 0.025861 1.204892

5 6 0 -1.485820 -0.859218 0.458684

6 1 0 -1.606622 -1.850727 0.872054

7 6 0 -2.515386 -0.428574 -0.482247

8 8 0 -3.161203 -1.207839 -1.149317

9 8 0 -2.691120 0.924406 -0.672915

10 6 0 -2.188978 1.788930 0.348113

11 1 0 -2.846961 1.745165 1.226363

12 1 0 -2.224090 2.799897 -0.064269

13 6 0 -0.767180 1.423178 0.729610

14 1 0 -0.092019 1.499751 -0.128191

15 1 0 -0.402672 2.065915 1.534873

16 6 0 0.268124 -1.607900 -0.823614

17 1 0 -0.240549 -2.555901 -0.959977

18 1 0 0.128883 -0.885174 -1.620077

19 6 0 1.360387 -1.514824 0.013975

20 1 0 1.663701 -2.363043 0.619410

21 6 0 2.400244 -0.481572 -0.075199

22 8 0 3.483205 -0.530501 0.479546

23 8 0 2.046097 0.572558 -0.879976

24 1 0 2.651185 2.294655 -1.750790

25 1 0 3.338805 2.028066 -0.113651

26 6 0 3.070831 1.557280 -1.064400

27 1 0 3.969323 1.105902 -1.493591

---------------------------------------------------------------------

Rotational constants (GHZ): 1.1729477 0.4421402 0.4104846

----------------------------------------------------------------------------

Zero-point correction= 0.218878 (Hartree/Particle)

Thermal correction to Energy= 0.232568

Thermal correction to Enthalpy= 0.233512

Thermal correction to Gibbs Free Energy= 0.177848

Sum of electronic and zero-point Energies= -706.131611

Sum of electronic and thermal Energies= -706.117921

Sum of electronic and thermal Enthalpies= -706.116977

Sum of electronic and thermal Free Energies= -706.172641

--------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -706.543415540 A.U.

_____________________________________________________________________________________

Page 176: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

29

Molecule = 5TRN. Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------------

E(RB+HF-LYP) = -706.348951712 A.U.

------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.134451 2.377195 -0.011083

2 1 0 -1.226000 2.319176 1.068642

3 1 0 -1.170857 3.375787 -0.436195

4 6 0 -1.477401 1.295705 -0.786357

5 1 0 -1.626361 1.402138 -1.856068

6 6 0 -1.909688 -0.011387 -0.275869

7 8 0 -2.462110 -0.863793 -0.943113

8 8 0 -1.662948 -0.178237 1.064714

9 6 0 -2.080161 -1.446413 1.592218

10 1 0 -1.514456 -2.259228 1.128489

11 1 0 -1.875580 -1.400935 2.663587

12 1 0 -3.146120 -1.609044 1.414295

13 6 0 1.126944 2.449586 -0.028353

14 1 0 1.452850 3.022492 0.831263

15 1 0 1.135759 2.936676 -0.994711

16 7 0 1.386305 1.130739 -0.016001

17 6 0 1.064049 0.325271 -1.055481

18 1 0 0.933528 0.780019 -2.026113

19 6 0 1.112090 -1.125568 -0.993791

20 8 0 0.763058 -1.842259 -1.905738

21 8 0 1.539204 -1.699710 0.189525

22 6 0 2.289758 -0.857180 1.062657

23 1 0 3.293622 -0.691677 0.648221

24 1 0 2.388233 -1.400073 2.005592

25 6 0 1.583869 0.466816 1.289186

26 1 0 2.184441 1.124370 1.922869

27 1 0 0.599108 0.312961 1.740272

---------------------------------------------------------------------

Rotational constants (GHZ): 0.8222907 0.6676547 0.5421366

---------------------------------------------------------------------------------

Zero-point correction= 0.218767 (Hartree/Particle)

Thermal correction to Energy= 0.232514

Thermal correction to Enthalpy= 0.233458

Thermal correction to Gibbs Free Energy= 0.177563

Sum of electronic and zero-point Energies= -706.130185

Sum of electronic and thermal Energies= -706.116438

Sum of electronic and thermal Enthalpies= -706.115494

Sum of electronic and thermal Free Energies= -706.171389

------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

------------------------------------------------------------------------------------

E(RB+HF-LYP) = -706.540830420 A.U.

_____________________________________________________________________________________

Molecule = 5TRX-R. Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -706.349727498 A.U.

---------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.249056 -1.406969 -0.919469

2 1 0 0.313002 -2.487130 -0.917077

3 1 0 0.974924 -0.827441 -1.471527

4 7 0 -0.926297 -0.841691 -0.649703

5 6 0 -1.042514 0.517679 -0.516502

6 1 0 -0.362778 1.117560 -1.104891

7 6 0 -2.279623 1.161567 -0.092568

8 8 0 -2.390306 2.362339 0.029666

9 8 0 -3.338353 0.352784 0.269375

10 6 0 -3.310283 -0.994879 -0.200284

11 1 0 -3.558379 -1.022112 -1.269788

12 1 0 -4.087817 -1.528043 0.351728

13 6 0 -1.955442 -1.634544 0.041429

Page 177: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

30

14 1 0 -1.719004 -1.650941 1.112725

15 1 0 -1.929985 -2.655948 -0.345856

16 6 0 0.398407 0.693473 1.279789

17 1 0 -0.389872 0.662628 2.025661

18 1 0 0.692985 1.682456 0.950330

19 6 0 1.251085 -0.381456 1.138885

20 1 0 1.115553 -1.280401 1.731409

21 6 0 2.568495 -0.303611 0.493184

22 8 0 3.465722 -1.115385 0.627870

23 8 0 2.688738 0.793735 -0.316075

24 1 0 3.903086 1.868129 -1.524439

25 1 0 4.751701 1.077900 -0.155910

26 6 0 3.977914 0.962780 -0.920156

27 1 0 4.231701 0.103152 -1.546980

---------------------------------------------------------------------

Rotational constants (GHZ): 1.3827243 0.3810115 0.3375394

--------------------------------------------------------------------------------

Zero-point correction= 0.218840 (Hartree/Particle)

Thermal correction to Energy= 0.232578

Thermal correction to Enthalpy= 0.233522

Thermal correction to Gibbs Free Energy= 0.177382

Sum of electronic and zero-point Energies= -706.130887

Sum of electronic and thermal Energies= -706.117149

Sum of electronic and thermal Enthalpies= -706.116205

Sum of electronic and thermal Free Energies= -706.172346

---------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -706.543130453 A.U.

_____________________________________________________________________________________

Molecule = 5TRX. Final optimised geometry with frequency analysis.

----------------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -706.348242225 A.U

--------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.486034 2.081388 -0.828249

2 1 0 0.982832 3.042895 -0.789460

3 1 0 -0.351696 1.956148 -1.501046

4 7 0 1.236582 0.993750 -0.589459

5 6 0 0.729762 -0.260863 -0.653882

6 1 0 -0.169275 -0.407296 -1.233287

7 6 0 1.446768 -1.440769 -0.203758

8 8 0 0.973544 -2.556063 -0.220082

9 8 0 2.722721 -1.261260 0.301596

10 6 0 3.371310 -0.039008 -0.038506

11 1 0 3.686760 -0.060887 -1.090700

12 1 0 4.262213 0.024488 0.590765

13 6 0 2.463060 1.150991 0.211305

14 1 0 2.950805 2.085900 -0.075447

15 1 0 2.176387 1.202847 1.268840

16 6 0 -0.916264 1.937129 0.966196

17 1 0 -0.300138 2.544814 1.623055

18 1 0 -1.674059 2.467610 0.400554

19 6 0 -1.059377 0.595034 1.218259

20 1 0 -0.507099 0.105263 2.012798

21 6 0 -2.123357 -0.234710 0.635334

22 8 0 -2.529627 -1.280730 1.100177

23 8 0 -2.635289 0.309406 -0.514673

24 6 0 -3.725996 -0.424812 -1.089040

25 1 0 -3.418689 -1.444126 -1.337831

26 1 0 -4.007561 0.122202 -1.990343

27 1 0 -4.568981 -0.473217 -0.393789

---------------------------------------------------------------------------------

Rotational constants (GHZ): 1.0890640 0.4727452 0.3868614

----------------------------------------------------------------------------------

Zero-point correction= 0.218616 (Hartree/Particle)

Thermal correction to Energy= 0.232466

Thermal correction to Enthalpy= 0.233410

Thermal correction to Gibbs Free Energy= 0.176672

Sum of electronic and zero-point Energies= -706.129626

Sum of electronic and thermal Energies= -706.115776

Sum of electronic and thermal Enthalpies= -706.114832

Page 178: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

31

Sum of electronic and thermal Free Energies= -706.171571

--------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -706.540891433 A.U.

______________________________________________________________________________________

Molecule = 5TSN-R. Final optimised geometry with frequency analysis.

-------------------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -706.349931470 A.U.

---------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.248379 -1.005752 1.788717

2 1 0 -0.905661 -0.480426 2.469341

3 1 0 -0.162506 -2.080126 1.865057

4 7 0 0.750469 -0.330909 1.223433

5 6 0 1.540576 -0.911722 0.264021

6 1 0 1.742026 -1.966966 0.387769

7 6 0 2.598229 -0.157484 -0.409224

8 8 0 3.525890 -0.682713 -0.985492

9 8 0 2.494467 1.213587 -0.408982

10 6 0 1.254520 1.761243 0.049291

11 1 0 0.473465 1.614307 -0.703354

12 1 0 1.426901 2.832042 0.181234

13 6 0 0.830814 1.135933 1.367031

14 1 0 1.562048 1.360225 2.151569

15 1 0 -0.147397 1.513259 1.671329

16 6 0 -0.143441 -1.388134 -1.217233

17 1 0 0.383040 -2.263736 -1.582114

18 1 0 -0.013561 -0.489036 -1.808248

19 6 0 -1.261353 -1.538810 -0.419380

20 1 0 -1.569846 -2.523478 -0.083952

21 6 0 -2.303637 -0.522564 -0.244027

22 8 0 -3.410729 -0.722980 0.221960

23 8 0 -1.915983 0.724016 -0.675445

24 1 0 -2.493817 2.633326 -1.016176

25 1 0 -3.812381 1.430719 -1.191651

26 6 0 -2.938768 1.725732 -0.604370

27 1 0 -3.256122 1.890316 0.429885

---------------------------------------------------------------------

Rotational constants (GHZ): 1.1899279 0.4678729 0.4280752

------------------------------------------------------------------------------------------

Zero-point correction= 0.219057 (Hartree/Particle)

Thermal correction to Energy= 0.232700

Thermal correction to Enthalpy= 0.233645

Thermal correction to Gibbs Free Energy= 0.178232

Sum of electronic and zero-point Energies= -706.130874

Sum of electronic and thermal Energies= -706.117231

Sum of electronic and thermal Enthalpies= -706.116287

Sum of electronic and thermal Free Energies= -706.171700

-------------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -706.542478294 A.U.

______________________________________________________________________________________

Molecule = 5TSN. Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -706.347056669 A.U.

----------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.134545 2.430430 0.070955

2 1 0 -1.341468 3.026388 0.951951

3 1 0 -1.251281 2.909269 -0.892820

4 7 0 -1.458176 1.124475 0.134705

5 6 0 -1.279228 0.282719 -0.907871

6 1 0 -1.211634 0.711996 -1.896006

Page 179: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

32

7 6 0 -1.573500 -1.142657 -0.826932

8 8 0 -1.710736 -1.849733 -1.801259

9 8 0 -1.715586 -1.686655 0.430246

10 6 0 -1.239103 -0.886989 1.515836

11 1 0 -0.145552 -0.851735 1.504225

12 1 0 -1.579273 -1.378748 2.430191

13 6 0 -1.798427 0.522358 1.439653

14 1 0 -2.890075 0.514761 1.532133

15 1 0 -1.378939 1.147499 2.231488

16 6 0 1.082679 2.315235 -0.198141

17 1 0 1.049610 3.305533 -0.642230

18 1 0 1.343048 2.279974 0.854681

19 6 0 1.331446 1.221593 -0.995272

20 1 0 1.294792 1.301528 -2.076950

21 6 0 1.930093 -0.035391 -0.536853

22 8 0 2.387456 -0.892582 -1.268835

23 8 0 1.989498 -0.141220 0.832996

24 1 0 2.674204 -1.230023 2.395594

25 1 0 2.213766 -2.217591 0.967207

26 6 0 2.696580 -1.296880 1.306329

27 1 0 3.729011 -1.291170 0.946192

---------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.8234535 0.5955743 0.5060167

---------------------------------------------------------------------------------

Zero-point correction= 0.218906 (Hartree/Particle)

Thermal correction to Energy= 0.232664

Thermal correction to Enthalpy= 0.233609

Thermal correction to Gibbs Free Energy= 0.177416

Sum of electronic and zero-point Energies= -706.128150

Sum of electronic and thermal Energies= -706.114392

Sum of electronic and thermal Enthalpies= -706.113448

Sum of electronic and thermal Free Energies= -706.169641

-------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -706.539281510 A.U.

______________________________________________________________________________________

Molecule= 5TSX-R. Final optimised geometry with frequency analysis.

-------------------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -706.347938933 A.U.

--------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.284202 -1.220998 -1.142996

2 1 0 -0.366296 -2.284807 -1.326105

3 1 0 -1.026207 -0.553164 -1.556847

4 7 0 0.917105 -0.720211 -0.859549

5 6 0 1.063256 0.599998 -0.510961

6 1 0 0.400976 1.297732 -1.004407

7 6 0 2.362564 1.140256 -0.117002

8 8 0 2.633622 2.320476 -0.137784

9 8 0 3.305532 0.244704 0.344173

10 6 0 2.852356 -1.085375 0.595170

11 1 0 2.254815 -1.110996 1.514911

12 1 0 3.748775 -1.691417 0.746315

13 6 0 2.049140 -1.621461 -0.577798

14 1 0 2.677458 -1.675147 -1.473726

15 1 0 1.661078 -2.619221 -0.357854

16 6 0 -0.332999 0.561620 1.301763

17 1 0 0.462001 0.450686 2.032438

18 1 0 -0.654137 1.579809 1.116129

19 6 0 -1.188996 -0.495948 1.056281

20 1 0 -1.028657 -1.460279 1.526858

21 6 0 -2.535427 -0.342827 0.491882

22 8 0 -3.427621 -1.167890 0.567327

23 8 0 -2.691141 0.845705 -0.169817

24 1 0 -3.959065 2.058028 -1.175775

25 1 0 -4.286089 0.308481 -1.410477

26 6 0 -4.006066 1.082229 -0.689954

27 1 0 -4.745289 1.092849 0.115889

---------------------------------------------------------------------

Rotational constants (GHZ): 1.3547267 0.3833620 0.3431052

--------------------------------------------------------------------------------------

Page 180: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

33

Zero-point correction= 0.218968 (Hartree/Particle)

Thermal correction to Energy= 0.232657

Thermal correction to Enthalpy= 0.233601

Thermal correction to Gibbs Free Energy= 0.177646

Sum of electronic and zero-point Energies= -706.128971

Sum of electronic and thermal Energies= -706.115282

Sum of electronic and thermal Enthalpies= -706.114338

Sum of electronic and thermal Free Energies= -706.170293

-------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -706.541011260 A.U.

_____________________________________________________________________________________

Molecule = 5TSX. Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -706.347681616 A.U.

----------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.399974 -2.001791 -0.971414

2 1 0 0.873640 -2.974207 -1.035607

3 1 0 -0.477833 -1.819241 -1.577334

4 7 0 1.203270 -0.946868 -0.745829

5 6 0 0.730146 0.320887 -0.697946

6 1 0 -0.192856 0.529130 -1.217765

7 6 0 1.561649 1.456151 -0.329281

8 8 0 1.269874 2.608344 -0.564152

9 8 0 2.749554 1.182688 0.322439

10 6 0 2.894832 -0.142804 0.826238

11 1 0 2.243241 -0.286707 1.697563

12 1 0 3.935016 -0.240110 1.146133

13 6 0 2.575246 -1.168069 -0.249022

14 1 0 3.267369 -1.064968 -1.091852

15 1 0 2.645131 -2.184520 0.145518

16 6 0 -0.860516 -1.942614 0.886664

17 1 0 -0.210428 -2.568780 1.491680

18 1 0 -1.648651 -2.461221 0.352015

19 6 0 -1.007838 -0.613005 1.206391

20 1 0 -0.428119 -0.151924 1.998115

21 6 0 -2.093911 0.231783 0.695877

22 8 0 -2.474006 1.270149 1.200928

23 8 0 -2.656649 -0.281192 -0.444932

24 1 0 -4.089874 -0.055143 -1.855687

25 1 0 -4.578984 0.506682 -0.223512

26 6 0 -3.767086 0.470380 -0.955464

27 1 0 -3.465707 1.493678 -1.194987

---------------------------------------------------------------------

Rotational constants (GHZ): 1.0493769 0.4740244 0.3945285

------------------------------------------------------------------------------------

Zero-point correction= 0.218749 (Hartree/Particle)

Thermal correction to Energy= 0.232568

Thermal correction to Enthalpy= 0.233512

Thermal correction to Gibbs Free Energy= 0.176922

Sum of electronic and zero-point Energies= -706.128932

Sum of electronic and thermal Energies= -706.115113

Sum of electronic and thermal Enthalpies= -706.114169

Sum of electronic and thermal Free Energies= -706.170760

--------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -706.540099883 A.U.

_____________________________________________________________________________________

Molecule = 5Y. final optimised geometry with frequency analysis.

----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

------------------------------------------------------------

E(RB+HF-LYP) = -399.885801981 A.U.

---------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

Page 181: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

34

---------------------------------------------------------------------

1 6 0 2.418479 -0.888885 0.069650

2 1 0 3.265665 -0.232835 -0.057050

3 1 0 2.540638 -1.949447 0.242063

4 7 0 1.197837 -0.388880 -0.012591

5 6 0 1.063608 1.053153 -0.342201

6 1 0 0.968658 1.136708 -1.428914

7 6 0 -0.171156 1.608895 0.343290

8 1 0 -0.303551 2.660879 0.076890

9 1 0 -0.063486 1.534645 1.434597

10 6 0 0.023932 -1.063850 0.112376

11 1 0 0.081396 -2.133682 0.257609

12 6 0 -1.273802 -0.464260 -0.022192

13 8 0 -2.312946 -1.092359 -0.085171

14 8 0 -1.338261 0.925893 -0.088386

15 1 0 1.969112 1.567299 -0.014144

---------------------------------------------------------------------

Rotational constants (GHZ): 3.7676883 1.8922710 1.3088209

--------------------------------------------------------------------------------

Zero-point correction= 0.120768 (Hartree/Particle)

Thermal correction to Energy= 0.127587

Thermal correction to Enthalpy= 0.128531

Thermal correction to Gibbs Free Energy= 0.089831

Sum of electronic and zero-point Energies= -399.765034

Sum of electronic and thermal Energies= -399.758215

Sum of electronic and thermal Enthalpies= -399.757271

Sum of electronic and thermal Free Energies= -399.795971

------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -399.994786957 A.U.

______________________________________________________________________________________

Molecule = 6EN. Final optimised geometry with frequency analysis.

----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -359.428917113 A.U.

-------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.001591 1.265517 0.668616

2 1 0 0.002616 2.102147 1.355612

3 6 0 0.001591 1.265517 -0.668616

4 1 0 0.002616 2.102147 -1.355612

5 6 0 -0.000321 -0.157119 -1.157685

6 6 0 -0.000321 -0.157119 1.157685

7 8 0 -0.000321 -0.560822 -2.300086

8 8 0 -0.000321 -0.560822 2.300086

9 7 0 -0.001880 -0.940165 0.000000

10 1 0 -0.002170 -1.950763 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 6.8147668 2.3414756 1.7427031

--------------------------------------------------------------------------------

Zero-point correction= 0.068462 (Hartree/Particle)

Thermal correction to Energy= 0.073898

Thermal correction to Enthalpy= 0.074842

Thermal correction to Gibbs Free Energy= 0.039183

Sum of electronic and zero-point Energies= -359.360455

Sum of electronic and thermal Energies= -359.355019

Sum of electronic and thermal Enthalpies= -359.354075

Sum of electronic and thermal Free Energies= -359.389734

---------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -359.533246416 A.U.

_____________________________________________________________________________________

Molecule = 6PRN. Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

-------------------------------------------------------------

: E(RB+HF-LYP) = -990.443115453 A.U.

--------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Page 182: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

35

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.084831 0.822097 1.665249

2 1 0 -0.802709 1.390835 1.381591

3 1 0 0.067923 0.695963 2.753926

4 7 0 0.090979 -0.507894 1.039748

5 6 0 -0.561443 -0.620731 -0.273073

6 1 0 -0.105835 0.035460 -1.035517

7 6 0 -0.376176 -2.067585 -0.734975

8 1 0 -0.779934 -2.203751 -1.739950

9 1 0 -0.897923 -2.742647 -0.047510

10 6 0 1.504977 -0.900356 1.019613

11 1 0 1.782634 -1.213946 2.032895

12 6 0 1.884906 -2.076214 0.121380

13 8 0 2.959081 -2.611816 0.225394

14 8 0 1.001331 -2.476958 -0.818780

15 6 0 -2.046767 -0.304693 -0.204305

16 6 0 -2.648868 0.461754 -1.208730

17 6 0 -2.844579 -0.815645 0.829500

18 6 0 -4.022256 0.710820 -1.187631

19 1 0 -2.038566 0.870687 -2.010956

20 6 0 -4.216222 -0.565229 0.852794

21 1 0 -2.379234 -1.395142 1.621511

22 6 0 -4.809295 0.196908 -0.156621

23 1 0 -4.473530 1.311555 -1.972506

24 1 0 -4.822896 -0.964166 1.661393

25 1 0 -5.877793 0.393235 -0.135910

26 7 0 1.944652 1.976768 -0.985952

27 6 0 1.245391 2.506309 0.094721

28 6 0 2.562596 0.747683 -0.747813

29 1 0 1.971438 2.427511 -1.893618

30 6 0 1.416297 1.533819 1.261372

31 8 0 0.612354 3.538996 0.081851

32 6 0 2.329010 0.406044 0.731630

33 8 0 3.171158 0.108555 -1.574645

34 1 0 1.832444 2.088338 2.106849

35 1 0 3.308762 0.343850 1.212007

--------------------------------------------------------------------------------

Rotational constants (GHZ): 0.4969776 0.2625717 0.2084654

------------------------------------------------------------------------------------------

Zero-point correction= 0.277898 (Hartree/Particle)

Thermal correction to Energy= 0.294187

Thermal correction to Enthalpy= 0.295132

Thermal correction to Gibbs Free Energy= 0.232630

Sum of electronic and zero-point Energies= -990.165217

Sum of electronic and thermal Energies= -990.148928

Sum of electronic and thermal Enthalpies= -990.147984

Sum of electronic and thermal Free Energies= -990.210485

_____________________________________________________________________________________

Molecule = 6PRX. Final optimised geometry with frequency analysis.

-------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -990.451358185 A.U.

-------------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.619252 -0.305441 -1.548644

2 1 0 -0.572635 0.450120 -2.353224

3 1 0 -0.053156 -1.182091 -1.878737

4 7 0 -0.085101 0.210914 -0.280598

5 6 0 1.191264 0.926028 -0.412342

6 1 0 1.295906 1.305720 -1.443686

7 6 0 1.154100 2.173085 0.479895

8 1 0 2.056029 2.772047 0.350134

9 1 0 1.068304 1.901165 1.538903

10 6 0 -1.168505 0.968809 0.386319

11 1 0 -1.036871 0.926300 1.475629

12 6 0 -1.164189 2.452243 -0.002094

13 8 0 -2.120831 3.090634 -0.366765

14 8 0 0.060761 3.030792 0.092952

15 6 0 2.405491 0.062825 -0.096203

16 6 0 3.634834 0.347160 -0.704430

17 6 0 2.333163 -0.982612 0.830754

Page 183: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

36

18 6 0 4.773401 -0.394128 -0.388406

19 1 0 3.699640 1.149805 -1.437021

20 6 0 3.470756 -1.727133 1.146089

21 1 0 1.375092 -1.219683 1.282751

22 6 0 4.693716 -1.433740 0.540298

23 1 0 5.718939 -0.165370 -0.872706

24 1 0 3.400023 -2.540764 1.863121

25 1 0 5.577951 -2.016336 0.784116

26 7 0 -2.827032 -2.016894 0.527170

27 6 0 -2.920499 -0.735848 1.062396

28 6 0 -2.281949 -2.081968 -0.752325

29 1 0 -3.038119 -2.846437 1.070105

30 6 0 -2.461584 0.242928 -0.021449

31 8 0 -3.275231 -0.471836 2.189805

32 6 0 -2.084197 -0.641241 -1.233096

33 8 0 -2.023720 -3.100151 -1.353977

34 1 0 -3.250749 0.973552 -0.214338

35 1 0 -2.722568 -0.487484 -2.107752

---------------------------------------------------------------------

Rotational constants (GHZ): 0.4607154 0.2365410 0.1852673

---------------------------------------------------------------------------------

Zero-point correction= 0.277961 (Hartree/Particle)

Thermal correction to Energy= 0.294230

Thermal correction to Enthalpy= 0.295174

Thermal correction to Gibbs Free Energy= 0.231966

Sum of electronic and zero-point Energies= -990.173397

Sum of electronic and thermal Energies= -990.157128

Sum of electronic and thermal Enthalpies= -990.156184

Sum of electronic and thermal Free Energies= -990.219392

__________________________________________________________________________________

Molecule = 6TRN. Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------

E(RB+HF-LYP) = -990.364093502 A.U.

---------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.137606 0.398730 1.817188

2 1 0 -1.071798 0.924423 1.684324

3 1 0 0.293869 0.335015 2.807041

4 7 0 0.163775 -0.588111 0.962392

5 6 0 -0.571223 -0.692293 -0.348926

6 1 0 -0.081944 0.010965 -1.026776

7 6 0 -0.346438 -2.105905 -0.884737

8 1 0 -0.791805 -2.189693 -1.877734

9 1 0 -0.817825 -2.849118 -0.229128

10 6 0 1.347866 -1.247840 1.055756

11 1 0 1.834120 -1.258312 2.020024

12 6 0 1.834683 -2.192842 0.060604

13 8 0 2.908869 -2.744268 0.146369

14 8 0 1.037427 -2.412387 -1.038565

15 6 0 -2.039805 -0.343254 -0.231938

16 6 0 -2.523687 0.814103 -0.855264

17 6 0 -2.936138 -1.164956 0.468761

18 6 0 -3.880392 1.137141 -0.794328

19 1 0 -1.832927 1.478613 -1.367389

20 6 0 -4.290666 -0.841446 0.529269

21 1 0 -2.577536 -2.054764 0.979395

22 6 0 -4.766512 0.307852 -0.106704

23 1 0 -4.239754 2.040324 -1.278916

24 1 0 -4.974526 -1.486167 1.074215

25 1 0 -5.822556 0.558516 -0.058780

26 7 0 1.717772 1.821101 -1.027074

27 6 0 1.034329 2.432276 0.028145

28 6 0 2.786284 1.011099 -0.570303

29 1 0 1.631703 2.119202 -1.989666

30 6 0 1.620908 1.836086 1.272795

31 8 0 0.143789 3.254800 -0.088240

32 6 0 2.648910 0.992430 0.908957

33 8 0 3.621073 0.500650 -1.286807

34 1 0 1.477900 2.324692 2.227565

35 1 0 3.429914 0.577936 1.530900

---------------------------------------------------------------------

Rotational constants (GHZ): 0.4908450 0.2610341 0.2014852

Page 184: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

37

-----------------------------------------------------------------------------------

Zero-point correction= 0.272154 (Hartree/Particle)

Thermal correction to Energy= 0.289514

Thermal correction to Enthalpy= 0.290458

Thermal correction to Gibbs Free Energy= 0.225344

Sum of electronic and zero-point Energies= -990.091940

Sum of electronic and thermal Energies= -990.074580

Sum of electronic and thermal Enthalpies= -990.073636

Sum of electronic and thermal Free Energies= -990.138749

-----------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

------------------------------------------------

E(RB+HF-LYP) = -990.621779602 A.U.

______________________________________________________________________________________

Molecule = 6TRX. Final optimised geometry with frequency analysis.

--------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------------------------

E(RB+HF-LYP) = -990.363529580 A.U.

------------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.074235 -0.968835 -0.837595

2 1 0 -0.774791 -1.619339 -0.688907

3 1 0 0.814028 -1.233446 -1.581098

4 7 0 -0.057852 0.329613 -0.541318

5 6 0 -1.143086 0.750200 0.398809

6 1 0 -0.770401 0.533620 1.407701

7 6 0 -1.318277 2.263725 0.263507

8 1 0 -2.048631 2.610329 0.997109

9 1 0 -1.690614 2.510440 -0.739643

10 6 0 0.985940 1.190865 -0.687078

11 1 0 1.749901 0.930910 -1.405516

12 6 0 1.002606 2.548786 -0.165807

13 8 0 1.956212 3.287868 -0.262968

14 8 0 -0.113392 2.972260 0.526748

15 6 0 -2.454508 0.028067 0.174584

16 6 0 -3.077936 -0.623507 1.245097

17 6 0 -3.096038 0.054706 -1.073093

18 6 0 -4.320960 -1.236155 1.077016

19 1 0 -2.589022 -0.651247 2.216138

20 6 0 -4.334705 -0.561850 -1.242474

21 1 0 -2.619771 0.545185 -1.918038

22 6 0 -4.950999 -1.206558 -0.167119

23 1 0 -4.791491 -1.739543 1.916701

24 1 0 -4.818856 -0.539042 -2.214639

25 1 0 -5.916264 -1.686576 -0.300837

26 7 0 3.485614 -1.619857 -0.452231

27 6 0 3.576601 -0.350589 0.156568

28 6 0 2.409783 -2.363369 0.043271

29 1 0 4.236211 -2.023652 -0.995944

30 6 0 2.344287 -0.229025 0.988358

31 8 0 4.495387 0.427272 0.009599

32 6 0 1.639635 -1.407907 0.900173

33 8 0 2.174131 -3.529717 -0.205913

34 1 0 2.236153 0.571663 1.706354

35 1 0 0.871033 -1.770369 1.570413

---------------------------------------------------------------------

Rotational constants (GHZ): 0.4815626 0.2162109 0.1637206

-------------------------------------------------------------------------------

Zero-point correction= 0.271784 (Hartree/Particle)

Thermal correction to Energy= 0.289279

Thermal correction to Enthalpy= 0.290223

Thermal correction to Gibbs Free Energy= 0.224177

Sum of electronic and zero-point Energies= -990.091745

Sum of electronic and thermal Energies= -990.074251

Sum of electronic and thermal Enthalpies= -990.073306

Sum of electronic and thermal Free Energies= -990.139352

------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -990.621355350 A.U.

_____________________________________________________________________________________

Molecul = 6AY. Final optimised geometry with frequency analysis.

Page 185: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

38

--------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

------------------------------------------

E(RB+HF-LYP) = -630.935103560 A.U.

-------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.383258 2.243802 -0.381132

2 1 0 -0.671946 2.232835 -0.594781

3 1 0 0.938454 3.167486 -0.288636

4 7 0 1.030868 1.103746 -0.221813

5 6 0 0.296654 -0.190499 -0.474002

6 1 0 0.464431 -0.410877 -1.533084

7 6 0 0.973620 -1.286681 0.353234

8 1 0 0.492655 -2.243132 0.135612

9 1 0 0.853628 -1.072976 1.424359

10 6 0 2.358452 0.980030 0.064834

11 1 0 2.921796 1.898911 0.154202

12 6 0 3.085479 -0.253784 0.085060

13 8 0 4.298003 -0.338222 0.141324

14 8 0 2.342140 -1.429775 0.024778

15 6 0 -1.188525 -0.128923 -0.194414

16 6 0 -2.096852 -0.449149 -1.210233

17 6 0 -1.679952 0.172840 1.085320

18 6 0 -3.469566 -0.472319 -0.957047

19 1 0 -1.727395 -0.683603 -2.205770

20 6 0 -3.050754 0.155114 1.337287

21 1 0 -0.990720 0.436984 1.882819

22 6 0 -3.948831 -0.169768 0.317453

23 1 0 -4.161093 -0.722709 -1.756565

24 1 0 -3.418133 0.394795 2.331206

25 1 0 -5.016799 -0.183932 0.516347

----------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.8546706 0.3874175 0.3644420

-----------------------------------------------------------------------------------------

Zero-point correction= 0.201731 (Hartree/Particle)

Thermal correction to Energy= 0.213102

Thermal correction to Enthalpy= 0.214046

Thermal correction to Gibbs Free Energy= 0.163654

Sum of electronic and zero-point Energies= -630.733373

Sum of electronic and thermal Energies= -630.722002

Sum of electronic and thermal Enthalpies= -630.721058

Sum of electronic and thermal Free Energies= -630.771450

--------------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -631.092231900 A.U.

_____________________________________________________________________________________

Molecule =7EN. Final optimised geometry with frequency analysis.

--------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

-----------------------------------------------------------

E(RB+HF-LYP) = -379.289544507 A.U.

------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.000755 1.258254 0.667804

2 1 0 -0.000695 2.089998 1.360223

3 6 0 -0.000755 1.258254 -0.667804

4 1 0 -0.000695 2.089998 -1.360223

5 6 0 0.000165 -0.158713 -1.131991

6 6 0 0.000165 -0.158713 1.131991

7 8 0 0.000165 -0.600004 -2.245452

8 8 0 0.000165 -0.600004 2.245452

9 8 0 0.000730 -0.971804 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 6.8429883 2.4475853 1.8027733

-----------------------------------------------------------------------------

Zero-point correction= 0.055889 (Hartree/Particle)

Thermal correction to Energy= 0.061073

Thermal correction to Enthalpy= 0.062018

Thermal correction to Gibbs Free Energy= 0.026815

Page 186: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

39

Sum of electronic and zero-point Energies= -379.233656

Sum of electronic and thermal Energies= -379.228471

Sum of electronic and thermal Enthalpies= -379.227527

Sum of electronic and thermal Free Energies= -379.262730

------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

----------------------------------------------------------------------

E(RB+HF-LYP) = -379.399325820 A.U.

______________________________________________________________________________________

Molecule = 7PRN. Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -1010.30013390 A.U.

-------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.074878 0.785100 1.698358

2 1 0 -0.835198 1.333878 1.450391

3 1 0 0.098184 0.640239 2.784385

4 7 0 0.104571 -0.528881 1.047452

5 6 0 -0.541701 -0.619059 -0.272840

6 1 0 -0.090913 0.062676 -1.015276

7 6 0 -0.331721 -2.050547 -0.769195

8 1 0 -0.726444 -2.167221 -1.779872

9 1 0 -0.844649 -2.752231 -0.102466

10 6 0 1.523522 -0.891387 1.017395

11 1 0 1.815609 -1.213099 2.023572

12 6 0 1.928523 -2.037913 0.092615

13 8 0 3.018129 -2.544325 0.181862

14 8 0 1.054270 -2.435139 -0.855054

15 6 0 -2.030129 -0.321252 -0.202717

16 6 0 -2.629236 0.488319 -1.174707

17 6 0 -2.830874 -0.886772 0.800060

18 6 0 -4.004770 0.725577 -1.151946

19 1 0 -2.016090 0.940605 -1.950921

20 6 0 -4.204429 -0.647748 0.824403

21 1 0 -2.367860 -1.500110 1.567703

22 6 0 -4.795295 0.157160 -0.152745

23 1 0 -4.454575 1.359982 -1.910577

24 1 0 -4.814224 -1.089062 1.608195

25 1 0 -5.865401 0.344214 -0.131194

26 8 0 1.848542 1.975734 -1.023683

27 6 0 2.541060 0.803075 -0.718307

28 6 0 1.161710 2.460887 0.081102

29 6 0 2.321468 0.444049 0.749334

30 8 0 3.193594 0.236853 -1.543774

31 6 0 1.378663 1.538409 1.269694

32 8 0 0.500695 3.457464 0.022664

33 1 0 3.301454 0.396178 1.229291

34 1 0 1.776255 2.134037 2.095460

---------------------------------------------------------------------

Rotational constants (GHZ): 0.5064793 0.2638551 0.2104121

----------------------------------------------------------------------------------

Zero-point correction= 0.264933 (Hartree/Particle)

Thermal correction to Energy= 0.281078

Thermal correction to Enthalpy= 0.282022

Thermal correction to Gibbs Free Energy= 0.219732

Sum of electronic and zero-point Energies= -1010.035201

Sum of electronic and thermal Energies= -1010.019056

Sum of electronic and thermal Enthalpies= -1010.018111

Sum of electronic and thermal Free Energies= -1010.080402

____________________________________________________________________________________

Molecule = 7PRX. Final optimised geometry with frequency analysis.

----------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -1010.30719095 A.U.

--------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

Page 187: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

40

1 6 0 -0.617862 -0.295722 -1.558667

2 1 0 -0.589542 0.470666 -2.353538

3 1 0 -0.041189 -1.159770 -1.902180

4 7 0 -0.089814 0.208897 -0.284479

5 6 0 1.183003 0.935391 -0.405100

6 1 0 1.286450 1.325408 -1.432422

7 6 0 1.132832 2.173505 0.498759

8 1 0 2.029522 2.781461 0.376295

9 1 0 1.046641 1.892149 1.555142

10 6 0 -1.178484 0.952845 0.387946

11 1 0 -1.048477 0.899275 1.476575

12 6 0 -1.185936 2.440223 0.012521

13 8 0 -2.148811 3.069754 -0.351027

14 8 0 0.032526 3.026435 0.116686

15 6 0 2.401560 0.077061 -0.093811

16 6 0 3.629739 0.376146 -0.697419

17 6 0 2.334252 -0.977667 0.822949

18 6 0 4.772705 -0.360321 -0.386401

19 1 0 3.690472 1.186267 -1.422107

20 6 0 3.476489 -1.717482 1.132700

21 1 0 1.378004 -1.227261 1.272032

22 6 0 4.698282 -1.409525 0.531940

23 1 0 5.717472 -0.120412 -0.866676

24 1 0 3.409604 -2.538736 1.841154

25 1 0 5.585994 -1.988484 0.771495

26 8 0 -2.787699 -2.063574 0.551056

27 6 0 -2.924924 -0.766077 1.025698

28 6 0 -2.236470 -2.081223 -0.723633

29 6 0 -2.467480 0.224037 -0.036852

30 8 0 -3.326478 -0.539824 2.129863

31 6 0 -2.076076 -0.654716 -1.236692

32 8 0 -1.957734 -3.105231 -1.275302

33 1 0 -3.258923 0.952852 -0.226856

34 1 0 -2.721544 -0.535032 -2.111405

---------------------------------------------------------------------

Rotational constants (GHZ): 0.4645499 0.2371098 0.1849717

------------------------------------------------------------------------------------

Zero-point correction= 0.264971 (Hartree/Particle)

Thermal correction to Energy= 0.281115

Thermal correction to Enthalpy= 0.282059

Thermal correction to Gibbs Free Energy= 0.218868

Sum of electronic and zero-point Energies= -1010.042219

Sum of electronic and thermal Energies= -1010.026076

Sum of electronic and thermal Enthalpies= -1010.025132

Sum of electronic and thermal Free Energies= -1010.088323

______________________________________________________________________________________

Molecule =7TRN. Final optimised geometry with frequency analysis.

-----------------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

: E(RB+HF-LYP) = -1010.22984926 A.U

--------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.106449 0.413850 1.830441

2 1 0 -1.052456 0.917870 1.696132

3 1 0 0.331273 0.368214 2.818715

4 7 0 0.216872 -0.569181 0.978773

5 6 0 -0.516708 -0.706933 -0.332872

6 1 0 -0.041550 -0.006859 -1.024474

7 6 0 -0.270131 -2.127035 -0.841175

8 1 0 -0.710815 -2.234641 -1.833552

9 1 0 -0.732174 -2.864324 -0.172615

10 6 0 1.424545 -1.182780 1.065014

11 1 0 1.919015 -1.168887 2.025624

12 6 0 1.923600 -2.143417 0.084849

13 8 0 3.018452 -2.651393 0.173932

14 8 0 1.119235 -2.421543 -0.988348

15 6 0 -1.990489 -0.381832 -0.223089

16 6 0 -2.499523 0.729813 -0.906652

17 6 0 -2.866114 -1.184544 0.524473

18 6 0 -3.862463 1.027492 -0.855078

19 1 0 -1.825647 1.373991 -1.465285

20 6 0 -4.226415 -0.884966 0.576018

21 1 0 -2.487019 -2.039923 1.077839

Page 188: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

41

22 6 0 -4.727824 0.219491 -0.117499

23 1 0 -4.242910 1.894348 -1.387392

24 1 0 -4.894783 -1.513320 1.158011

25 1 0 -5.788435 0.451333 -0.076701

26 8 0 1.509084 1.858568 -1.058346

27 6 0 2.609345 1.051993 -0.667631

28 6 0 0.953027 2.447567 0.076839

29 6 0 2.634590 1.036763 0.804485

30 8 0 3.324228 0.546429 -1.487300

31 6 0 1.638022 1.873809 1.259268

32 8 0 0.061076 3.252885 -0.002332

33 1 0 3.483197 0.637568 1.341296

34 1 0 1.565526 2.353711 2.225798

---------------------------------------------------------------------

Rotational constants (GHZ): 0.4887113 0.2677739 0.2066844

--------------------------------------------------------------------------

Zero-point correction= 0.259589 (Hartree/Particle)

Thermal correction to Energy= 0.276704

Thermal correction to Enthalpy= 0.277648

Thermal correction to Gibbs Free Energy= 0.212965

Sum of electronic and zero-point Energies= -1009.970261

Sum of electronic and thermal Energies= -1009.953145

Sum of electronic and thermal Enthalpies= -1009.951291

Sum of electronic and thermal Free Energies= -1010.016884

-----------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -1010.49304343 A.U.

_____________________________________________________________________________________

Molecule = 7TRX. Final optimised geometry with frequency analysis.

--------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------

E(RB+HF-LYP) = -1010.22661867 A.U.

--------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.083977 -0.965526 -0.836755

2 1 0 -0.767854 -1.613471 -0.691781

3 1 0 0.819452 -1.229028 -1.585616

4 7 0 -0.044639 0.333040 -0.536335

5 6 0 -1.132496 0.755096 0.402866

6 1 0 -0.763755 0.535196 1.412428

7 6 0 -1.300700 2.269194 0.270255

8 1 0 -2.032055 2.617785 1.001614

9 1 0 -1.665962 2.521815 -0.733708

10 6 0 1.002353 1.189564 -0.678284

11 1 0 1.758052 0.940218 -1.409526

12 6 0 1.024718 2.545076 -0.141572

13 8 0 1.988836 3.271335 -0.220717

14 8 0 -0.092342 2.970908 0.542333

15 6 0 -2.444368 0.036053 0.172291

16 6 0 -3.067976 -0.623982 1.237567

17 6 0 -3.084676 0.072445 -1.075828

18 6 0 -4.310605 -1.235757 1.063735

19 1 0 -2.580221 -0.658683 2.208992

20 6 0 -4.322887 -0.543410 -1.250729

21 1 0 -2.608539 0.569618 -1.916968

22 6 0 -4.939500 -1.196699 -0.180721

23 1 0 -4.781660 -1.745729 1.899066

24 1 0 -4.806328 -0.513407 -2.222973

25 1 0 -5.904360 -1.676134 -0.318927

26 8 0 3.475780 -1.667341 -0.465464

27 6 0 2.384546 -2.349328 0.066805

28 6 0 3.545148 -0.385679 0.120478

29 6 0 1.629998 -1.394681 0.912518

30 8 0 2.164086 -3.503503 -0.189748

31 6 0 2.349213 -0.223316 0.973509

32 8 0 4.464155 0.351381 -0.104206

33 1 0 0.866291 -1.744263 1.594466

34 1 0 2.274813 0.588261 1.682878

---------------------------------------------------------------------

Rotational constants (GHZ): 0.4836976 0.2171404 0.1643902

------------------------------------------------------------------------------------

Page 189: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

42

Zero-point correction= 0.259275 (Hartree/Particle)

Thermal correction to Energy= 0.276494

Thermal correction to Enthalpy= 0.277439

Thermal correction to Gibbs Free Energy= 0.212012

Sum of electronic and zero-point Energies= -1009.967344

Sum of electronic and thermal Energies= -1009.950124

Sum of electronic and thermal Enthalpies= -1009.949180

Sum of electronic and thermal Free Energies= -1010.014606

------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -1010.49088278 A.U.

_____________________________________________________________________________________

Molecule =7AY. Final optimised geometry with frequency analysis.

------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -630.935103556 A.U.

--------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.383258 2.243802 -0.381132

2 1 0 -0.671946 2.232835 -0.594781

3 1 0 0.938454 3.167486 -0.288636

4 7 0 1.030868 1.103746 -0.221813

5 6 0 0.296654 -0.190499 -0.474002

6 1 0 0.464431 -0.410877 -1.533084

7 6 0 0.973620 -1.286681 0.353234

8 1 0 0.492655 -2.243132 0.135612

9 1 0 0.853628 -1.072976 1.424359

10 6 0 2.358452 0.980030 0.064834

11 1 0 2.921796 1.898911 0.154202

12 6 0 3.085479 -0.253784 0.085060

13 8 0 4.298003 -0.338222 0.141324

14 8 0 2.342140 -1.429775 0.024778

15 6 0 -1.188525 -0.128923 -0.194414

16 6 0 -2.096852 -0.449149 -1.210233

17 6 0 -1.679952 0.172840 1.085320

18 6 0 -3.469566 -0.472319 -0.957047

19 1 0 -1.727395 -0.683603 -2.205770

20 6 0 -3.050754 0.155114 1.337287

21 1 0 -0.990720 0.436984 1.882819

22 6 0 -3.948831 -0.169768 0.317453

23 1 0 -4.161093 -0.722709 -1.756565

24 1 0 -3.418133 0.394795 2.331206

25 1 0 -5.016799 -0.183932 0.516347

---------------------------------------------------------------------

Rotational constants (GHZ): 1.8546708 0.3874175 0.3644421

--------------------------------------------------------------------------------

Zero-point correction= 0.201731 (Hartree/Particle)

Thermal correction to Energy= 0.213102

Thermal correction to Enthalpy= 0.214046

Thermal correction to Gibbs Free Energy= 0.163654

Sum of electronic and zero-point Energies= -630.733373

Sum of electronic and thermal Energies= -630.722002

Sum of electronic and thermal Enthalpies= -630.723958

Sum of electronic and thermal Free Energies= -630.771450

--------------------------------------------------------------------------------

# b3lyp/6-311+g(d) geom=connectivity sp

---------------------------------------

E(RB+HF-LYP) = -631.092231900 A.U.

Page 190: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

43

IRC polt

1TS 1TS –IRC

2TRN 2TRN-IRC

2TRX 2TRX-IRC

2TSN 2TSN-IRC

2TSX 2TSX-IRC

3TRN 3TRN-IRC

Page 191: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

44

3TRX 3TRX-IRC

3TSN 3TSN-IRC

3TSX 3TSX-IRC

4TRN 4TRN-IRC

4TRX 4TRX-IRC

4TSN 4TSN-IRC

Page 192: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

45

4TSX 4TSX-IRC

5TRN 5TRN-IRC

5TRN-R 5TRN-R-IRC

5TRX 5TRX-IRC

5TRX-R 5TRX-R-IRC

5TSN 5TSN-IRC

Page 193: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 1

46

5TSN-R 5TSN-R-IRC

5TSX 5TSX-IRC

5TSX-R 5TSX-R-IRC

6TRN 6TRN-IRC

6TRX 6TRX-IRC

7TRN 7TRN-IRC

7TRX 7TRX-IRC

Page 194: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

Page 195: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

47

4.3. Result Discussion

4.3.2. Experimental results for the cycloadditions of 1-pyrroline-1-oxide (N1) to methyl cinnamate (E1) and

benzylidene acetophenone (E2)

The cycloaddition between N1 and E1 was carried out in dry toluene at 82ºC under nitrogen atmosphere. It afforded two

diastereomeric cycloadducts (III/1prn) and (IV/1prx). The change in diastereomeric ratio of the cycloadducts for reaction

between N1 and E1 were noted after the intervals of 4 hours, 8 hours and 14 hours from the integration pattern of 300 MHz

1H NMR study of the crude reaction mixture as given in Table-4.5. The ratios of products were evaluated through integration

from 300 MHz 1H NMR spectra of the crude reaction mixtures and the products were characterized on the basis of IR,

500MHz 1H NMR, 125.5MHz 13C NMR, DQF-COSY, HMQC, HMBC, X-Ray crystallographic studies (Figs.4.4-4.6) and

theoretical NMR calculations43. The results have been given in Table 4.5. Ali et al34 carried out the cycloaddition between N1

and E1 in toluene at 55˚C for 2 hours under nitrogen atmosphere. They reported 87:13 ratio for the cycloadducts (III/1prn):

(IV/1prx) with the overall yield of 79%. When we carried out the reaction with N1 and E1 in toluene under nitrogen

atmosphere at 82ºC, we observed a remarkable decrease in diastereomeric excess from 4 to 14 hours as given in Table 4.5.

However, the overall yield remained almost the same within 4 to 14 hours (about 20%). It should be noted that the reaction

was continued for a period from 4 to 14 hours since the proportion of cycloadduct (IV/1prx) increased during that period.

Fig. 4.4. ORTEP of the asymmetric unit content (hydrogen's are drawn

as spheres with arbitrary radius). The ellipsoids encompass

50 % of the electron density of the atom (A and B of (I/2psx))

Fig. 4.5. One single copy of the asymmetric unit (molecule A of (I/2psx))

Page 196: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

48

Fig. 4.6. One single molecule (A of (I/2psx)) viewed along the N-2 C-3 bond showing

the puckering of the two fused five-membered rings. The size of ellipsoids

is reduced (30 % of the electron density) and hydrogen's omitted for clarity.

Scheme: 4.1. IV/2psx : III/2psn=64:36 after 4hours

IV/2psx : III/2psn=64:36 after 14 hours III /1prn : IV/1prx = 89:11 after 4 hours III /1prn : IV/1prx = 87:13 after 8 hours III /1prn : IV/1prx = 65:35 after 14 hours

However, we failed to isolate the cycloadduct (IV/1prx) by column chromatography due to very reduced quantity of yields. It

was detected and identified from the chemical shift and coupling constant value of H2 in the 300 MHz 1H NMR spectrum of

the crude reaction mixture in which H2 appeared as a doublet in both (III/1prn) and (IV/1prx) resonating at δ 5.20 ppm (J2,3 =

9.2Hz ) and δ 5.09 ppm (J2,3 = 8.7Hz) respectively. These results were in complete agreement with that reported by Ali et al34.

The cycloadduct (III/1prn) was purified and heated at 82ºC in toluene under nitrogen atmosphere for 14 hours. The solution

turned into a gummy mass after removal of toluene under reduced pressure. 300MHz 1H NMR with the gummy mass

revealed that the cycloadduct (III/1prn) was no longer pure and had suffered decomposition due to heating. But, no signals of

the starting materials or of the cycloadduct (IV/1prx) appeared in the NMR spectrum. Hence, it could be concluded that the

lower amount of overall yield and the decrease in diastereomeric excess resulted from thermal decomposition of the

cycloadduct (III/1prn). The reaction was not reversible since the cycloadduct did not revert back to the starting materials after

heating but suffered decomposition. The thermal instability of the cycloadduct (III/1prn) resulted in reduced diastereomeric

excess at 82ºC after 4h as compared to that reported by Ali et al. at 55ºC after 2h.

The reaction between N1 and E2 was also carried out in dry toluene at 82ºC under nitrogen atmosphere for 14h. It resulted in

two diastereomeric cycloadducts (I/2psx) and (II/2psn) (Fig.-4.3) with the diastereomeric excess of 28%. In case of the

cycloaddition between N1 and E2, the cycloadducts were not thermally unstable and the diastereomeric ratio remained

unchanged from 4 to 14 hours.

4.3.3. General methods

Elementary analysis of compound (I/2psx) was done by using a Perkin Elmer 2400 Series II analyzer. Melting point was

recorded on an electrically heated Köfler Block apparatus and is uncorrected. The IR spectra were recorded in KBr pellets

using a Perkin Elmer RX-9 FT-IR Spectrophotometer. 1H NMR and 13C NMR spectra of crude reaction mixtures were

recorded using a Bruker AV-300 NMR spectrometer at 300 and 75.5 MHz respectively. 1H NMR and 13C NMR spectra of the

major cycloadducts in both the cycloadditions were recorded using a Bruker DRX 500 NMR spectrometer at 500 and 125.5

MHz respectively. DQF COSY, HMQC and HMBC spectra were also obtained by using a Bruker DRX 500 NMR

spectrometer. Chemical shifts for 1H NMR and 13C NMR were reported in parts per million downfield from tetramethylsilane

Page 197: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

49

(TMS). X-Ray crystallographic studies were carried out using a single crystal of approximate size 0.3x0.2x0.2 mm on the

NONIUS CCD diffractometer. The wavelength was the MoK radiation: =0.7107 Å. The cell dimensions were first

evaluated using a rapid rotation of 10°. The structure was solved using SHELXS and refined with SHELXL.

4.3.4. Materials

1-pyrroline-1-oxide was prepared by selenium dioxide catalyzed hydrogen peroxide oxidation of pyrrolidine according to the

procedure of Murahashi and Shiota61-63. Benzylidene acetophenone63 and methyl cinnamate64 were synthesized according to

literature. Neutral alumina (Activity I-II, Merck) was used for column chromatography. Analytical TLC was performed

using Merck silica gel G support. Organic extracts were dried over anhydrous sodium sulphate.

Cycloaddition of 1-pyrroline-1-oxide (N1) and methyl cinnamate (E1):

1-pyrroline-1-oxide (0.0019 moles, 0.1615 gm) and methyl cinnamate (0.00285 moles, 0.4617 gm) were heated in dry

thiophene free toluene (10 ml) at 82ºC under nitrogen atmosphere. The progress of the reaction was monitored by 300 MHz

1H NMR spectroscopy of the crude reaction mixture after 4 hours, 8 hours and 14 hours. The crude reaction mixture after 14

hours was subjected to column chromatography over neutral alumina. Petrol (60˚C -80 ˚C) - benzene (4:1) eluates were

collected and after removal of the solvent under reduced pressure, the cycloadduct (III/1prn) was obtained as a colourless oil.

The cycloadduct (III/1prn) was then heated in toluene at 82ºC under nitrogen atmosphere for 14 hours, toluene was removed

under reduced pressure and 300 MHz 1H NMR spectrum of the resulting orange gummy mass was recorded. The signals of

the starting materials or of the cycloadduct (IV/1prx) were not detected in the spectrum. It was also evident from the spectrum

that the compound (III/1prn) was no longer pure and had suffered decomposition due to heating. It was not possible to isolate

the decomposition products from the gummy mass. We failed to isolate the minor isomer (IV/1prx) and it was detected and

identified from the 300MHz 1H spectrum of the crude reaction mixture prior to column chromatography.

Cycloaddition of 1-pyrroline-1-oxide (N1) and benzylidene acetophenone (E2)

1-pyrroline-1-oxide (0.0019 moles, 0.1615 gm) and benzylidene acetophenone (0.00285 moles, 0.5928 gm) were heated in

dry thiophene free toluene (10 ml) at 82ºC under nitrogen atmosphere for 14 hours. Toluene was removed under reduced

pressure in a Büchi rotary evaporator and the crude post reaction mixture was chromatographed over neutral alumina to

isolate the cycloadducts. 1H NMR analysis of the crude thermolysate was used to determine the product ratio in the original

reaction mixture. The major cycloadduct (I/2psx) (yield 34 %) was isolated as shiny white crystals from 20% benzene in

petrol (60˚C -80 ˚C)- benzene (4:1) eluates. We failed to isolate the minor isomer due to very low diastereomeric excess. A

mixture of the major and minor isomer (yield 20 %) from 300MHz 1H NMR spectrum of the crude reaction mixture prior to

column chromatography) was also isolated as white solid from 10% benzene in petrol: benzene (4:1) eluates to identify the

minor isomer by spectroscopy.

Data for (2,3-trans-3,3a-cis)--3-carbomethoxy-2-phenyl--pyrrolo-[1,2-b]-isoxazolidine (III/1prn)

Yield (11%)

1H NMR (CDCl3, δ, 500MHz): 4.00 (1H multiplet, H3a), 3.55 (1H m, H3), 5.20 (1H d, J 9.2, H2), 1.79 (1H m, H4), 1.65

(1H m, H4), 1.55 (1H m, H5), 1.95 (1H m, H5), 3.22, 3.17 (2H m, H6a,6b)), 3.57 (1H, s, -OCH3), 7.36 (2H d, J 7.7, H2,6

(A)), 7.23 (2H, dist. t, H3,5 (A)), 7.17 (1H tt, J 7.3,1.2, H4 (A))

13C NMR (CDCl3, δ, 125.5 MHz): 68.0 (C3a), 60.3 (C3), 79.7 (C2), 27.8 (C4), 24.8 (C5), 57.8 (C6), 52.4 (-OCH3),

139.3(C1 (A)), 127.1(C2,6 (A)), 128.9 (C3,5 (A)), 128.5 (C4 (A)), 170.9 (C=O),[ phenyl ring = (A), numbering refer to Fig.

4.4.]

Data for(2,3-trans-3,3a-trans)-2-phenyl-3-oxophenyl-pyrrolo-[1,2-b]-isoxazolidine (I/2psx)

M.pt 114ºC (yield 34%)

IR: υ =1669 (s,-C=O), 763 (s), 698 (s),

(Found: C, 77.60; H, 6.41; N, 4.71. C19H19NO2 requires C, 77.79; H, 6.53; N, 4.77)

Page 198: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

50

1H NMR (CDCl3, δ, 500MHz): 4.07 (1H multiplet, H3a), 4.00 (1H dd, J 8.3,5.0, H3), 5.34(1H d, J 8.3, H2), 2.12 (1H m,

H4a), 1.97 (1H m, H4b), 1.87 (1H m, H5a), 2.30 (1H m, H5b), 3.04 (1H ddd, J 13.5Hz, 6.9 Hz, 9.8 Hz, H6b), 3.59 (1H ddd,

J 13.5 Hz, 7.1 Hz, 3.0 Hz, H6a), 7.72 (2H dd, J 7.5 Hz,1.2 Hz, H2,6 (B)), 7.35 (2H t, J 7.5 Hz, H3,5(B)), 7.51 (1H tt, J 7.5

Hz,1.2 Hz, H4 (B)),7.24-7.32 (5H m, H2,3,4,5,6 (A)) [oxophenyl ring = (B), phenyl ring (A),numbering refer to Fig. 4.5.]

13C NMR (CDCl3, δ, 125.5 MHz): 71.7 (C3a), 66.3 (C3), 83.7 (C2), 32.5 (C4), 24.8 (C5), 57.4 (C6), 137.1 (C1 (B)), 129.0

(C2,6 (B)), 129.0 (C3,5 (B)), 133.8 (C4 (B)), 138.3 (C1 (A)), 126.9 (C2,6 (A)), 128.9 (C3,5 (A)), 128.8 (C4 (A)), 198.2

(C=O) [ oxophenyl ring = (B), phenyl ring (A), numbering refer to Fig. 4.5.]

Data for (2,3-trans-3,3a-cis)-2-phenyl-3-oxophenyl-pyrrolo-[1,2-b]-isoxazolidine (II/2psn)

Yield (20%)

1H NMR (CDCl3, δ, 300MHz): 4.46 (1H dist. triplet, H3a), 4.28 (1H distorted dd, H3), 5.63 (1H d, J 9.0, H2), 1.48-1.82 (4H

m, H4,5), 3.30 (2H dist t, H6), 7.92 (2H d, J 8.0 Hz, H2,6 (B)), 7.41-7.57 (3H m, H3,4,5(B)), 7.19-7.33 (5H m, H2,3,4,5,6

(A)) [ oxophenyl ring = (B), phenyl ring (A), numbering refer to Fig. 4.6.]

13C NMR (CDCl3, δ, 75.5 MHz): 68.2 (C3a), 63.0 (C3), 78.9 (C2), 26.8 (C4), 24.4 (C5), 56.9 (C6), 136.0 (C1 (B)),

128.8(C2,6 (B)), 128.1(C3,5 (B)), 133.6 (C4 (B)), 139.1 (C1 (A)), 126.4 (C2,6 (A)), 128.5 (C3,5 (A)), 127.9 (C4 (A)), 196.0

(C=O), [ oxophenyl ring = (B), phenyl ring (A), numbering refer to Fig. 4.6.]

S. 1 500 MHz 1H NMR spectrum of (III/1prn) which was

separated as an oily liquid containing trace of E1.

S. 2 500 MHz 1H NMR spectrum of (III/1prn) which was

separated as an oily liquid containing trace of E1(expanded)

S. 3 125.5 13C NMR spectrum (fully decoupled) of (III/1prn) which was separated as an oily liquid containing trace of E1.

Page 199: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

51

S. 4 125.5 13C NMR spectrum (fully decoupled) of (III/1prn) which

was separated as an oily liquid containing trace of E1(expanded)

S. 5 125.5 13C NMR spectrum (DEPT 135º) of (III/1prn)

which was separated as an oily liquid containing trace of E1.

S. 6 DQF COSY spectrum of (III/1prn) which was

separated as an oily liquid containing trace of E1

S. 7 DQF COSY spectrum of (III/1prn) which was separated as an oily liquid containing trace of E1 (expanded).

Page 200: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

52

S. 8 DQF COSY spectrum of (III/1prn) which was separated as an oily

liquid containing trace of E1 (expanded).

S. 8 HMQC spectrum of of (III/1prn) which was separated as an oily liquid

containing trace of E1.

S. 9 HMQC spectrum of (III/1prn) which was separated as an oily

liquid containing trace of E1. (expanded)

S. 10 300 MHz 1H NMR spectrum of the crude reaction mixture of the reaction

between N1 and E1 after 4 hours

Page 201: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

53

S. 11 300 MHz 1H NMR spectrum of the crude reaction mixture of the reaction between

N1 and E1 after 8 hours

S. 13 300 MHz 1H NMR spectrum of the crude reaction mixture of the reaction between

N1 and E1 after 14 hours

S. 14 300MHz 1H NMR spectrum of the crude reaction mixture after 14 hours for

the reaction between N1 and E2

S. 15 75.5MHz 13CNMR spectrum of the two cycloadducts after purification by

column chromatography for the reaction between N1 and E

Page 202: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

54

S. 16 75.5MHz 13CNMR spectrum of the two cycloadducts after purification

by column chromatography for the reaction between N1 and E2

S. 17 500 MHz 1H NMR spectrum of (I/2psx )

S. 18 500 MHz 1H NMR spectrum of (I/2psx ) (expanded).

S. 19 500 MHz 1H NMR spectrum (I/2psx) (expanded)

Page 203: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

55

S. 20 500 MHz 1H NMR spectrum of (I/2psx) (expanded)

S. 21 125.5 MHz 13C NMR spectrum (fully decoupled)of (I/2psx)

S. 22 125.5 MHz 13C NMR spectrum (fully decoupled) of (I/2psx) (expanded)

S. 23 125.5 MHz 13C NMR (DEPT 135º) spectrum of (I/2psx) (expanded)

Page 204: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

56

S. 24 DQF COSY spectrum of (I/2psx) (using Bruker DRX 500 NMR spectrometer) (expanded)

S. 25 DQF COSY spectrum of (I/2psx ) (using Bruker DRX 500 NMR spectrometer) (expanded)

S. 26 HMQC spectrum of (I/2psx ) (using Bruker DRX 500 NMR spectrometer)

S. 27 HMQC spectrum of (I/2psx) (using Bruker DRX 500 NMR spectrometer) (expanded)

Page 205: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

57

S. 28 HMBC spectrum of (I/2psx) (using Bruker DRX 500 NMR spectrometer)

X-Ray data of (I/2psx)

Symmetry used

in scaling p222

a (Å) 19.5855 (7)

b (Å) 9.2809 (2)

c (Å) 17.1942 (6)

alpha (°) 90.0

beta (°) 90.0

gamma (°) 90.0

Volume (A3) 3125.5(6)

Z 8

Mosaicity (°) 0.46

Final Data Set:

Number of 'full' reflections 14 460

Number of 'partial' reflections 10 370

Total number of integrated reflections 23 567

Total number of unique reflections 4 401

Data completeness 99.6%

Resolution range 50.0-0.89 Å

Theta range 0.41°-23.53°

Average Intensity 43.1

Average Sigma(I) 1.1

Overall R-merge (linear) 0.050

Refinement statistics of (I)

Compound: (2psx)

Formula C19H19NO2

Mw 293,35

No of reflections used 4401

No of observed reflections* 3541

No of refined parameters 398

R-factor (observed Fs) 0.044

R-factor (all data) 0.062

Rw on F2 (observed) 0.111

Rw on F2 (all data) 0.124

Goodness of fit 1.006

Min – max in last F density map (e-) -0.20 / +0.19

Page 206: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

58

* Criterion: F ≥ 4 (F)

The stereochemistry is trans for ring hydrogen's (or substituents on oxazolidine ring) but H3 is cis with respect to the lone

pair of N2 (cis junction of the two five-membered rings)

Ring parameters:

The internal dihedral angles are as follows:

Compound: (2psx) (A) (2psx) (B)

Dihedral angles (°):

N2-C3-C4-C5

C3-C4-C5-O1

C4-C5-O1-N2

C5-O1-N2-C3

O1-N2-C3-C4

Puckering parameters (°):

m

P

Closest pucker Descriptor:

-19.6

39.6

-45.4

32.9

-6.9

45.4

63.8

C5/O1-T*

-17.5

39.5

-47.0

35.5

-9.7

46.6

67.2

C5/O1-T*

*(ideal twist has P = 72°, Envelope P = 54°

Positional parameters (x104) and mean recalculated isotropic

-------- factors (x103)for non-hydrogen atoms

Molecule A:

ATOM X Y Z <U>

O1A 1481(12) 5057(2) 3385(15) 66(6) N2A 1389(15) 5181(3) 4233( 2) 71(8)

C3A 1753(19) 6542(4) 4472( 2) 69(9)

C4A 2124(14) 7050(3) 3720(19) 50(8)

C5A 2142(15) 5677(3) 3236( 2) 53(8) C6A 666( 2) 5489(5) 4359( 4) 108(1)

C7A 559( 2) 6963(5) 4428( 4) 129(2)

C8A 1206( 3) 7554(4) 4766( 3) 96(1)

C4AA 2828(17) 7636(3) 3893( 2) 54(9) O4A 3275(12) 6799(2) 4105(17) 84(8)

C41A 2983(14) 9200(3) 3837(17) 46(7)

C42A 2495(16) 10219(3) 3628( 2) 56(8)

C43A 2663(18) 11664(3) 3601( 2) 67(1) C44A 3308(18) 12115(4) 3783( 3) 69(1)

C45A 3795(17) 11125(4) 3990( 2) 68(9)

C46A 3635(15) 9682(3) 4019(19) 58(8)

C51A 2236(15) 5845(3) 2378(19) 50(8) C52A 2781(16) 5200(3) 2011( 2) 57(8)

C53A 2877( 2) 5362(4) 1228( 3) 76(1)

C54A 2417( 2) 6149(4) 793( 2) 80(1)

C55A 1864( 2) 6778(4) 1150( 2) 74(1) C56A 1774(17) 6654(3) 1943( 2) 63(9)

Molecule B:

O1B 981(11) 143(2) 2475(12) 56(6)

N2B 1044(13) 292(3) 1622(15) 54(7) C3B 687(17) 1672(3) 1434(18) 56(8)

C4B 323(14) 2128(3) 2184(17) 44(7)

C5B 323(14) 722(3) 2644(17) 47(7)

C4AB -391(16) 2696(3) 2023( 2) 48(8) O4B -844(11) 1851(2) 1884(17) 75(7)

C41B -524(13) 4270(3) 2011(18) 46(7)

C42B -1184(16) 4750(3) 1852( 2) 61(9)

C43B -1332(17) 6205(4) 1829( 2) 71(1) C44B -834(19) 7196(4) 1963( 3) 76(1)

C45B -186(18) 6748(3) 2118( 3) 81(1)

Page 207: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

59

C46B -28(15) 5294(3) 2154( 2) 61(9)

C51B 237(14) 861(3) 3509(17) 46(7) C52B -321(16) 240(3) 3876(19) 54(8)

C53B -421(18) 386(4) 4658( 2) 66(9)

C54B 39( 2) 1149(4) 5097( 2) 74(1)

C55B 605( 2) 1772(4) 4749( 2) 70(1) C56B 696(16) 1640(3) 3956(19) 57(8)

C6B 1770(18) 539(4) 1474( 3) 78(1)

C7B 1881( 2) 2101(5) 1491( 3) 97(1)

C8B 1241( 3) 2688(4) 1130( 3) 87(1)

Positional parameters (x103) and mean recalculated isotropic

-------- factors (x103) for hydrogens atoms

Molecule A:

ATOM X Y Z U H3A 209 634 488 83

H4A 185 779 346 61

H5A 250 504 344 64

H61A 40 512 393 130 H62A 51 501 483 130

H71A 18 716 477 155

H72A 47 739 392 155

H81A 119 755 533 115 H82B 129 853 459 115

H42A 205 993 351 68

H43A 233 1234 346 81

H44A 342 1309 377 84 H45A 423 1143 411 82

H46A 397 902 416 70

H52A 309 465 230 69

H53A 325 494 99 91 H54A 248 625 26 97

H55A 155 729 86 89

H56A 141 711 219 76

Molecule B:

H3B 35 150 103 68

H4B 59 286 246 54

H5B -3 8 244 57 H42B -153 408 176 74

H43B -178 651 172 86

H44B -94 818 195 92

H45B 16 743 220 97

H46B 41 501 228 74

H52B -63 -29 358 66

H53B -80 -3 489 80

H54B -3 125 563 89 H55B 92 228 505 84

H56B 107 208 372 69

H61B 205 7 187 94 H62B 190 15 97 94

H71B 228 237 119 117

H72B 194 245 202 117

H81B 127 266 57 105 H82B 116 367 130 105

Table-7:

Anisotropic thermal parameters (x103)

-------- for non-hydrogen atoms

Molecule A:

ATOM U11 U22 U33 U23 U13 U12

O1A 58 (14) 54 (12) 85 (18) 0 (11) 5 (12) -18 (10)

N2A 72 ( 2) 53 (16) 89 ( 2) 3 (14) 23 (16) -3 (13)

Page 208: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

60

C3A 67 ( 2) 75 ( 2) 65 ( 2) 3 (17) -2 (18) -6 (17)

C4A 47 (18) 41 (15) 64 ( 2) -4 (15) -6 (15) 0 (13) C5A 44 (18) 39 (15) 76 ( 2) -1 (14) -1 (15) 0 (12)

C6A 64 ( 3) 99 ( 3) 162 ( 5) -44 ( 3) 30 ( 3) -10 ( 2)

C7A 73 ( 3) 90 ( 3) 223 ( 7) -49 ( 4) 26 ( 4) 2 ( 3)

C8A 110 ( 4) 79 ( 3) 99 ( 4) -28 ( 2) 34 ( 3) -18 ( 2) C4AA 49 ( 2) 53 (18) 62 ( 2) -4 (15) -6 (18) 4 (14)

O4A 60 (15) 56 (14) 136 ( 2) 1 (14) -35 (15) 7 (11)

C41A 42 (16) 49 (16) 48 (17) 0 (13) -1 (14) 0 (12)

C42A 45 (17) 53 (19) 70 ( 2) 5 (15) -11 (15) -3 (13) C43A 57 ( 2) 52 (19) 93 ( 3) 13 (17) -12 (18) -3 (14)

C44A 56 ( 2) 56 (18) 96 ( 3) 13 ( 2) -10 ( 2) -12 (17)

C45A 44 (18) 71 ( 2) 91 ( 3) 0 (18) -5 (18) -18 (16)

C46A 41 (19) 64 ( 2) 70 ( 2) 0 (15) -3 (16) -1 (14) C51A 47 (18) 35 (15) 68 ( 2) -7 (14) -2 (15) -4 (12)

C52A 52 (19) 44 (17) 76 ( 2) -12 (16) 3 (18) -2 (13)

C53A 78 ( 3) 65 ( 2) 85 ( 3) -20 ( 2) 9 ( 2) -3 ( 2)

C54A 103 ( 3) 80 ( 3) 58 ( 2) -13 ( 2) 2 ( 2) -22 ( 2)

C55A 78 ( 3) 76 ( 3) 69 ( 3) -3 (18) -15 ( 2) 0 (19)

C56A 55 ( 2) 58 (18) 76 ( 2) -8 (16) -4 (18) 2 (15)

O1B 57 (14) 48 (11) 63 (14) 2 (10) 0 (11) 12 ( 9)

Molecule B: N2B 55 (17) 48 (14) 60 (17) -6 (11) 7 (13) 2 (12)

C3B 64 ( 2) 53 (17) 53 ( 2) -1 (14) 2 (15) 8 (15)

C4B 46 (18) 36 (13) 51 (18) -2 (14) -5 (14) 0 (11)

C5B 45 (18) 38 (16) 58 ( 2) -1 (13) -1 (14) 0 (12) C4AB 44 (18) 44 (16) 56 ( 2) 1 (14) -5 (17) -3 (13)

O4B 51 (13) 54 (13) 120 ( 2) 1 (13) -20 (13) -11 (11)

C41B 38 (15) 50 (17) 52 (17) 4 (13) -2 (14) 2 (12)

C42B 41 (18) 62 ( 2) 82 ( 3) 5 (17) -6 (17) 0 (14) C43B 49 ( 2) 64 ( 2) 101 ( 3) 12 (19) -6 (19) 15 (17)

C44B 62 ( 2) 49 (18) 119 ( 3) 7 ( 2) -1 ( 2) 13 (18)

C45B 56 ( 2) 44 (18) 143 ( 4) 1 ( 2) -16 ( 2) 3 (15)

C46B 42 (18) 47 (18) 95 ( 3) -1 (16) -14 (18) 7 (13) C51B 47 (17) 38 (14) 55 (18) 6 (13) -2 (14) 5 (12)

C52B 51 (18) 48 (17) 64 ( 2) 13 (14) -5 (16) -1 (13)

C53B 58 ( 2) 70 ( 2) 72 ( 2) 18 (18) 7 (18) -2 (17)

C54B 88 ( 3) 78 ( 2) 56 ( 2) 10 (18) 8 ( 2) 3 ( 2)

C55B 77 ( 3) 73 ( 2) 60 ( 2) 2 (16) -13 (19) -5 (19)

C56B 52 (19) 57 (18) 63 ( 2) 0 (14) -3 (16) -5 (14)

C6B 58 ( 2) 86 ( 3) 92 ( 3) -3 ( 2) 14 ( 2) 2 (19)

C7B 85 ( 3) 89 ( 3) 118 ( 4) -19 ( 3) 24 ( 3) -31 ( 3) C8B 118 ( 4) 61 ( 2) 83 ( 3) 5 (18) 46 ( 3) 2 ( 2)

Table-8:

Distances (Å) for non-hydrogen atoms (e.s.d.'s given in parentheses)

Molecule A:

O1A - C5A 1.440(4) O1A - N2A 1.473(4) N2A - C6A

N2A - C3A 1.508(4) C3A - C8A 1.511(6) C3A - C4A 5)

C4A - C4AA 1.512(4) C4A - C5A 1.523(4) C5A - C51A 7A 1.390(6) C7A - C8A 1.499(6) C4AA - O4A 1.226(4) C4AA - C41A 1.485(4) C41A - C46A1.389(4) C41A - C42A 1.392(4)

C42A - C43A 1.382(4) C43A - C44A1.367(5) C44A - C45A 1.372(5)

C45A - C46A 1.376(5) C51A - C52A1.378(4) C51A - C56A 1.393(4) C52A - C53A 1.368(5) C53A - C54A1.380(6) C54A - C55A 1.376(6)

C55A - C56A 1.378(5)

Molecule B:

O1B - C5B 1.428(3) O1B - N2B 1.478(3) N2B - C6B 1.463(4) N2B - C3B 1.495(4) C3B - C8B (5)

C3B - C4B 1.533(4) C4B - C4AB 1.522(4) C4B - C5B )

C5B - C51B 1.501(4) C4AB - O4B 1.207(3) C4AB - C41B

C41B - C46B 1.381(4) C41B - C42B 1.395(4) C42B - C43B - C44B 1.360(5) C44B - C45B 1.362(5) C45B - C46B 1.386(4) C51B - C56B 1.385(4) C51B - C52B 1.389(4) C52B - C53B

C53B - C54B 1.374(5) C54B - C55B 1.385(5) C55B - C56B 5)

C6B - C7B 1.466(6) C7B - C8B 1.501(6)

Table-5: Bond angles (degr.) for non-hydrogen atoms

-------- with e.s.d.'s given in parentheses

Molecule A:

Page 209: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

61

C5A - O1A - N2A 104.8(2) C6A - N2A - O1A 106.3(3)

C6A - N2A - C3A 104.7(3) O1A - N2A - C3A 106.0(2) N2A - C3A - C8A 106.1(3) N2A - C3A - C4A 104.4(3)

C8A - C3A - C4A 114.9(3) C4AA - C4A - C5A 112.8(2)

C4AA - C4A - C3A 111.8(3) C5A - C4A - C3A 102.2(2)

O1A - C5A - C51A 109.1(3) O1A - C5A - C4A 102.4(2) C51A - C5A - C4A 117.1(2) C7A - C6A - N2A 110.7(4)

C6A - C7A - C8A 105.3(4) C7A - C8A - C3A 104.1(3)

O4A - C4AA - C41A 119.6(3) O4A - C4AA - C4A 118.8(3)

C41A - C4AA - C4A 121.6(3) C46A - C41A - C42A 118.1(3) C46A - C41A - C4AA 119.2(3) C42A - C41A - C4AA 122.7(3)

C43A - C42A - C41A 120.3(3) C44A - C43A - C42A 120.6(3)

C43A - C44A - C45A 119.8(3) C44A - C45A - C46A 120.2(3)

C45A - C46A - C41A 120.9(3) C52A - C51A - C56A 119.4(3) C52A - C51A - C5A 120.1(3) C56A - C51A - C5A 120.5(3)

C53A - C52A - C51A 120.6(3) C52A - C53A - C54A 120.1(4)

C55A - C54A - C53A 119.8(4) C54A - C55A - C56A 120.4(4)

C55A - C56A - C51A 119.6(3)

Molecule B:

C5B - O1B - N2B 104.0(2)

C6B - N2B - O1B 105.6(3) C6B - N2B - C3B 106.4(3) O1B - N2B - C3B 104.9(2) N2B - C3B - C8B 105.7(3)

N2B - C3B - C4B 105.8(2) C8B - C3B - C4B 116.5(3)

C4AB - C4B - C5B 112.9(2) C4AB - C4B - C3B 111.7(3)

C5B - C4B - C3B 101.6(2) O1B - C5B - C51B 109.6(2) O1B - C5B - C4B 102.5(2) C51B - C5B - C4B 116.1(2)

O4B - C4AB - C41B 120.5(3) O4B - C4AB - C4B 119.2(3)

C41B - C4AB - C4B 120.3(2) C46B - C41B - C42B 117.8(3)

C46B - C41B - C4AB 123.5(2) C42B - C41B - C4AB 118.6(3) C43B - C42B - C41B 120.8(3) C44B - C43B - C42B 120.4(3)

C43B - C44B - C45B 119.6(3) C44B - C45B - C46B 120.9(3)

C41B - C46B - C45B 120.4(3) C56B - C51B - C52B 118.4(3)

C56B - C51B - C5B 121.5(3) C52B - C51B - C5B 120.1(3) C53B - C52B - C51B 121.3(3) C52B - C53B - C54B 119.9(3)

C53B - C54B - C55B 120.2(3) C56B - C55B - C54B 119.6(3)

C55B - C56B - C51B 120.7(3) C7B - C6B - N2B 107.2(3)

C6B - C7B - C8B 103.2(3) C7B - C8B - C3B 103.1(3)

--------------------------0---------------------------------------0---------------------------------0-----------------------------------------

Theoretical calculation results

Molecule = N1. Final optimized geometry with frequency analysis. -------------------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

------------------------------------------------------

E(RB+HF-LYP) = -286.540959367 A.U. ------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z

--------------------------------------------------------------------------

1 8 0 -2.097683 0.019562 -0.044123

2 7 0 -0.837127 0.090505 -0.007145 3 6 0 -0.060262 1.146455 -0.028700

4 1 0 -0.513713 2.127396 -0.080014

5 6 0 1.391813 0.806312 0.088280 6 1 0 2.012387 1.341674 -0.640441

7 1 0 1.787157 1.065803 1.082492

8 6 0 1.406219 -0.730996 -0.150146

9 1 0 1.672310 -0.941847 -1.190464 10 1 0 2.129292 -1.245936 0.487794

11 6 0 -0.035796 -1.171813 0.123080

12 1 0 -0.450219 -1.888644 -0.587937

13 1 0 -0.207705 -1.548221 1.136483 -------------------------------------------------------------------------------------

Page 210: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

62

Rotational constants (GHZ): 7.4250128 3.4271899 2.4711136

Zero-point correction= 0.110805 (Hartree/Particle)

Thermal correction to Energy= 0.116065

Thermal correction to Enthalpy= 0.117009 Thermal correction to Gibbs Free Energy= 0.082092

Sum of electronic and zero-point Energies= -286.430154

Sum of electronic and thermal Energies= -286.424895

Sum of electronic and thermal Enthalpies= -286.423951

Sum of electronic and thermal Free Energies= -286.458867

-----------------------------------------------------------------------------------

Molecule = E1. Final optimized geometry with frequency analysis.

----------------------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity ----------------------------------------------------

E(RB+HF-LYP) = -537.529586647 A.U.

----------------------------------------------------

Standard orientation: ---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

--------------------------------------------------------------------- 1 6 0 -0.164019 -0.257179 -0.000187

2 1 0 -0.540021 -1.278077 0.000540

3 6 0 -1.071801 0.737206 -0.000372

4 1 0 -0.790824 1.785621 -0.000780 5 6 0 1.295084 -0.127901 -0.000059

6 6 0 2.073297 -1.299729 -0.000230

7 6 0 1.961878 1.112750 0.000231

8 6 0 3.465449 -1.240446 -0.000138 9 1 0 1.573318 -2.265444 -0.000414

10 6 0 3.351247 1.172613 0.000296

11 1 0 1.389320 2.035381 0.000383

12 6 0 4.109707 -0.002838 0.000116 13 1 0 4.045857 -2.159004 -0.000265

14 1 0 3.847701 2.139225 0.000479

15 1 0 5.195033 0.048782 0.000156

16 6 0 -2.532093 0.532179 -0.000131 17 8 0 -3.340511 1.441918 -0.000173

18 8 0 -2.892018 -0.777287 0.000159

19 6 0 -4.305340 -1.018435 0.000303

20 1 0 -4.417401 -2.103422 -0.001311 21 1 0 -4.771288 -0.586128 0.890216

22 1 0 -4.771916 -0.583300 -0.887877

-------------------------------------------------------------------------------------

Rotational constants (GHZ): 3.0364831 0.3725689 0.3325473 ---------------------------------------------------------------------------------------

Zero-point correction= 0.177540 (Hartree/Particle)

Thermal correction to Energy= 0.188678 Thermal correction to Enthalpy= 0.189622

Thermal correction to Gibbs Free Energy= 0.138997

Sum of electronic and zero-point Energies= -537.352046

Sum of electronic and thermal Energies= -537.340909 Sum of electronic and thermal Enthalpies= -537.339965

Sum of electronic and thermal Free Energies= -537.390589

----------------------------------------------------------------------------------

Transition State = 1TRN. Final optimized geometry with frequency analysis.

------------------------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------ E(RB+HF-LYP) = -824.04991718 A.U.

-----------------------------------------------

Transition State = 1TRX. Final optimized geometry with frequency analysis.

-------------------------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

Page 211: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

63

---------------------------------------------------------------

E(RB+HF-LYP) = -824.04696094 A.U.

Transition State = 1TSN. Final optimized geometry with frequency analysis. ------------------------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------------------

E(RB+HF-LYP) = -824.049917096 A.U. -------------------------------------------------

Transition State = 1TSX. Final optimized geometry with frequency analysis.

-----------------------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity --------------------------------------------------------------

E(RB+HF-LYP) = -824.047345240 A.U.

-------------------------------------------------------

Zero-point correction= 0.290296 (Hartree/Particle)

Thermal correction to Energy= 0.306851

Thermal correction to Enthalpy= 0.307795

Thermal correction to Gibbs Free Energy= 0.244312

Sum of electronic and zero-point Energies= -823.757049 Sum of electronic and thermal Energies= -823.740494

Sum of electronic and thermal Enthalpies= -823.739550

Sum of electronic and thermal Free Energies= -823.803033

----------------------------------------------------------------------------------

Molecule = E2. Final optimized geometry with frequency analysis -------------------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

-------------------------------------------------

E(RB+HF-LYP) = -654.034372622 A.U. -----------------------------------------------------

Standard orientation:

--------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.796394 0.165916 -0.117002 2 1 0 0.215090 -0.686094 -0.464325

3 6 0 0.137133 1.296318 0.210419

4 1 0 0.673895 2.197295 0.497801

5 6 0 2.245618 -0.054522 -0.090369 6 6 0 2.745169 -1.297519 -0.520172

7 6 0 3.167248 0.915232 0.350032

8 6 0 4.112383 -1.566126 -0.514103

9 1 0 2.047182 -2.057673 -0.863460 10 6 0 4.531907 0.647514 0.356782

11 1 0 2.813075 1.883697 0.689913

12 6 0 5.011419 -0.593584 -0.075115

13 1 0 4.474839 -2.533214 -0.851743 14 1 0 5.227122 1.408830 0.700056

15 1 0 6.078473 -0.798248 -0.068452

16 6 0 -1.319250 1.526578 0.057343

17 8 0 -1.721767 2.677957 -0.092338

18 6 0 -2.298138 0.387092 0.062528

19 6 0 -3.488916 0.546393 -0.663876

20 6 0 -2.110341 -0.782025 0.815532 21 6 0 -4.453980 -0.456253 -0.667730

22 1 0 -3.636600 1.468006 -1.217661

23 6 0 -3.086967 -1.779108 0.825344

24 1 0 -1.216115 -0.898349 1.419341 25 6 0 -4.254369 -1.622893 0.076945

26 1 0 -5.365989 -0.328325 -1.244628

27 1 0 -2.937655 -2.674601 1.422635

28 1 0 -5.011054 -2.403054 0.079882 ---------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.2553419 0.2346604 0.2053201

----------------------------------------------------------------------------------------

Page 212: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

64

Zero-point correction= 0.225546 (Hartree/Particle)

Thermal correction to Energy= 0.238563 Thermal correction to Enthalpy= 0.239507

Thermal correction to Gibbs Free Energy= 0.183949

Sum of electronic and zero-point Energies= -653.808826

Sum of electronic and thermal Energies= -653.795810 Sum of electronic and thermal Enthalpies= -653.794865

Sum of electronic and thermal Free Energies= -653.850424

---------------------------------------------------------------------------------------

Transition State = 2TRN. Final optimized geometry with frequency analysis

-------------------------------------------------------------------------------------- # opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------------------

E(RB+HF-LYP) = -940.550927935 A.U.

----------------------------------------------------

Zero-point correction= 0.338351 (Hartree/Particle)

Thermal correction to Energy= 0.356606

Thermal correction to Enthalpy= 0.357550 Thermal correction to Gibbs Free Energy= 0.290201

Sum of electronic and zero-point Energies= -940.212577

Sum of electronic and thermal Energies= -940.194322

Sum of electronic and thermal Enthalpies= -940.193378 Sum of electronic and thermal Free Energies= -940.260727

--------------------------------------------------------------------------------

Transition State = 2TRX. Final optimized geometry with frequency analysis

------------------------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity -----------------------------------------------------------

E(RB+HF-LYP) = -940.553142446 A.U.

--------------------------------------------------------------------------

Zero-point correction= 0.338719 (Hartree/Particle) Thermal correction to Energy= 0.357034

Thermal correction to Enthalpy= 0.357978

Thermal correction to Gibbs Free Energy= 0.290737

Sum of electronic and zero-point Energies= -940.214424 Sum of electronic and thermal Energies= -940.196109

Sum of electronic and thermal Enthalpies= -940.195165

Sum of electronic and thermal Free Energies= -940.262405

------------------------------------------------------------------------------------------------------------

Suplimentary of IRC

The TS of different facial attack and their corresponding IRC of the reaction of scheme 1

The TS and IRC of 1TRN

Page 213: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 2

65

The TS and IRC of 1TRX

The TS and IRC of 1TSN

The TS and IRC of 1TSX

The TS of different facial attack and their corresponding IRC of the reaction of scheme 2

The TS and IRC of 2TRN

The TS and IRC of 2TRX

Page 214: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

Page 215: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

66

1trn nbo wiberg analysis:

Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9147 0.9107 0.9270 1.0337 0.0032 0.0122 0.0084 0.0119

2. H 0.9147 0.0000 0.0006 0.0007 0.0023 0.0096 0.0017 0.0048 0.0003

3. H 0.9107 0.0006 0.0000 0.0006 0.0024 0.0001 0.0063 0.0061 0.0002

4. H 0.9270 0.0007 0.0006 0.0000 0.0034 0.0006 0.0091 0.0011 0.0004

5. C 1.0337 0.0023 0.0024 0.0034 0.0000 0.9040 1.2890 0.2031 0.0126

6. H 0.0032 0.0096 0.0001 0.0006 0.9040 0.0000 0.0027 0.0166 0.0005

7. N 0.0122 0.0017 0.0063 0.0091 1.2890 0.0027 0.0000 1.2453 0.8954

8. O 0.0084 0.0048 0.0061 0.0011 0.2031 0.0166 1.2453 0.0000 0.0551

9. C 0.0119 0.0003 0.0002 0.0004 0.0126 0.0005 0.8954 0.0551 0.0000

10. H 0.0001 0.0000 0.0002 0.0002 0.0074 0.0000 0.0039 0.0032 0.8864

11. C 0.0006 0.0000 0.0000 0.0001 0.0068 0.0006 0.0096 0.0078 1.0052

12. H 0.0004 0.0000 0.0000 0.0001 0.0001 0.0001 0.0097 0.0023 0.0035

13. H 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0012 0.0037 0.0018

14. H 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0009 0.0003 0.0024

15. C 0.0003 0.0001 0.0000 0.0001 0.0025 0.0029 0.0075 0.0101 0.9985

16. C 0.0001 0.0002 0.0000 0.0000 0.0019 0.0002 0.0087 0.0023 0.0107

17. C 0.0001 0.0001 0.0001 0.0000 0.0020 0.0001 0.0051 0.0027 0.0104

18. C 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0005 0.0006 0.0071

19. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0018

20. C 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0008 0.0004 0.0078

21. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0006 0.0001 0.0020

22. C 0.0000 0.0001 0.0000 0.0000 0.0008 0.0000 0.0028 0.0014 0.0011

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004

26. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000

27. C 0.0004 0.0000 0.0001 0.0000 0.0004 0.0000 0.0100 0.0233 0.0006

28. C 0.0002 0.0000 0.0002 0.0000 0.0059 0.0000 0.0011 0.0043 0.0006

29. C 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0002 0.0003 0.0006

30. C 0.0051 0.0002 0.0010 0.0002 0.0049 0.0004 0.1059 0.2594 0.0006

31. C 0.0004 0.0000 0.0001 0.0000 0.0003 0.0000 0.0105 0.0177 0.0002

32. C 0.0004 0.0000 0.0000 0.0000 0.0002 0.0000 0.0101 0.0170 0.0003

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

34. C 0.0040 0.0013 0.0135 0.0008 0.4222 0.0005 0.0204 0.0245 0.0006

35. H 0.0000 0.0001 0.0000 0.0000 0.0003 0.0000 0.0001 0.0004 0.0000

36. C 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000 0.0001 0.0006 0.0003

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

39. H 0.0002 0.0002 0.0002 0.0000 0.0006 0.0000 0.0015 0.0024 0.0000

40. H 0.0011 0.0000 0.0003 0.0004 0.0010 0.0000 0.0038 0.0071 0.0002

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0001 0.0006 0.0004 0.0000 0.0000 0.0003 0.0001 0.0001 0.0000

2. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0001 0.0000

3. H 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

4. H 0.0002 0.0001 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

5. C 0.0074 0.0068 0.0001 0.0002 0.0004 0.0025 0.0019 0.0020 0.0001

6. H 0.0000 0.0006 0.0001 0.0000 0.0000 0.0029 0.0002 0.0001 0.0000

7. N 0.0039 0.0096 0.0097 0.0012 0.0009 0.0075 0.0087 0.0051 0.0005

8. O 0.0032 0.0078 0.0023 0.0037 0.0003 0.0101 0.0023 0.0027 0.0006

9. C 0.8864 1.0052 0.0035 0.0018 0.0024 0.9985 0.0107 0.0104 0.0071

10. H 0.0000 0.0037 0.0005 0.0010 0.0111 0.0021 0.0015 0.0066 0.0003

11. C 0.0037 0.0000 0.9256 0.9098 0.9288 0.0106 0.0100 0.0070 0.0004

12. H 0.0005 0.9256 0.0000 0.0007 0.0006 0.0006 0.0001 0.0002 0.0000

13. H 0.0010 0.9098 0.0007 0.0000 0.0006 0.0083 0.0011 0.0012 0.0002

14. H 0.0111 0.9288 0.0006 0.0006 0.0000 0.0009 0.0001 0.0005 0.0000

15. C 0.0021 0.0106 0.0006 0.0083 0.0009 0.0000 1.4125 1.3882 0.0120

16. C 0.0015 0.0100 0.0001 0.0011 0.0001 1.4125 0.0000 0.0117 1.4297

17. C 0.0066 0.0070 0.0002 0.0012 0.0005 1.3882 0.0117 0.0000 0.1119

18. C 0.0003 0.0004 0.0000 0.0002 0.0000 0.0120 1.4297 0.1119 0.0000

19. H 0.0008 0.0001 0.0000 0.0001 0.0000 0.0036 0.9148 0.0092 0.0036

20. C 0.0001 0.0005 0.0000 0.0001 0.0001 0.0120 0.1084 1.4507 0.0110

21. H 0.0004 0.0001 0.0000 0.0001 0.0004 0.0035 0.0087 0.9114 0.0003

22. C 0.0002 0.0040 0.0000 0.0009 0.0000 0.1084 0.0110 0.0110 1.4426

23. H 0.0000 0.0001 0.0000 0.0000 0.0000 0.0079 0.0032 0.0002 0.9157

24. H 0.0003 0.0000 0.0000 0.0000 0.0000 0.0080 0.0002 0.0033 0.0083

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0085 0.0083 0.0034

26. H 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

27. C 0.0004 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000

28. C 0.0007 0.0001 0.0000 0.0002 0.0000 0.0001 0.0000 0.0000 0.0000

29. C 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30. C 0.0063 0.0009 0.0000 0.0000 0.0002 0.0005 0.0003 0.0004 0.0002

31. C 0.0011 0.0002 0.0000 0.0003 0.0000 0.0001 0.0000 0.0001 0.0000

Page 216: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

67

32. C 0.0004 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

34. C 0.0016 0.0002 0.0002 0.0000 0.0000 0.0002 0.0001 0.0005 0.0000

35. H 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

36. C 0.0002 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

39. H 0.0003 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

40. H 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004

2. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

3. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

4. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5. C 0.0000 0.0003 0.0001 0.0008 0.0000 0.0000 0.0000 0.0001 0.0004

6. H 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7. N 0.0002 0.0008 0.0006 0.0028 0.0001 0.0000 0.0000 0.0000 0.0100

8. O 0.0001 0.0004 0.0001 0.0014 0.0001 0.0000 0.0000 0.0001 0.0233

9. C 0.0018 0.0078 0.0020 0.0011 0.0003 0.0004 0.0004 0.0000 0.0006

10. H 0.0008 0.0001 0.0004 0.0002 0.0000 0.0003 0.0000 0.0001 0.0004

11. C 0.0001 0.0005 0.0001 0.0040 0.0001 0.0000 0.0000 0.0000 0.0001

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. H 0.0001 0.0001 0.0001 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000

14. H 0.0000 0.0001 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15. C 0.0036 0.0120 0.0035 0.1084 0.0079 0.0080 0.0002 0.0000 0.0001

16. C 0.9148 0.1084 0.0087 0.0110 0.0032 0.0002 0.0085 0.0000 0.0001

17. C 0.0092 1.4507 0.9114 0.0110 0.0002 0.0033 0.0083 0.0000 0.0001

18. C 0.0036 0.0110 0.0003 1.4426 0.9157 0.0083 0.0034 0.0000 0.0000

19. H 0.0000 0.0003 0.0004 0.0084 0.0021 0.0004 0.0004 0.0000 0.0000

20. C 0.0003 0.0000 0.0036 1.4239 0.0085 0.9155 0.0033 0.0000 0.0001

21. H 0.0004 0.0036 0.0000 0.0084 0.0004 0.0021 0.0004 0.0000 0.0000

22. C 0.0084 1.4239 0.0084 0.0000 0.0034 0.0033 0.9159 0.0000 0.0000

23. H 0.0021 0.0085 0.0004 0.0034 0.0000 0.0004 0.0020 0.0000 0.0000

24. H 0.0004 0.9155 0.0021 0.0033 0.0004 0.0000 0.0020 0.0000 0.0000

25. H 0.0004 0.0033 0.0004 0.9159 0.0020 0.0020 0.0000 0.0000 0.0000

26. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9177

27. C 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.9177 0.0000

28. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0035 1.3559

29. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 1.4564

30. C 0.0000 0.0003 0.0002 0.0001 0.0000 0.0000 0.0000 0.0018 0.0103

31. C 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0089 0.0107

32. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0085 0.0116

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021 0.0033

34. C 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 0.0006 0.0191

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0079

36. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.1023

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0088

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0083

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0004

40. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0002

Atom 28 29 30 31 32 33 34 35 36

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0002 0.0000 0.0051 0.0004 0.0004 0.0000 0.0040 0.0000 0.0000

2. H 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0013 0.0001 0.0000

3. H 0.0002 0.0000 0.0010 0.0001 0.0000 0.0000 0.0135 0.0000 0.0000

4. H 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000

5. C 0.0059 0.0001 0.0049 0.0003 0.0002 0.0000 0.4222 0.0003 0.0006

6. H 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000

7. N 0.0011 0.0002 0.1059 0.0105 0.0101 0.0000 0.0204 0.0001 0.0001

8. O 0.0043 0.0003 0.2594 0.0177 0.0170 0.0000 0.0245 0.0004 0.0006

9. C 0.0006 0.0006 0.0006 0.0002 0.0003 0.0000 0.0006 0.0000 0.0003

10. H 0.0007 0.0001 0.0063 0.0011 0.0004 0.0000 0.0016 0.0001 0.0002

11. C 0.0001 0.0001 0.0009 0.0002 0.0001 0.0000 0.0002 0.0000 0.0001

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

13. H 0.0002 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0001

14. H 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15. C 0.0001 0.0000 0.0005 0.0001 0.0001 0.0000 0.0002 0.0000 0.0000

16. C 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

17. C 0.0000 0.0000 0.0004 0.0001 0.0001 0.0000 0.0005 0.0000 0.0000

18. C 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0000 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

21. H 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

22. C 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Page 217: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

68

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. H 0.0035 0.0036 0.0018 0.0089 0.0085 0.0021 0.0006 0.0002 0.0003

27. C 1.3559 1.4564 0.0103 0.0107 0.0116 0.0033 0.0191 0.0079 0.1023

28. C 0.0000 0.0117 1.1082 1.3546 0.0974 0.0082 0.0106 0.0023 0.0111

29. C 0.0117 0.0000 0.0105 0.1024 1.4225 0.9177 0.0005 0.0001 0.0110

30. C 1.1082 0.0105 0.0000 0.0103 0.0007 0.0003 1.4998 0.9081 0.0088

31. C 1.3546 0.1024 0.0103 0.0000 0.0113 0.0003 0.0277 0.0017 1.4611

32. C 0.0974 1.4225 0.0007 0.0113 0.0000 0.0034 0.0152 0.0007 1.4194

33. H 0.0082 0.9177 0.0003 0.0003 0.0034 0.0000 0.0001 0.0003 0.0085

34. C 0.0106 0.0005 1.4998 0.0277 0.0152 0.0001 0.0000 0.0048 0.0002

35. H 0.0023 0.0001 0.9081 0.0017 0.0007 0.0003 0.0048 0.0000 0.0002

36. C 0.0111 0.0110 0.0088 1.4611 1.4194 0.0085 0.0002 0.0002 0.0000

37. H 0.0033 0.0003 0.0016 0.9151 0.0085 0.0004 0.0003 0.0006 0.0035

38. H 0.0002 0.0033 0.0003 0.0084 0.9181 0.0020 0.0000 0.0000 0.0034

39. H 0.0017 0.0001 0.0049 0.0003 0.0001 0.0000 0.9230 0.0125 0.0000

40. H 0.0085 0.0001 0.0046 0.0001 0.0001 0.0000 0.9121 0.0022 0.0003

41. H 0.0084 0.0084 0.0002 0.0034 0.0033 0.0004 0.0002 0.0000 0.9168

Atom 37 38 39 40 41

---- ------ ------ ------ ------ ------

1. C 0.0000 0.0000 0.0002 0.0011 0.0000

2. H 0.0000 0.0000 0.0002 0.0000 0.0000

3. H 0.0000 0.0000 0.0002 0.0003 0.0000

4. H 0.0000 0.0000 0.0000 0.0004 0.0000

5. C 0.0000 0.0000 0.0006 0.0010 0.0000

6. H 0.0000 0.0000 0.0000 0.0000 0.0000

7. N 0.0000 0.0000 0.0015 0.0038 0.0000

8. O 0.0001 0.0000 0.0024 0.0071 0.0000

9. C 0.0000 0.0000 0.0000 0.0002 0.0000

10. H 0.0000 0.0000 0.0003 0.0002 0.0000

11. C 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000

13. H 0.0000 0.0000 0.0000 0.0000 0.0000

14. H 0.0000 0.0000 0.0000 0.0000 0.0000

15. C 0.0000 0.0000 0.0001 0.0000 0.0000

16. C 0.0000 0.0000 0.0000 0.0000 0.0000

17. C 0.0000 0.0000 0.0000 0.0000 0.0000

18. C 0.0000 0.0000 0.0000 0.0000 0.0000

19. H 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0000 0.0000 0.0000 0.0000 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000

26. H 0.0005 0.0004 0.0017 0.0000 0.0004

27. C 0.0088 0.0083 0.0004 0.0003 0.0002

28. C 0.0033 0.0002 0.0017 0.0085 0.0084

29. C 0.0003 0.0033 0.0001 0.0001 0.0084

30. C 0.0016 0.0003 0.0049 0.0046 0.0002

31. C 0.9151 0.0084 0.0003 0.0001 0.0034

32. C 0.0085 0.9181 0.0001 0.0001 0.0033

33. H 0.0004 0.0020 0.0000 0.0000 0.0004

34. C 0.0003 0.0000 0.9230 0.9121 0.0002

35. H 0.0006 0.0000 0.0125 0.0022 0.0000

36. C 0.0035 0.0034 0.0000 0.0003 0.9168

37. H 0.0000 0.0004 0.0000 0.0000 0.0022

38. H 0.0004 0.0000 0.0000 0.0000 0.0020

39. H 0.0000 0.0000 0.0000 0.0003 0.0000

40. H 0.0000 0.0000 0.0003 0.0000 0.0000

41. H 0.0022 0.0020 0.0000 0.0000 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.8354

2. H 0.9370

3. H 0.9427

4. H 0.9449

5. C 3.9098

6. H 0.9424

7. N 3.6772

8. O 1.9328

9. C 3.9203

10. H 0.9414

11. C 3.8335

12. H 0.9447

13. H 0.9318

14. H 0.9475

15. C 4.0022

Page 218: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

69

16. C 3.9464

17. C 3.9434

18. C 3.9481

19. H 0.9464

20. C 3.9481

21. H 0.9434

22. C 3.9478

23. H 0.9446

24. H 0.9445

25. H 0.9448

26. H 0.9506

27. C 3.9492

28. C 3.9992

29. C 3.9501

30. C 3.9576

31. C 3.9475

32. C 3.9496

33. H 0.9470

34. C 3.9050

35. H 0.9427

36. C 3.9490

37. H 0.9459

38. H 0.9468

39. H 0.9506

40. H 0.9432

41. H 0.9461

1trx nbo wiberg analysis:

Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9082 0.9101 0.9279 1.0358 0.0034 0.0126 0.0082 0.0120

2. H 0.9082 0.0000 0.0007 0.0007 0.0023 0.0094 0.0015 0.0042 0.0003

3. H 0.9101 0.0007 0.0000 0.0006 0.0025 0.0001 0.0067 0.0069 0.0002

4. H 0.9279 0.0007 0.0006 0.0000 0.0034 0.0006 0.0090 0.0012 0.0004

5. C 1.0358 0.0023 0.0025 0.0034 0.0000 0.9031 1.2829 0.2036 0.0124

6. H 0.0034 0.0094 0.0001 0.0006 0.9031 0.0000 0.0026 0.0170 0.0005

7. N 0.0126 0.0015 0.0067 0.0090 1.2829 0.0026 0.0000 1.2391 0.9015

8. O 0.0082 0.0042 0.0069 0.0012 0.2036 0.0170 1.2391 0.0000 0.0570

9. C 0.0120 0.0003 0.0002 0.0004 0.0124 0.0005 0.9015 0.0570 0.0000

10. H 0.0002 0.0000 0.0003 0.0002 0.0095 0.0000 0.0052 0.0021 0.8873

11. C 0.0006 0.0000 0.0001 0.0001 0.0075 0.0005 0.0099 0.0077 1.0045

12. H 0.0004 0.0000 0.0000 0.0001 0.0001 0.0001 0.0097 0.0018 0.0032

13. H 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0014 0.0058 0.0018

14. H 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0009 0.0003 0.0024

15. C 0.0004 0.0000 0.0000 0.0001 0.0021 0.0033 0.0070 0.0113 0.9992

16. C 0.0001 0.0002 0.0000 0.0000 0.0020 0.0001 0.0086 0.0026 0.0108

17. C 0.0001 0.0001 0.0000 0.0001 0.0024 0.0003 0.0054 0.0030 0.0103

18. C 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0005 0.0006 0.0071

19. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0018

20. C 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0007 0.0004 0.0078

21. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0005 0.0001 0.0019

22. C 0.0000 0.0001 0.0000 0.0000 0.0009 0.0000 0.0029 0.0016 0.0011

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004

26. H 0.0001 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

27. C 0.0006 0.0013 0.0001 0.0000 0.0003 0.0000 0.0118 0.0212 0.0001

28. C 0.0004 0.0009 0.0001 0.0000 0.0049 0.0000 0.0007 0.0019 0.0001

29. C 0.0005 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0002 0.0000

30. C 0.0047 0.0001 0.0013 0.0001 0.0055 0.0004 0.1055 0.2513 0.0009

31. C 0.0007 0.0001 0.0001 0.0000 0.0003 0.0000 0.0119 0.0171 0.0000

32. C 0.0005 0.0000 0.0000 0.0000 0.0001 0.0000 0.0111 0.0160 0.0000

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

34. C 0.0037 0.0016 0.0127 0.0008 0.4229 0.0006 0.0186 0.0233 0.0009

35. H 0.0001 0.0000 0.0001 0.0000 0.0006 0.0000 0.0006 0.0012 0.0001

36. C 0.0003 0.0001 0.0000 0.0000 0.0007 0.0000 0.0001 0.0002 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

39. H 0.0007 0.0000 0.0002 0.0003 0.0010 0.0000 0.0023 0.0049 0.0002

40. H 0.0002 0.0001 0.0001 0.0000 0.0007 0.0000 0.0032 0.0038 0.0001

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0002 0.0006 0.0004 0.0000 0.0000 0.0004 0.0001 0.0001 0.0000

2. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000

3. H 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Page 219: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

70

4. H 0.0002 0.0001 0.0001 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000

5. C 0.0095 0.0075 0.0001 0.0004 0.0004 0.0021 0.0020 0.0024 0.0001

6. H 0.0000 0.0005 0.0001 0.0000 0.0000 0.0033 0.0001 0.0003 0.0000

7. N 0.0052 0.0099 0.0097 0.0014 0.0009 0.0070 0.0086 0.0054 0.0005

8. O 0.0021 0.0077 0.0018 0.0058 0.0003 0.0113 0.0026 0.0030 0.0006

9. C 0.8873 1.0045 0.0032 0.0018 0.0024 0.9992 0.0108 0.0103 0.0071

10. H 0.0000 0.0035 0.0005 0.0008 0.0114 0.0022 0.0015 0.0066 0.0003

11. C 0.0035 0.0000 0.9266 0.9110 0.9283 0.0104 0.0100 0.0068 0.0004

12. H 0.0005 0.9266 0.0000 0.0007 0.0006 0.0005 0.0001 0.0002 0.0000

13. H 0.0008 0.9110 0.0007 0.0000 0.0006 0.0084 0.0011 0.0012 0.0002

14. H 0.0114 0.9283 0.0006 0.0006 0.0000 0.0009 0.0002 0.0005 0.0000

15. C 0.0022 0.0104 0.0005 0.0084 0.0009 0.0000 1.4123 1.3875 0.0120

16. C 0.0015 0.0100 0.0001 0.0011 0.0002 1.4123 0.0000 0.0118 1.4298

17. C 0.0066 0.0068 0.0002 0.0012 0.0005 1.3875 0.0118 0.0000 0.1118

18. C 0.0003 0.0004 0.0000 0.0002 0.0000 0.0120 1.4298 0.1118 0.0000

19. H 0.0008 0.0001 0.0000 0.0001 0.0000 0.0036 0.9147 0.0092 0.0036

20. C 0.0001 0.0005 0.0000 0.0001 0.0001 0.0120 0.1084 1.4508 0.0110

21. H 0.0004 0.0002 0.0000 0.0001 0.0004 0.0035 0.0087 0.9115 0.0003

22. C 0.0001 0.0038 0.0000 0.0009 0.0000 0.1083 0.0110 0.0110 1.4426

23. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0079 0.0032 0.0002 0.9154

24. H 0.0003 0.0000 0.0000 0.0000 0.0000 0.0080 0.0002 0.0033 0.0083

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0085 0.0083 0.0034

26. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

27. C 0.0008 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

28. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

29. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30. C 0.0079 0.0015 0.0000 0.0001 0.0002 0.0003 0.0002 0.0005 0.0001

31. C 0.0008 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000

32. C 0.0008 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

34. C 0.0020 0.0002 0.0002 0.0000 0.0001 0.0002 0.0002 0.0004 0.0000

35. H 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

36. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

39. H 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

40. H 0.0008 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006

2. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0013

3. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

4. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

5. C 0.0000 0.0003 0.0001 0.0009 0.0000 0.0000 0.0000 0.0001 0.0003

6. H 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7. N 0.0002 0.0007 0.0005 0.0029 0.0001 0.0000 0.0000 0.0000 0.0118

8. O 0.0001 0.0004 0.0001 0.0016 0.0001 0.0000 0.0000 0.0000 0.0212

9. C 0.0018 0.0078 0.0019 0.0011 0.0003 0.0003 0.0004 0.0000 0.0001

10. H 0.0008 0.0001 0.0004 0.0001 0.0001 0.0003 0.0000 0.0000 0.0008

11. C 0.0001 0.0005 0.0002 0.0038 0.0001 0.0000 0.0000 0.0000 0.0002

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. H 0.0001 0.0001 0.0001 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000

14. H 0.0000 0.0001 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15. C 0.0036 0.0120 0.0035 0.1083 0.0079 0.0080 0.0002 0.0000 0.0001

16. C 0.9147 0.1084 0.0087 0.0110 0.0032 0.0002 0.0085 0.0000 0.0000

17. C 0.0092 1.4508 0.9115 0.0110 0.0002 0.0033 0.0083 0.0000 0.0000

18. C 0.0036 0.0110 0.0003 1.4426 0.9154 0.0083 0.0034 0.0000 0.0000

19. H 0.0000 0.0003 0.0004 0.0084 0.0021 0.0004 0.0004 0.0000 0.0000

20. C 0.0003 0.0000 0.0037 1.4239 0.0085 0.9152 0.0033 0.0000 0.0000

21. H 0.0004 0.0037 0.0000 0.0084 0.0004 0.0021 0.0004 0.0000 0.0000

22. C 0.0084 1.4239 0.0084 0.0000 0.0034 0.0033 0.9156 0.0000 0.0000

23. H 0.0021 0.0085 0.0004 0.0034 0.0000 0.0004 0.0020 0.0000 0.0000

24. H 0.0004 0.9152 0.0021 0.0033 0.0004 0.0000 0.0020 0.0000 0.0000

25. H 0.0004 0.0033 0.0004 0.9156 0.0020 0.0020 0.0000 0.0000 0.0000

26. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9176

27. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9176 0.0000

28. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0034 1.3536

29. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 1.4573

30. C 0.0000 0.0003 0.0002 0.0000 0.0000 0.0000 0.0000 0.0018 0.0103

31. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0089 0.0106

32. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0085 0.0114

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021 0.0033

34. C 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0005 0.0200

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0076

36. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.1026

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0089

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0083

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0015 0.0004

40. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

Page 220: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

71

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0002

Atom 28 29 30 31 32 33 34 35 36

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0004 0.0005 0.0047 0.0007 0.0005 0.0000 0.0037 0.0001 0.0003

2. H 0.0009 0.0000 0.0001 0.0001 0.0000 0.0000 0.0016 0.0000 0.0001

3. H 0.0001 0.0001 0.0013 0.0001 0.0000 0.0000 0.0127 0.0001 0.0000

4. H 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000

5. C 0.0049 0.0001 0.0055 0.0003 0.0001 0.0000 0.4229 0.0006 0.0007

6. H 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000

7. N 0.0007 0.0001 0.1055 0.0119 0.0111 0.0000 0.0186 0.0006 0.0001

8. O 0.0019 0.0002 0.2513 0.0171 0.0160 0.0000 0.0233 0.0012 0.0002

9. C 0.0001 0.0000 0.0009 0.0000 0.0000 0.0000 0.0009 0.0001 0.0000

10. H 0.0000 0.0000 0.0079 0.0008 0.0008 0.0000 0.0020 0.0002 0.0000

11. C 0.0000 0.0000 0.0015 0.0002 0.0002 0.0000 0.0002 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

13. H 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

14. H 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

15. C 0.0000 0.0000 0.0003 0.0001 0.0001 0.0000 0.0002 0.0000 0.0000

16. C 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

17. C 0.0000 0.0000 0.0005 0.0001 0.0000 0.0000 0.0004 0.0000 0.0000

18. C 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

21. H 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

22. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. H 0.0034 0.0036 0.0018 0.0089 0.0085 0.0021 0.0005 0.0002 0.0003

27. C 1.3536 1.4573 0.0103 0.0106 0.0114 0.0033 0.0200 0.0076 0.1026

28. C 0.0000 0.0115 1.1146 1.3539 0.0968 0.0082 0.0110 0.0024 0.0111

29. C 0.0115 0.0000 0.0102 0.1026 1.4224 0.9176 0.0004 0.0001 0.0110

30. C 1.1146 0.0102 0.0000 0.0104 0.0007 0.0003 1.4991 0.9102 0.0090

31. C 1.3539 0.1026 0.0104 0.0000 0.0112 0.0003 0.0287 0.0015 1.4605

32. C 0.0968 1.4224 0.0007 0.0112 0.0000 0.0034 0.0157 0.0003 1.4202

33. H 0.0082 0.9176 0.0003 0.0003 0.0034 0.0000 0.0000 0.0004 0.0085

34. C 0.0110 0.0004 1.4991 0.0287 0.0157 0.0000 0.0000 0.0046 0.0002

35. H 0.0024 0.0001 0.9102 0.0015 0.0003 0.0004 0.0046 0.0000 0.0002

36. C 0.0111 0.0110 0.0090 1.4605 1.4202 0.0085 0.0002 0.0002 0.0000

37. H 0.0033 0.0003 0.0017 0.9159 0.0086 0.0004 0.0003 0.0006 0.0036

38. H 0.0002 0.0033 0.0003 0.0084 0.9182 0.0020 0.0000 0.0000 0.0033

39. H 0.0016 0.0001 0.0054 0.0004 0.0001 0.0000 0.9161 0.0115 0.0000

40. H 0.0091 0.0001 0.0040 0.0001 0.0001 0.0000 0.9195 0.0024 0.0003

41. H 0.0084 0.0084 0.0002 0.0034 0.0033 0.0004 0.0002 0.0000 0.9169

Atom 37 38 39 40 41

---- ------ ------ ------ ------ ------

1. C 0.0000 0.0000 0.0007 0.0002 0.0000

2. H 0.0000 0.0000 0.0000 0.0001 0.0000

3. H 0.0000 0.0000 0.0002 0.0001 0.0000

4. H 0.0000 0.0000 0.0003 0.0000 0.0000

5. C 0.0000 0.0000 0.0010 0.0007 0.0000

6. H 0.0000 0.0000 0.0000 0.0000 0.0000

7. N 0.0000 0.0000 0.0023 0.0032 0.0000

8. O 0.0002 0.0000 0.0049 0.0038 0.0000

9. C 0.0000 0.0000 0.0002 0.0001 0.0000

10. H 0.0000 0.0000 0.0002 0.0008 0.0000

11. C 0.0000 0.0000 0.0001 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000

13. H 0.0000 0.0000 0.0000 0.0000 0.0000

14. H 0.0000 0.0000 0.0000 0.0000 0.0000

15. C 0.0000 0.0000 0.0000 0.0002 0.0000

16. C 0.0000 0.0000 0.0000 0.0001 0.0000

17. C 0.0000 0.0000 0.0000 0.0000 0.0000

18. C 0.0000 0.0000 0.0000 0.0000 0.0000

19. H 0.0000 0.0000 0.0000 0.0001 0.0000

20. C 0.0000 0.0000 0.0000 0.0001 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000

26. H 0.0005 0.0004 0.0015 0.0000 0.0004

27. C 0.0089 0.0083 0.0004 0.0003 0.0002

28. C 0.0033 0.0002 0.0016 0.0091 0.0084

29. C 0.0003 0.0033 0.0001 0.0001 0.0084

30. C 0.0017 0.0003 0.0054 0.0040 0.0002

31. C 0.9159 0.0084 0.0004 0.0001 0.0034

32. C 0.0086 0.9182 0.0001 0.0001 0.0033

33. H 0.0004 0.0020 0.0000 0.0000 0.0004

Page 221: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

72

34. C 0.0003 0.0000 0.9161 0.9195 0.0002

35. H 0.0006 0.0000 0.0115 0.0024 0.0000

36. C 0.0036 0.0033 0.0000 0.0003 0.9169

37. H 0.0000 0.0004 0.0000 0.0001 0.0022

38. H 0.0004 0.0000 0.0000 0.0000 0.0020

39. H 0.0000 0.0000 0.0000 0.0003 0.0000

40. H 0.0001 0.0000 0.0003 0.0000 0.0000

41. H 0.0022 0.0020 0.0000 0.0000 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.8324

2. H 0.9322

3. H 0.9428

4. H 0.9457

5. C 3.9089

6. H 0.9421

7. N 3.6752

8. O 1.9160

9. C 3.9271

10. H 0.9470

11. C 3.8349

12. H 0.9449

13. H 0.9347

14. H 0.9473

15. C 4.0020

16. C 3.9464

17. C 3.9435

18. C 3.9479

19. H 0.9464

20. C 3.9479

21. H 0.9435

22. C 3.9476

23. H 0.9443

24. H 0.9442

25. H 0.9445

26. H 0.9500

27. C 3.9491

28. C 3.9982

29. C 3.9500

30. C 3.9592

31. C 3.9482

32. C 3.9499

33. H 0.9468

34. C 3.9047

35. H 0.9451

36. C 3.9492

37. H 0.9468

38. H 0.9469

39. H 0.9475

40. H 0.9458

41. H 0.9463

1tsn nbo wiberg index:

Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9149 0.9168 0.9288 1.0228 0.0031 0.0129 0.0089 0.0109

2. H 0.9149 0.0000 0.0006 0.0005 0.0021 0.0001 0.0053 0.0049 0.0001

3. H 0.9168 0.0006 0.0000 0.0007 0.0023 0.0095 0.0013 0.0041 0.0003

4. H 0.9288 0.0005 0.0007 0.0000 0.0034 0.0005 0.0089 0.0008 0.0003

5. C 1.0228 0.0021 0.0023 0.0034 0.0000 0.9017 1.2579 0.1834 0.0114

6. H 0.0031 0.0001 0.0095 0.0005 0.9017 0.0000 0.0032 0.0164 0.0004

7. N 0.0129 0.0053 0.0013 0.0089 1.2579 0.0032 0.0000 1.2626 0.8926

8. O 0.0089 0.0049 0.0041 0.0008 0.1834 0.0164 1.2626 0.0000 0.0588

9. C 0.0109 0.0001 0.0003 0.0003 0.0114 0.0004 0.8926 0.0588 0.0000

10. H 0.0002 0.0002 0.0001 0.0000 0.0082 0.0000 0.0038 0.0030 0.8860

11. C 0.0004 0.0001 0.0000 0.0003 0.0076 0.0005 0.0101 0.0080 1.0094

12. H 0.0005 0.0000 0.0000 0.0001 0.0002 0.0001 0.0102 0.0020 0.0038

13. H 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0013 0.0043 0.0019

14. H 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0008 0.0002 0.0025

15. C 0.0005 0.0000 0.0000 0.0000 0.0024 0.0036 0.0079 0.0109 1.0000

16. C 0.0002 0.0000 0.0001 0.0001 0.0029 0.0008 0.0097 0.0040 0.0106

17. C 0.0001 0.0000 0.0002 0.0001 0.0019 0.0001 0.0073 0.0033 0.0107

18. C 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0003 0.0004 0.0073

19. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0018

Page 222: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

73

20. C 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0008 0.0006 0.0080

21. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0019

22. C 0.0000 0.0000 0.0001 0.0000 0.0011 0.0000 0.0042 0.0025 0.0012

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004

26. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

27. C 0.0009 0.0001 0.0000 0.0000 0.0005 0.0000 0.0163 0.0287 0.0002

28. C 0.0002 0.0002 0.0000 0.0001 0.0081 0.0000 0.0013 0.0043 0.0004

29. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0000

30. C 0.0084 0.0010 0.0002 0.0004 0.0056 0.0006 0.1248 0.2542 0.0013

31. C 0.0008 0.0001 0.0000 0.0000 0.0003 0.0000 0.0126 0.0194 0.0001

32. C 0.0008 0.0001 0.0000 0.0000 0.0002 0.0000 0.0137 0.0205 0.0001

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

34. C 0.0046 0.0132 0.0014 0.0007 0.4807 0.0007 0.0188 0.0227 0.0009

35. H 0.0000 0.0000 0.0002 0.0000 0.0002 0.0000 0.0001 0.0004 0.0000

36. C 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000 0.0002 0.0007 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

39. H 0.0003 0.0002 0.0002 0.0000 0.0007 0.0001 0.0015 0.0023 0.0000

40. H 0.0015 0.0004 0.0000 0.0005 0.0012 0.0000 0.0043 0.0085 0.0001

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0002 0.0004 0.0005 0.0000 0.0000 0.0005 0.0002 0.0001 0.0000

2. H 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3. H 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000

4. H 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000

5. C 0.0082 0.0076 0.0002 0.0003 0.0002 0.0024 0.0029 0.0019 0.0005

6. H 0.0000 0.0005 0.0001 0.0000 0.0000 0.0036 0.0008 0.0001 0.0000

7. N 0.0038 0.0101 0.0102 0.0013 0.0008 0.0079 0.0097 0.0073 0.0003

8. O 0.0030 0.0080 0.0020 0.0043 0.0002 0.0109 0.0040 0.0033 0.0004

9. C 0.8860 1.0094 0.0038 0.0019 0.0025 1.0000 0.0106 0.0107 0.0073

10. H 0.0000 0.0033 0.0006 0.0011 0.0111 0.0022 0.0017 0.0071 0.0003

11. C 0.0033 0.0000 0.9256 0.9119 0.9196 0.0092 0.0088 0.0048 0.0003

12. H 0.0006 0.9256 0.0000 0.0007 0.0007 0.0005 0.0001 0.0001 0.0000

13. H 0.0011 0.9119 0.0007 0.0000 0.0007 0.0084 0.0007 0.0010 0.0003

14. H 0.0111 0.9196 0.0007 0.0007 0.0000 0.0009 0.0002 0.0002 0.0000

15. C 0.0022 0.0092 0.0005 0.0084 0.0009 0.0000 1.4061 1.3909 0.0119

16. C 0.0017 0.0088 0.0001 0.0007 0.0002 1.4061 0.0000 0.0115 1.4338

17. C 0.0071 0.0048 0.0001 0.0010 0.0002 1.3909 0.0115 0.0000 0.1112

18. C 0.0003 0.0003 0.0000 0.0003 0.0000 0.0119 1.4338 0.1112 0.0000

19. H 0.0008 0.0002 0.0000 0.0001 0.0000 0.0035 0.9145 0.0091 0.0036

20. C 0.0001 0.0003 0.0000 0.0001 0.0000 0.0119 0.1082 1.4473 0.0110

21. H 0.0003 0.0004 0.0000 0.0000 0.0009 0.0037 0.0085 0.9083 0.0003

22. C 0.0003 0.0022 0.0000 0.0006 0.0000 0.1080 0.0110 0.0111 1.4387

23. H 0.0001 0.0002 0.0000 0.0000 0.0000 0.0080 0.0033 0.0002 0.9153

24. H 0.0003 0.0000 0.0000 0.0000 0.0000 0.0080 0.0002 0.0034 0.0084

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0085 0.0083 0.0034

26. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000

27. C 0.0009 0.0010 0.0000 0.0000 0.0032 0.0002 0.0002 0.0009 0.0001

28. C 0.0001 0.0008 0.0001 0.0001 0.0007 0.0001 0.0000 0.0005 0.0000

29. C 0.0000 0.0009 0.0000 0.0000 0.0005 0.0000 0.0000 0.0005 0.0000

30. C 0.0063 0.0023 0.0000 0.0000 0.0006 0.0009 0.0006 0.0002 0.0002

31. C 0.0007 0.0004 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0000

32. C 0.0009 0.0003 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0000

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

34. C 0.0005 0.0004 0.0000 0.0000 0.0001 0.0008 0.0002 0.0005 0.0002

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

36. C 0.0000 0.0004 0.0000 0.0000 0.0001 0.0000 0.0000 0.0003 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0011 0.0001

40. H 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009

2. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

3. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

4. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5. C 0.0000 0.0003 0.0000 0.0011 0.0000 0.0000 0.0000 0.0001 0.0005

6. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7. N 0.0001 0.0008 0.0002 0.0042 0.0000 0.0000 0.0000 0.0000 0.0163

8. O 0.0001 0.0006 0.0002 0.0025 0.0001 0.0000 0.0000 0.0000 0.0287

9. C 0.0018 0.0080 0.0019 0.0012 0.0003 0.0003 0.0004 0.0000 0.0002

10. H 0.0008 0.0001 0.0003 0.0003 0.0001 0.0003 0.0000 0.0000 0.0009

11. C 0.0002 0.0003 0.0004 0.0022 0.0002 0.0000 0.0000 0.0000 0.0010

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Page 223: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

74

13. H 0.0001 0.0001 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000

14. H 0.0000 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0032

15. C 0.0035 0.0119 0.0037 0.1080 0.0080 0.0080 0.0002 0.0000 0.0002

16. C 0.9145 0.1082 0.0085 0.0110 0.0033 0.0002 0.0085 0.0000 0.0002

17. C 0.0091 1.4473 0.9083 0.0111 0.0002 0.0034 0.0083 0.0002 0.0009

18. C 0.0036 0.0110 0.0003 1.4387 0.9153 0.0084 0.0034 0.0000 0.0001

19. H 0.0000 0.0003 0.0004 0.0084 0.0021 0.0004 0.0004 0.0000 0.0000

20. C 0.0003 0.0000 0.0037 1.4269 0.0085 0.9154 0.0033 0.0000 0.0002

21. H 0.0004 0.0037 0.0000 0.0082 0.0004 0.0020 0.0003 0.0006 0.0024

22. C 0.0084 1.4269 0.0082 0.0000 0.0034 0.0033 0.9156 0.0000 0.0000

23. H 0.0021 0.0085 0.0004 0.0034 0.0000 0.0004 0.0020 0.0000 0.0000

24. H 0.0004 0.9154 0.0020 0.0033 0.0004 0.0000 0.0020 0.0000 0.0000

25. H 0.0004 0.0033 0.0003 0.9156 0.0020 0.0020 0.0000 0.0000 0.0000

26. H 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.9170

27. C 0.0000 0.0002 0.0024 0.0000 0.0000 0.0000 0.0000 0.9170 0.0000

28. C 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0036 1.3463

29. C 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0036 1.4488

30. C 0.0000 0.0003 0.0002 0.0001 0.0000 0.0000 0.0000 0.0017 0.0110

31. C 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0089 0.0105

32. C 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0084 0.0120

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020 0.0033

34. C 0.0000 0.0003 0.0001 0.0001 0.0000 0.0000 0.0000 0.0006 0.0196

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0083

36. C 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0003 0.0985

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0088

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0084

39. H 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0017 0.0004

40. H 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0002

Atom 28 29 30 31 32 33 34 35 36

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0002 0.0000 0.0084 0.0008 0.0008 0.0000 0.0046 0.0000 0.0000

2. H 0.0002 0.0000 0.0010 0.0001 0.0001 0.0000 0.0132 0.0000 0.0000

3. H 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0014 0.0002 0.0000

4. H 0.0001 0.0000 0.0004 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000

5. C 0.0081 0.0000 0.0056 0.0003 0.0002 0.0000 0.4807 0.0002 0.0011

6. H 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000

7. N 0.0013 0.0001 0.1248 0.0126 0.0137 0.0000 0.0188 0.0001 0.0002

8. O 0.0043 0.0003 0.2542 0.0194 0.0205 0.0001 0.0227 0.0004 0.0007

9. C 0.0004 0.0000 0.0013 0.0001 0.0001 0.0000 0.0009 0.0000 0.0000

10. H 0.0001 0.0000 0.0063 0.0007 0.0009 0.0000 0.0005 0.0000 0.0000

11. C 0.0008 0.0009 0.0023 0.0004 0.0003 0.0000 0.0004 0.0000 0.0004

12. H 0.0001 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

13. H 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

14. H 0.0007 0.0005 0.0006 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001

15. C 0.0001 0.0000 0.0009 0.0001 0.0001 0.0000 0.0008 0.0000 0.0000

16. C 0.0000 0.0000 0.0006 0.0001 0.0001 0.0000 0.0002 0.0000 0.0000

17. C 0.0005 0.0005 0.0002 0.0001 0.0001 0.0000 0.0005 0.0000 0.0003

18. C 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

19. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0000 0.0000 0.0003 0.0001 0.0001 0.0000 0.0003 0.0000 0.0000

21. H 0.0002 0.0003 0.0002 0.0001 0.0001 0.0000 0.0001 0.0000 0.0002

22. C 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. H 0.0036 0.0036 0.0017 0.0089 0.0084 0.0020 0.0006 0.0002 0.0003

27. C 1.3463 1.4488 0.0110 0.0105 0.0120 0.0033 0.0196 0.0083 0.0985

28. C 0.0000 0.0116 1.1326 1.3398 0.0933 0.0082 0.0109 0.0024 0.0111

29. C 0.0116 0.0000 0.0096 0.1028 1.4295 0.9175 0.0005 0.0001 0.0110

30. C 1.1326 0.0096 0.0000 0.0105 0.0008 0.0003 1.4526 0.9098 0.0105

31. C 1.3398 0.1028 0.0105 0.0000 0.0113 0.0003 0.0260 0.0018 1.4734

32. C 0.0933 1.4295 0.0008 0.0113 0.0000 0.0034 0.0148 0.0007 1.4080

33. H 0.0082 0.9175 0.0003 0.0003 0.0034 0.0000 0.0001 0.0004 0.0086

34. C 0.0109 0.0005 1.4526 0.0260 0.0148 0.0001 0.0000 0.0047 0.0003

35. H 0.0024 0.0001 0.9098 0.0018 0.0007 0.0004 0.0047 0.0000 0.0002

36. C 0.0111 0.0110 0.0105 1.4734 1.4080 0.0086 0.0003 0.0002 0.0000

37. H 0.0033 0.0003 0.0016 0.9153 0.0086 0.0004 0.0003 0.0005 0.0036

38. H 0.0002 0.0034 0.0003 0.0083 0.9182 0.0020 0.0000 0.0000 0.0033

39. H 0.0017 0.0001 0.0047 0.0003 0.0001 0.0000 0.9199 0.0124 0.0000

40. H 0.0084 0.0001 0.0046 0.0002 0.0001 0.0000 0.9088 0.0020 0.0004

41. H 0.0085 0.0084 0.0002 0.0035 0.0033 0.0004 0.0002 0.0000 0.9168

Atom 37 38 39 40 41

---- ------ ------ ------ ------ ------

1. C 0.0000 0.0000 0.0003 0.0015 0.0000

2. H 0.0000 0.0000 0.0002 0.0004 0.0000

3. H 0.0000 0.0000 0.0002 0.0000 0.0000

4. H 0.0000 0.0000 0.0000 0.0005 0.0000

5. C 0.0000 0.0000 0.0007 0.0012 0.0000

Page 224: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

75

6. H 0.0000 0.0000 0.0001 0.0000 0.0000

7. N 0.0000 0.0000 0.0015 0.0043 0.0000

8. O 0.0001 0.0000 0.0023 0.0085 0.0000

9. C 0.0000 0.0000 0.0000 0.0001 0.0000

10. H 0.0000 0.0000 0.0000 0.0002 0.0000

11. C 0.0000 0.0000 0.0000 0.0001 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000

13. H 0.0000 0.0000 0.0000 0.0000 0.0000

14. H 0.0000 0.0000 0.0000 0.0000 0.0000

15. C 0.0000 0.0000 0.0001 0.0000 0.0000

16. C 0.0000 0.0000 0.0000 0.0000 0.0000

17. C 0.0000 0.0000 0.0011 0.0000 0.0000

18. C 0.0000 0.0000 0.0001 0.0001 0.0000

19. H 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0000 0.0000 0.0001 0.0001 0.0000

21. H 0.0000 0.0000 0.0001 0.0000 0.0000

22. C 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000

26. H 0.0004 0.0004 0.0017 0.0000 0.0004

27. C 0.0088 0.0084 0.0004 0.0003 0.0002

28. C 0.0033 0.0002 0.0017 0.0084 0.0085

29. C 0.0003 0.0034 0.0001 0.0001 0.0084

30. C 0.0016 0.0003 0.0047 0.0046 0.0002

31. C 0.9153 0.0083 0.0003 0.0002 0.0035

32. C 0.0086 0.9182 0.0001 0.0001 0.0033

33. H 0.0004 0.0020 0.0000 0.0000 0.0004

34. C 0.0003 0.0000 0.9199 0.9088 0.0002

35. H 0.0005 0.0000 0.0124 0.0020 0.0000

36. C 0.0036 0.0033 0.0000 0.0004 0.9168

37. H 0.0000 0.0004 0.0000 0.0000 0.0022

38. H 0.0004 0.0000 0.0000 0.0000 0.0020

39. H 0.0000 0.0000 0.0000 0.0004 0.0000

40. H 0.0000 0.0000 0.0004 0.0000 0.0000

41. H 0.0022 0.0020 0.0000 0.0000 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.8384

2. H 0.9443

3. H 0.9380

4. H 0.9462

5. C 3.9096

6. H 0.9416

7. N 3.6953

8. O 1.9417

9. C 3.9239

10. H 0.9404

11. C 3.8302

12. H 0.9454

13. H 0.9337

14. H 0.9434

15. C 4.0013

16. C 3.9468

17. C 3.9425

18. C 3.9477

19. H 0.9459

20. C 3.9481

21. H 0.9442

22. C 3.9475

23. H 0.9442

24. H 0.9444

25. H 0.9445

26. H 0.9504

27. C 3.9493

28. C 3.9989

29. C 3.9499

30. C 3.9590

31. C 3.9477

32. C 3.9497

33. H 0.9469

34. C 3.9063

35. H 0.9444

36. C 3.9492

37. H 0.9460

38. H 0.9468

39. H 0.9489

Page 225: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

76

40. H 0.9422

41. H 0.9462

1tsx nbo wiberg bond order index:

Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9293 0.9126 0.9100 1.0290 0.0033 0.0130 0.0081 0.0117

2. H 0.9293 0.0000 0.0005 0.0007 0.0033 0.0006 0.0091 0.0008 0.0004

3. H 0.9126 0.0005 0.0000 0.0006 0.0023 0.0001 0.0060 0.0061 0.0001

4. H 0.9100 0.0007 0.0006 0.0000 0.0023 0.0095 0.0013 0.0038 0.0003

5. C 1.0290 0.0033 0.0023 0.0023 0.0000 0.9032 1.2656 0.1931 0.0127

6. H 0.0033 0.0006 0.0001 0.0095 0.9032 0.0000 0.0027 0.0168 0.0006

7. N 0.0130 0.0091 0.0060 0.0013 1.2656 0.0027 0.0000 1.2440 0.8995

8. O 0.0081 0.0008 0.0061 0.0038 0.1931 0.0168 1.2440 0.0000 0.0586

9. C 0.0117 0.0004 0.0001 0.0003 0.0127 0.0006 0.8995 0.0586 0.0000

10. H 0.0003 0.0000 0.0001 0.0000 0.0084 0.0002 0.0032 0.0028 0.8786

11. C 0.0003 0.0003 0.0002 0.0000 0.0091 0.0002 0.0102 0.0043 1.0085

12. H 0.0003 0.0001 0.0000 0.0000 0.0008 0.0001 0.0097 0.0009 0.0030

13. H 0.0001 0.0000 0.0000 0.0000 0.0005 0.0000 0.0016 0.0053 0.0021

14. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0008 0.0003 0.0029

15. C 0.0003 0.0001 0.0000 0.0000 0.0018 0.0031 0.0069 0.0114 0.9995

16. C 0.0001 0.0000 0.0001 0.0001 0.0018 0.0001 0.0074 0.0035 0.0100

17. C 0.0001 0.0000 0.0000 0.0002 0.0019 0.0005 0.0100 0.0025 0.0107

18. C 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0007 0.0003 0.0078

19. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0018

20. C 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0005 0.0006 0.0076

21. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0020

22. C 0.0000 0.0000 0.0000 0.0001 0.0008 0.0000 0.0042 0.0018 0.0014

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004

26. H 0.0001 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

27. C 0.0008 0.0000 0.0001 0.0013 0.0003 0.0000 0.0133 0.0223 0.0001

28. C 0.0004 0.0000 0.0001 0.0010 0.0054 0.0000 0.0008 0.0017 0.0001

29. C 0.0005 0.0000 0.0001 0.0000 0.0001 0.0000 0.0002 0.0002 0.0000

30. C 0.0068 0.0002 0.0013 0.0001 0.0057 0.0005 0.1168 0.2604 0.0005

31. C 0.0010 0.0000 0.0001 0.0000 0.0003 0.0000 0.0136 0.0183 0.0000

32. C 0.0007 0.0000 0.0000 0.0000 0.0001 0.0000 0.0127 0.0173 0.0000

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

34. C 0.0041 0.0007 0.0126 0.0016 0.4578 0.0006 0.0198 0.0230 0.0006

35. H 0.0001 0.0000 0.0001 0.0000 0.0007 0.0000 0.0004 0.0008 0.0001

36. C 0.0003 0.0000 0.0000 0.0001 0.0007 0.0000 0.0001 0.0002 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

39. H 0.0009 0.0003 0.0003 0.0000 0.0011 0.0000 0.0023 0.0055 0.0001

40. H 0.0003 0.0000 0.0002 0.0001 0.0007 0.0000 0.0027 0.0041 0.0001

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0003 0.0003 0.0003 0.0001 0.0000 0.0003 0.0001 0.0001 0.0000

2. H 0.0000 0.0003 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

3. H 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

4. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000

5. C 0.0084 0.0091 0.0008 0.0005 0.0001 0.0018 0.0018 0.0019 0.0003

6. H 0.0002 0.0002 0.0001 0.0000 0.0000 0.0031 0.0001 0.0005 0.0001

7. N 0.0032 0.0102 0.0097 0.0016 0.0008 0.0069 0.0074 0.0100 0.0007

8. O 0.0028 0.0043 0.0009 0.0053 0.0003 0.0114 0.0035 0.0025 0.0003

9. C 0.8786 1.0085 0.0030 0.0021 0.0029 0.9995 0.0100 0.0107 0.0078

10. H 0.0000 0.0028 0.0008 0.0011 0.0111 0.0027 0.0028 0.0098 0.0002

11. C 0.0028 0.0000 0.9232 0.9139 0.9311 0.0070 0.0068 0.0028 0.0004

12. H 0.0008 0.9232 0.0000 0.0008 0.0005 0.0004 0.0001 0.0002 0.0000

13. H 0.0011 0.9139 0.0008 0.0000 0.0006 0.0084 0.0003 0.0008 0.0002

14. H 0.0111 0.9311 0.0005 0.0006 0.0000 0.0007 0.0001 0.0004 0.0000

15. C 0.0027 0.0070 0.0004 0.0084 0.0007 0.0000 1.3918 1.4094 0.0116

16. C 0.0028 0.0068 0.0001 0.0003 0.0001 1.3918 0.0000 0.0117 1.4512

17. C 0.0098 0.0028 0.0002 0.0008 0.0004 1.4094 0.0117 0.0000 0.1081

18. C 0.0002 0.0004 0.0000 0.0002 0.0000 0.0116 1.4512 0.1081 0.0000

19. H 0.0003 0.0004 0.0000 0.0001 0.0000 0.0034 0.9130 0.0088 0.0036

20. C 0.0001 0.0004 0.0000 0.0001 0.0000 0.0121 0.1115 1.4294 0.0110

21. H 0.0002 0.0009 0.0000 0.0000 0.0009 0.0037 0.0088 0.9131 0.0003

22. C 0.0021 0.0005 0.0000 0.0002 0.0001 0.1087 0.0111 0.0110 1.4236

23. H 0.0000 0.0002 0.0000 0.0000 0.0000 0.0081 0.0034 0.0002 0.9151

24. H 0.0002 0.0001 0.0000 0.0000 0.0000 0.0078 0.0002 0.0032 0.0085

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0083 0.0085 0.0033

26. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

27. C 0.0004 0.0008 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001

28. C 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Page 226: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

77

29. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30. C 0.0033 0.0071 0.0004 0.0006 0.0002 0.0003 0.0003 0.0003 0.0005

31. C 0.0004 0.0008 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001

32. C 0.0004 0.0007 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

34. C 0.0004 0.0023 0.0001 0.0002 0.0003 0.0001 0.0004 0.0001 0.0000

35. H 0.0000 0.0005 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000

36. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

39. H 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

40. H 0.0000 0.0003 0.0000 0.0000 0.0009 0.0001 0.0000 0.0001 0.0000

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0008

2. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

3. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

4. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0013

5. C 0.0000 0.0002 0.0000 0.0008 0.0000 0.0000 0.0000 0.0001 0.0003

6. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7. N 0.0002 0.0005 0.0000 0.0042 0.0000 0.0000 0.0000 0.0000 0.0133

8. O 0.0001 0.0006 0.0002 0.0018 0.0000 0.0001 0.0000 0.0000 0.0223

9. C 0.0018 0.0076 0.0020 0.0014 0.0003 0.0003 0.0004 0.0000 0.0001

10. H 0.0003 0.0001 0.0002 0.0021 0.0000 0.0002 0.0000 0.0000 0.0004

11. C 0.0004 0.0004 0.0009 0.0005 0.0002 0.0001 0.0000 0.0000 0.0008

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. H 0.0001 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

14. H 0.0000 0.0000 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

15. C 0.0034 0.0121 0.0037 0.1087 0.0081 0.0078 0.0002 0.0000 0.0001

16. C 0.9130 0.1115 0.0088 0.0111 0.0034 0.0002 0.0083 0.0000 0.0000

17. C 0.0088 1.4294 0.9131 0.0110 0.0002 0.0032 0.0085 0.0000 0.0001

18. C 0.0036 0.0110 0.0003 1.4236 0.9151 0.0085 0.0033 0.0000 0.0001

19. H 0.0000 0.0003 0.0004 0.0085 0.0021 0.0004 0.0004 0.0000 0.0000

20. C 0.0003 0.0000 0.0036 1.4426 0.0083 0.9156 0.0034 0.0000 0.0000

21. H 0.0004 0.0036 0.0000 0.0082 0.0004 0.0020 0.0004 0.0000 0.0000

22. C 0.0085 1.4426 0.0082 0.0000 0.0033 0.0034 0.9156 0.0000 0.0000

23. H 0.0021 0.0083 0.0004 0.0033 0.0000 0.0004 0.0020 0.0000 0.0000

24. H 0.0004 0.9156 0.0020 0.0034 0.0004 0.0000 0.0020 0.0000 0.0000

25. H 0.0004 0.0034 0.0004 0.9156 0.0020 0.0020 0.0000 0.0000 0.0000

26. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9176

27. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9176 0.0000

28. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0034 1.3514

29. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 1.4579

30. C 0.0001 0.0003 0.0000 0.0001 0.0000 0.0000 0.0000 0.0018 0.0104

31. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0089 0.0106

32. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0085 0.0114

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021 0.0033

34. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0190

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0078

36. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.1020

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0088

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0083

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016 0.0004

40. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0002

Atom 28 29 30 31 32 33 34 35 36

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0004 0.0005 0.0068 0.0010 0.0007 0.0000 0.0041 0.0001 0.0003

2. H 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000

3. H 0.0001 0.0001 0.0013 0.0001 0.0000 0.0000 0.0126 0.0001 0.0000

4. H 0.0010 0.0000 0.0001 0.0000 0.0000 0.0000 0.0016 0.0000 0.0001

5. C 0.0054 0.0001 0.0057 0.0003 0.0001 0.0000 0.4578 0.0007 0.0007

6. H 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000

7. N 0.0008 0.0002 0.1168 0.0136 0.0127 0.0000 0.0198 0.0004 0.0001

8. O 0.0017 0.0002 0.2604 0.0183 0.0173 0.0000 0.0230 0.0008 0.0002

9. C 0.0001 0.0000 0.0005 0.0000 0.0000 0.0000 0.0006 0.0001 0.0000

10. H 0.0000 0.0000 0.0033 0.0004 0.0004 0.0000 0.0004 0.0000 0.0000

11. C 0.0001 0.0000 0.0071 0.0008 0.0007 0.0000 0.0023 0.0005 0.0000

12. H 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

13. H 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0002 0.0008 0.0000

14. H 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000

15. C 0.0000 0.0000 0.0003 0.0001 0.0001 0.0000 0.0001 0.0000 0.0000

16. C 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000

17. C 0.0000 0.0000 0.0003 0.0001 0.0001 0.0000 0.0001 0.0000 0.0000

18. C 0.0000 0.0000 0.0005 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

19. H 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Page 227: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

78

22. C 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. H 0.0034 0.0036 0.0018 0.0089 0.0085 0.0021 0.0005 0.0002 0.0003

27. C 1.3514 1.4579 0.0104 0.0106 0.0114 0.0033 0.0190 0.0078 0.1020

28. C 0.0000 0.0115 1.1206 1.3505 0.0960 0.0082 0.0108 0.0024 0.0110

29. C 0.0115 0.0000 0.0104 0.1022 1.4219 0.9176 0.0004 0.0001 0.0110

30. C 1.1206 0.0104 0.0000 0.0104 0.0007 0.0003 1.4684 0.9103 0.0092

31. C 1.3505 0.1022 0.0104 0.0000 0.0112 0.0003 0.0273 0.0016 1.4623

32. C 0.0960 1.4219 0.0007 0.0112 0.0000 0.0033 0.0148 0.0005 1.4189

33. H 0.0082 0.9176 0.0003 0.0003 0.0033 0.0000 0.0000 0.0004 0.0085

34. C 0.0108 0.0004 1.4684 0.0273 0.0148 0.0000 0.0000 0.0045 0.0002

35. H 0.0024 0.0001 0.9103 0.0016 0.0005 0.0004 0.0045 0.0000 0.0002

36. C 0.0110 0.0110 0.0092 1.4623 1.4189 0.0085 0.0002 0.0002 0.0000

37. H 0.0033 0.0003 0.0016 0.9157 0.0086 0.0004 0.0003 0.0006 0.0035

38. H 0.0002 0.0033 0.0003 0.0084 0.9183 0.0020 0.0000 0.0000 0.0033

39. H 0.0017 0.0001 0.0053 0.0004 0.0001 0.0000 0.9151 0.0111 0.0000

40. H 0.0089 0.0001 0.0040 0.0001 0.0001 0.0000 0.9193 0.0024 0.0003

41. H 0.0084 0.0084 0.0002 0.0034 0.0033 0.0004 0.0002 0.0000 0.9169

Atom 37 38 39 40 41

---- ------ ------ ------ ------ ------

1. C 0.0000 0.0000 0.0009 0.0003 0.0000

2. H 0.0000 0.0000 0.0003 0.0000 0.0000

3. H 0.0000 0.0000 0.0003 0.0002 0.0000

4. H 0.0000 0.0000 0.0000 0.0001 0.0000

5. C 0.0000 0.0000 0.0011 0.0007 0.0000

6. H 0.0000 0.0000 0.0000 0.0000 0.0000

7. N 0.0000 0.0000 0.0023 0.0027 0.0000

8. O 0.0003 0.0000 0.0055 0.0041 0.0000

9. C 0.0000 0.0000 0.0001 0.0001 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000

11. C 0.0000 0.0000 0.0003 0.0003 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000

13. H 0.0000 0.0000 0.0000 0.0000 0.0000

14. H 0.0000 0.0000 0.0000 0.0009 0.0000

15. C 0.0000 0.0000 0.0000 0.0001 0.0000

16. C 0.0000 0.0000 0.0000 0.0000 0.0000

17. C 0.0000 0.0000 0.0000 0.0001 0.0000

18. C 0.0000 0.0000 0.0000 0.0000 0.0000

19. H 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0000 0.0000 0.0000 0.0000 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000

26. H 0.0005 0.0004 0.0016 0.0000 0.0004

27. C 0.0088 0.0083 0.0004 0.0003 0.0002

28. C 0.0033 0.0002 0.0017 0.0089 0.0084

29. C 0.0003 0.0033 0.0001 0.0001 0.0084

30. C 0.0016 0.0003 0.0053 0.0040 0.0002

31. C 0.9157 0.0084 0.0004 0.0001 0.0034

32. C 0.0086 0.9183 0.0001 0.0001 0.0033

33. H 0.0004 0.0020 0.0000 0.0000 0.0004

34. C 0.0003 0.0000 0.9151 0.9193 0.0002

35. H 0.0006 0.0000 0.0111 0.0024 0.0000

36. C 0.0035 0.0033 0.0000 0.0003 0.9169

37. H 0.0000 0.0004 0.0000 0.0000 0.0022

38. H 0.0004 0.0000 0.0000 0.0000 0.0020

39. H 0.0000 0.0000 0.0000 0.0003 0.0000

40. H 0.0000 0.0000 0.0003 0.0000 0.0000

41. H 0.0022 0.0020 0.0000 0.0000 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.8344

2. H 0.9466

3. H 0.9438

4. H 0.9333

5. C 3.9106

6. H 0.9425

7. N 3.6795

8. O 1.9199

9. C 3.9223

10. H 0.9329

11. C 3.8364

Page 228: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

79

12. H 0.9419

13. H 0.9377

14. H 0.9513

15. C 4.0000

16. C 3.9451

17. C 3.9441

18. C 3.9475

19. H 0.9439

20. C 3.9483

21. H 0.9451

22. C 3.9475

23. H 0.9440

24. H 0.9445

25. H 0.9445

26. H 0.9500

27. C 3.9492

28. C 3.9981

29. C 3.9500

30. C 3.9598

31. C 3.9482

32. C 3.9500

33. H 0.9469

34. C 3.9057

35. H 0.9456

36. C 3.9492

37. H 0.9467

38. H 0.9469

39. H 0.9472

40. H 0.9456

41. H 0.9463

2trx nbo wiberg bond order index:

Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9116 0.9233 1.5503 0.0050 0.0115 0.0111 0.0158 0.0075

2. H 0.9116 0.0000 0.0003 0.0056 0.0110 0.0025 0.0002 0.0004 0.0051

3. H 0.9233 0.0003 0.0000 0.0042 0.0021 0.0107 0.0001 0.0001 0.0008

4. C 1.5503 0.0056 0.0042 0.0000 0.9090 1.0280 0.0025 0.0028 0.0283

5. H 0.0050 0.0110 0.0021 0.9090 0.0000 0.0024 0.0003 0.0000 0.0101

6. C 0.0115 0.0025 0.0107 1.0280 0.0024 0.0000 0.9136 0.8892 0.9376

7. H 0.0111 0.0002 0.0001 0.0025 0.0003 0.9136 0.0000 0.0006 0.0241

8. H 0.0158 0.0004 0.0001 0.0028 0.0000 0.8892 0.0006 0.0000 0.0078

9. O 0.0075 0.0051 0.0008 0.0283 0.0101 0.9376 0.0241 0.0078 0.0000

10. H 0.0019 0.0007 0.0000 0.0005 0.0000 0.0040 0.0006 0.0120 0.7648

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. C 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

14. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

15. C 0.0003 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000

16. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

17. C 0.0001 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

18. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19. C 0.0001 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

20. H 0.0001 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0010 0.0001 0.0001 0.0006 0.0001 0.0002 0.0001 0.0001 0.0001

23. H 0.0028 0.0002 0.0004 0.0078 0.0001 0.0001 0.0002 0.0003 0.0001

24. C 0.0003 0.0001 0.0000 0.0016 0.0000 0.0000 0.0000 0.0001 0.0000

25. N 0.0282 0.0027 0.0014 0.1071 0.0006 0.0009 0.0026 0.0046 0.0004

26. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

27. H 0.0003 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

28. H 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

29. C 0.4023 0.0016 0.0006 0.0061 0.0021 0.0011 0.0002 0.0001 0.0013

30. O 0.0244 0.0057 0.0021 0.2955 0.0012 0.0056 0.0076 0.0092 0.0004

31. H 0.0010 0.0003 0.0002 0.0056 0.0000 0.0002 0.0001 0.0002 0.0032

32. H 0.0004 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0001

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0019 0.0000 0.0001 0.0000 0.0000 0.0003 0.0000 0.0001 0.0000

2. H 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

4. C 0.0005 0.0000 0.0000 0.0002 0.0001 0.0005 0.0000 0.0002 0.0000

5. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6. C 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Page 229: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

80

7. H 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8. H 0.0120 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9. O 0.7648 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.9157 0.0033 0.0034 0.0083 0.0020 0.0085 0.0020

12. C 0.0000 0.9157 0.0000 1.4243 1.4422 0.0110 0.0033 0.0110 0.0034

13. C 0.0000 0.0033 1.4243 0.0000 0.0110 1.4504 0.9152 0.1085 0.0085

14. C 0.0000 0.0034 1.4422 0.0110 0.0000 0.1118 0.0083 1.4302 0.9155

15. C 0.0000 0.0083 0.0110 1.4504 0.1118 0.0000 0.0033 0.0118 0.0002

16. H 0.0000 0.0020 0.0033 0.9152 0.0083 0.0033 0.0000 0.0002 0.0004

17. C 0.0000 0.0085 0.0110 0.1085 1.4302 0.0118 0.0002 0.0000 0.0032

18. H 0.0000 0.0020 0.0034 0.0085 0.9155 0.0002 0.0004 0.0032 0.0000

19. C 0.0000 0.0002 0.1084 0.0119 0.0119 1.3881 0.0080 1.4125 0.0079

20. H 0.0000 0.0004 0.0084 0.0037 0.0003 0.9113 0.0021 0.0087 0.0004

21. H 0.0000 0.0004 0.0084 0.0003 0.0036 0.0092 0.0004 0.9148 0.0021

22. C 0.0000 0.0004 0.0011 0.0079 0.0071 0.0103 0.0004 0.0107 0.0003

23. H 0.0000 0.0000 0.0001 0.0001 0.0003 0.0066 0.0003 0.0015 0.0001

24. C 0.0000 0.0000 0.0037 0.0005 0.0004 0.0066 0.0000 0.0099 0.0001

25. N 0.0004 0.0000 0.0031 0.0007 0.0006 0.0057 0.0000 0.0087 0.0001

26. H 0.0000 0.0000 0.0008 0.0001 0.0002 0.0012 0.0000 0.0010 0.0000

27. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000

28. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0005 0.0000 0.0002 0.0000

29. C 0.0001 0.0000 0.0008 0.0004 0.0001 0.0024 0.0000 0.0017 0.0000

30. O 0.0001 0.0000 0.0018 0.0005 0.0007 0.0032 0.0000 0.0027 0.0001

31. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

32. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0003 0.0000 0.0001 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0001 0.0001 0.0000 0.0010 0.0028 0.0003 0.0282 0.0000 0.0003

2. H 0.0000 0.0000 0.0000 0.0001 0.0002 0.0001 0.0027 0.0000 0.0000

3. H 0.0001 0.0000 0.0000 0.0001 0.0004 0.0000 0.0014 0.0000 0.0000

4. C 0.0002 0.0002 0.0000 0.0006 0.0078 0.0016 0.1071 0.0001 0.0001

5. H 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0006 0.0000 0.0000

6. C 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0009 0.0000 0.0000

7. H 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000 0.0026 0.0000 0.0000

8. H 0.0000 0.0000 0.0000 0.0001 0.0003 0.0001 0.0046 0.0000 0.0000

9. O 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0004 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000

11. H 0.0002 0.0004 0.0004 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000

12. C 0.1084 0.0084 0.0084 0.0011 0.0001 0.0037 0.0031 0.0008 0.0000

13. C 0.0119 0.0037 0.0003 0.0079 0.0001 0.0005 0.0007 0.0001 0.0000

14. C 0.0119 0.0003 0.0036 0.0071 0.0003 0.0004 0.0006 0.0002 0.0000

15. C 1.3881 0.9113 0.0092 0.0103 0.0066 0.0066 0.0057 0.0012 0.0002

16. H 0.0080 0.0021 0.0004 0.0004 0.0003 0.0000 0.0000 0.0000 0.0000

17. C 1.4125 0.0087 0.9148 0.0107 0.0015 0.0099 0.0087 0.0010 0.0001

18. H 0.0079 0.0004 0.0021 0.0003 0.0001 0.0001 0.0001 0.0000 0.0000

19. C 0.0000 0.0035 0.0036 0.9997 0.0022 0.0103 0.0071 0.0084 0.0005

20. H 0.0035 0.0000 0.0004 0.0019 0.0004 0.0002 0.0005 0.0001 0.0000

21. H 0.0036 0.0004 0.0000 0.0018 0.0008 0.0001 0.0002 0.0001 0.0000

22. C 0.9997 0.0019 0.0018 0.0000 0.8880 1.0049 0.9000 0.0018 0.0031

23. H 0.0022 0.0004 0.0008 0.8880 0.0000 0.0034 0.0053 0.0008 0.0005

24. C 0.0103 0.0002 0.0001 1.0049 0.0034 0.0000 0.0100 0.9110 0.9269

25. N 0.0071 0.0005 0.0002 0.9000 0.0053 0.0100 0.0000 0.0015 0.0098

26. H 0.0084 0.0001 0.0001 0.0018 0.0008 0.9110 0.0015 0.0000 0.0007

27. H 0.0005 0.0000 0.0000 0.0031 0.0005 0.9269 0.0098 0.0007 0.0000

28. H 0.0009 0.0005 0.0000 0.0024 0.0114 0.9287 0.0008 0.0006 0.0006

29. C 0.0019 0.0001 0.0000 0.0152 0.0102 0.0084 1.3356 0.0004 0.0002

30. O 0.0115 0.0001 0.0001 0.0546 0.0020 0.0072 1.2223 0.0061 0.0015

31. H 0.0002 0.0000 0.0000 0.0122 0.0001 0.0005 0.0027 0.0000 0.0004

32. H 0.0026 0.0000 0.0000 0.0003 0.0000 0.0004 0.0025 0.0000 0.0001

Atom 28 29 30 31 32

---- ------ ------ ------ ------ ------

1. C 0.0001 0.4023 0.0244 0.0010 0.0004

2. H 0.0000 0.0016 0.0057 0.0003 0.0000

3. H 0.0000 0.0006 0.0021 0.0002 0.0000

4. C 0.0001 0.0061 0.2955 0.0056 0.0004

5. H 0.0000 0.0021 0.0012 0.0000 0.0000

6. C 0.0000 0.0011 0.0056 0.0002 0.0000

7. H 0.0000 0.0002 0.0076 0.0001 0.0000

8. H 0.0000 0.0001 0.0092 0.0002 0.0000

9. O 0.0000 0.0013 0.0004 0.0032 0.0001

10. H 0.0000 0.0001 0.0001 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000

12. C 0.0000 0.0008 0.0018 0.0000 0.0000

13. C 0.0001 0.0004 0.0005 0.0000 0.0001

14. C 0.0000 0.0001 0.0007 0.0000 0.0000

15. C 0.0005 0.0024 0.0032 0.0000 0.0003

16. H 0.0000 0.0000 0.0000 0.0000 0.0000

17. C 0.0002 0.0017 0.0027 0.0000 0.0001

Page 230: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

81

18. H 0.0000 0.0000 0.0001 0.0000 0.0000

19. C 0.0009 0.0019 0.0115 0.0002 0.0026

20. H 0.0005 0.0001 0.0001 0.0000 0.0000

21. H 0.0000 0.0000 0.0001 0.0000 0.0000

22. C 0.0024 0.0152 0.0546 0.0122 0.0003

23. H 0.0114 0.0102 0.0020 0.0001 0.0000

24. C 0.9287 0.0084 0.0072 0.0005 0.0004

25. N 0.0008 1.3356 1.2223 0.0027 0.0025

26. H 0.0006 0.0004 0.0061 0.0000 0.0000

27. H 0.0006 0.0002 0.0015 0.0004 0.0001

28. H 0.0000 0.0004 0.0003 0.0000 0.0000

29. C 0.0004 0.0000 0.2224 0.9093 0.9198

30. O 0.0003 0.2224 0.0000 0.0040 0.0187

31. H 0.0000 0.9093 0.0040 0.0000 0.0004

32. H 0.0000 0.9198 0.0187 0.0004 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.8995

2. H 0.9482

3. H 0.9468

4. C 3.9576

5. H 0.9442

6. C 3.8077

7. H 0.9641

8. H 0.9434

9. O 1.7918

10. H 0.7851

11. H 0.9446

12. C 3.9476

13. C 3.9478

14. C 3.9479

15. C 3.9433

16. H 0.9441

17. C 3.9466

18. H 0.9444

19. C 4.0021

20. H 0.9431

21. H 0.9464

22. C 3.9265

23. H 0.9461

24. C 3.8354

25. N 3.6658

26. H 0.9349

27. H 0.9449

28. H 0.9477

29. C 3.8448

30. O 1.9116

31. H 0.9407

32. H 0.9462

2trn nbo wiberg bond order index:

Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9208 0.9142 1.4964 0.0052 0.0109 0.0108 0.0137 0.0064

2. H 0.9208 0.0000 0.0003 0.0051 0.0122 0.0024 0.0002 0.0003 0.0035

3. H 0.9142 0.0003 0.0000 0.0048 0.0023 0.0084 0.0001 0.0001 0.0005

4. C 1.4964 0.0051 0.0048 0.0000 0.9085 1.0300 0.0027 0.0024 0.0269

5. H 0.0052 0.0122 0.0023 0.9085 0.0000 0.0030 0.0004 0.0000 0.0104

6. C 0.0109 0.0024 0.0084 1.0300 0.0030 0.0000 0.9075 0.8977 0.9282

7. H 0.0108 0.0002 0.0001 0.0027 0.0004 0.9075 0.0000 0.0006 0.0232

8. H 0.0137 0.0003 0.0001 0.0024 0.0000 0.8977 0.0006 0.0000 0.0073

9. O 0.0064 0.0035 0.0005 0.0269 0.0104 0.9282 0.0232 0.0073 0.0000

10. H 0.0029 0.0011 0.0000 0.0009 0.0000 0.0040 0.0005 0.0122 0.7557

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. C 0.0002 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001

13. C 0.0004 0.0001 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0002

14. C 0.0003 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

15. C 0.0008 0.0013 0.0000 0.0002 0.0000 0.0004 0.0003 0.0000 0.0067

16. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

17. C 0.0003 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0001

18. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19. C 0.0015 0.0001 0.0000 0.0013 0.0000 0.0001 0.0000 0.0000 0.0001

20. H 0.0001 0.0002 0.0000 0.0001 0.0000 0.0003 0.0005 0.0000 0.0125

Page 231: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

82

21. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0006 0.0000 0.0000 0.0014 0.0000 0.0002 0.0001 0.0001 0.0003

23. H 0.0009 0.0000 0.0001 0.0054 0.0000 0.0001 0.0001 0.0003 0.0001

24. C 0.0004 0.0000 0.0001 0.0015 0.0000 0.0010 0.0001 0.0004 0.0028

25. N 0.0337 0.0011 0.0026 0.1184 0.0002 0.0010 0.0031 0.0040 0.0006

26. H 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

27. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001

28. H 0.0000 0.0000 0.0000 0.0005 0.0000 0.0007 0.0003 0.0003 0.0055

29. C 0.4493 0.0008 0.0013 0.0056 0.0008 0.0035 0.0006 0.0002 0.0005

30. O 0.0279 0.0023 0.0074 0.3365 0.0010 0.0045 0.0116 0.0058 0.0003

31. H 0.0018 0.0002 0.0004 0.0084 0.0000 0.0001 0.0002 0.0003 0.0001

32. H 0.0004 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0029 0.0000 0.0002 0.0004 0.0003 0.0008 0.0000 0.0003 0.0000

2. H 0.0011 0.0000 0.0000 0.0001 0.0001 0.0013 0.0000 0.0000 0.0000

3. H 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

4. C 0.0009 0.0000 0.0002 0.0002 0.0001 0.0002 0.0000 0.0005 0.0000

5. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6. C 0.0040 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000

7. H 0.0005 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000

8. H 0.0122 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9. O 0.7557 0.0000 0.0001 0.0002 0.0000 0.0067 0.0001 0.0001 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.9164 0.0033 0.0033 0.0084 0.0020 0.0085 0.0020

12. C 0.0000 0.9164 0.0000 1.4249 1.4410 0.0112 0.0032 0.0111 0.0035

13. C 0.0000 0.0033 1.4249 0.0000 0.0110 1.4500 0.9163 0.1079 0.0085

14. C 0.0000 0.0033 1.4410 0.0110 0.0000 0.1119 0.0084 1.4308 0.9160

15. C 0.0001 0.0084 0.0112 1.4500 0.1119 0.0000 0.0035 0.0116 0.0002

16. H 0.0000 0.0020 0.0032 0.9163 0.0084 0.0035 0.0000 0.0002 0.0004

17. C 0.0000 0.0085 0.0111 0.1079 1.4308 0.0116 0.0002 0.0000 0.0033

18. H 0.0000 0.0020 0.0035 0.0085 0.9160 0.0002 0.0004 0.0033 0.0000

19. C 0.0000 0.0002 0.1078 0.0117 0.0120 1.3873 0.0082 1.4101 0.0080

20. H 0.0003 0.0003 0.0078 0.0038 0.0003 0.8940 0.0019 0.0081 0.0004

21. H 0.0000 0.0004 0.0084 0.0003 0.0036 0.0092 0.0004 0.9151 0.0021

22. C 0.0000 0.0004 0.0012 0.0080 0.0073 0.0107 0.0003 0.0105 0.0003

23. H 0.0000 0.0000 0.0001 0.0001 0.0003 0.0067 0.0003 0.0016 0.0001

24. C 0.0002 0.0000 0.0026 0.0003 0.0003 0.0051 0.0000 0.0091 0.0001

25. N 0.0005 0.0000 0.0042 0.0007 0.0003 0.0066 0.0000 0.0100 0.0001

26. H 0.0000 0.0000 0.0006 0.0001 0.0003 0.0010 0.0000 0.0008 0.0000

27. H 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000

28. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0004 0.0000 0.0001 0.0000

29. C 0.0001 0.0000 0.0011 0.0003 0.0004 0.0016 0.0000 0.0030 0.0000

30. O 0.0001 0.0000 0.0024 0.0005 0.0004 0.0032 0.0000 0.0038 0.0001

31. H 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000

32. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0006 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0015 0.0001 0.0000 0.0006 0.0009 0.0004 0.0337 0.0001 0.0000

2. H 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000 0.0000

3. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0026 0.0000 0.0000

4. C 0.0013 0.0001 0.0000 0.0014 0.0054 0.0015 0.1184 0.0000 0.0000

5. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

6. C 0.0001 0.0003 0.0000 0.0002 0.0001 0.0010 0.0010 0.0000 0.0001

7. H 0.0000 0.0005 0.0000 0.0001 0.0001 0.0001 0.0031 0.0000 0.0000

8. H 0.0000 0.0000 0.0000 0.0001 0.0003 0.0004 0.0040 0.0000 0.0000

9. O 0.0001 0.0125 0.0000 0.0003 0.0001 0.0028 0.0006 0.0000 0.0001

10. H 0.0000 0.0003 0.0000 0.0000 0.0000 0.0002 0.0005 0.0000 0.0000

11. H 0.0002 0.0003 0.0004 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000

12. C 0.1078 0.0078 0.0084 0.0012 0.0001 0.0026 0.0042 0.0006 0.0001

13. C 0.0117 0.0038 0.0003 0.0080 0.0001 0.0003 0.0007 0.0001 0.0000

14. C 0.0120 0.0003 0.0036 0.0073 0.0003 0.0003 0.0003 0.0003 0.0000

15. C 1.3873 0.8940 0.0092 0.0107 0.0067 0.0051 0.0066 0.0010 0.0001

16. H 0.0082 0.0019 0.0004 0.0003 0.0003 0.0000 0.0000 0.0000 0.0000

17. C 1.4101 0.0081 0.9151 0.0105 0.0016 0.0091 0.0100 0.0008 0.0001

18. H 0.0080 0.0004 0.0021 0.0003 0.0001 0.0001 0.0001 0.0000 0.0000

19. C 0.0000 0.0038 0.0036 0.9996 0.0021 0.0095 0.0091 0.0085 0.0005

20. H 0.0038 0.0000 0.0004 0.0017 0.0002 0.0003 0.0001 0.0000 0.0000

21. H 0.0036 0.0004 0.0000 0.0018 0.0009 0.0002 0.0002 0.0001 0.0000

22. C 0.9996 0.0017 0.0018 0.0000 0.8903 1.0097 0.8924 0.0018 0.0039

23. H 0.0021 0.0002 0.0009 0.8903 0.0000 0.0034 0.0041 0.0011 0.0006

24. C 0.0095 0.0003 0.0002 1.0097 0.0034 0.0000 0.0094 0.9160 0.9245

25. N 0.0091 0.0001 0.0002 0.8924 0.0041 0.0094 0.0000 0.0013 0.0101

26. H 0.0085 0.0000 0.0001 0.0018 0.0011 0.9160 0.0013 0.0000 0.0007

27. H 0.0005 0.0000 0.0000 0.0039 0.0006 0.9245 0.0101 0.0007 0.0000

28. H 0.0009 0.0007 0.0000 0.0025 0.0108 0.9170 0.0007 0.0006 0.0007

29. C 0.0030 0.0000 0.0000 0.0133 0.0081 0.0077 1.3187 0.0003 0.0002

30. O 0.0099 0.0001 0.0001 0.0537 0.0032 0.0082 1.2274 0.0037 0.0023

31. H 0.0005 0.0000 0.0000 0.0115 0.0000 0.0005 0.0042 0.0000 0.0005

Page 232: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

83

32. H 0.0028 0.0000 0.0000 0.0002 0.0000 0.0005 0.0030 0.0000 0.0001

Atom 28 29 30 31 32

---- ------ ------ ------ ------ ------

1. C 0.0000 0.4493 0.0279 0.0018 0.0004

2. H 0.0000 0.0008 0.0023 0.0002 0.0000

3. H 0.0000 0.0013 0.0074 0.0004 0.0000

4. C 0.0005 0.0056 0.3365 0.0084 0.0005

5. H 0.0000 0.0008 0.0010 0.0000 0.0000

6. C 0.0007 0.0035 0.0045 0.0001 0.0000

7. H 0.0003 0.0006 0.0116 0.0002 0.0000

8. H 0.0003 0.0002 0.0058 0.0003 0.0000

9. O 0.0055 0.0005 0.0003 0.0001 0.0000

10. H 0.0000 0.0001 0.0001 0.0001 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000

12. C 0.0000 0.0011 0.0024 0.0000 0.0000

13. C 0.0001 0.0003 0.0005 0.0000 0.0001

14. C 0.0000 0.0004 0.0004 0.0000 0.0000

15. C 0.0004 0.0016 0.0032 0.0001 0.0001

16. H 0.0000 0.0000 0.0000 0.0000 0.0000

17. C 0.0001 0.0030 0.0038 0.0001 0.0006

18. H 0.0000 0.0000 0.0001 0.0000 0.0000

19. C 0.0009 0.0030 0.0099 0.0005 0.0028

20. H 0.0007 0.0000 0.0001 0.0000 0.0000

21. H 0.0000 0.0000 0.0001 0.0000 0.0000

22. C 0.0025 0.0133 0.0537 0.0115 0.0002

23. H 0.0108 0.0081 0.0032 0.0000 0.0000

24. C 0.9170 0.0077 0.0082 0.0005 0.0005

25. N 0.0007 1.3187 1.2274 0.0042 0.0030

26. H 0.0006 0.0003 0.0037 0.0000 0.0000

27. H 0.0007 0.0002 0.0023 0.0005 0.0001

28. H 0.0000 0.0002 0.0003 0.0000 0.0000

29. C 0.0002 0.0000 0.2003 0.9126 0.9190

30. O 0.0003 0.2003 0.0000 0.0044 0.0182

31. H 0.0000 0.9126 0.0044 0.0000 0.0003

32. H 0.0000 0.9190 0.0182 0.0003 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.8999

2. H 0.9525

3. H 0.9428

4. C 3.9587

5. H 0.9441

6. C 3.8041

7. H 0.9628

8. H 0.9460

9. O 1.7923

10. H 0.7792

11. H 0.9453

12. C 3.9482

13. C 3.9490

14. C 3.9483

15. C 3.9329

16. H 0.9456

17. C 3.9473

18. H 0.9450

19. C 4.0022

20. H 0.9384

21. H 0.9467

22. C 3.9242

23. H 0.9411

24. C 3.8310

25. N 3.6677

26. H 0.9374

27. H 0.9448

28. H 0.9425

29. C 3.8526

30. O 1.9399

31. H 0.9463

32. H 0.9460

-----------------------------------------------------------------------------------------------------------------------------------

2tsx nbo wiberg bond order index: Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9045 0.9197 1.5335 0.0056 0.0113 0.0149 0.0119 0.0049

Page 233: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

84

2. H 0.9045 0.0000 0.0003 0.0056 0.0099 0.0024 0.0006 0.0000 0.0030

3. H 0.9197 0.0003 0.0000 0.0043 0.0023 0.0106 0.0001 0.0001 0.0006

4. C 1.5335 0.0056 0.0043 0.0000 0.9069 1.0347 0.0030 0.0029 0.0153

5. H 0.0056 0.0099 0.0023 0.9069 0.0000 0.0024 0.0002 0.0001 0.0078

6. C 0.0113 0.0024 0.0106 1.0347 0.0024 0.0000 0.9035 0.9058 0.9264

7. H 0.0149 0.0006 0.0001 0.0030 0.0002 0.9035 0.0000 0.0005 0.0195

8. H 0.0119 0.0000 0.0001 0.0029 0.0001 0.9058 0.0005 0.0000 0.0266

9. O 0.0049 0.0030 0.0006 0.0153 0.0078 0.9264 0.0195 0.0266 0.0000

10. H 0.0004 0.0000 0.0000 0.0094 0.0006 0.0012 0.0006 0.0001 0.7622

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. C 0.0002 0.0001 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0001 0.0000 0.0000 0.0008 0.0003 0.0001 0.0000 0.0000 0.0000

14. C 0.0004 0.0000 0.0001 0.0005 0.0000 0.0001 0.0000 0.0000 0.0000

15. C 0.0005 0.0002 0.0000 0.0023 0.0019 0.0001 0.0000 0.0000 0.0000

16. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

17. C 0.0004 0.0001 0.0007 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000

18. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19. C 0.0018 0.0001 0.0007 0.0056 0.0001 0.0001 0.0002 0.0002 0.0000

20. H 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

21. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0007 0.0000 0.0000 0.0007 0.0000 0.0002 0.0001 0.0001 0.0001

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. C 0.0008 0.0001 0.0000 0.0035 0.0000 0.0000 0.0001 0.0001 0.0000

25. N 0.0303 0.0030 0.0011 0.1179 0.0006 0.0008 0.0044 0.0041 0.0002

26. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

27. H 0.0005 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000

28. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

29. C 0.4275 0.0017 0.0006 0.0078 0.0024 0.0013 0.0002 0.0004 0.0029

30. O 0.0230 0.0067 0.0019 0.2929 0.0007 0.0056 0.0072 0.0110 0.0008

31. H 0.0012 0.0004 0.0002 0.0076 0.0000 0.0003 0.0002 0.0002 0.0057

32. H 0.0004 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0002

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0004 0.0000 0.0002 0.0001 0.0004 0.0005 0.0000 0.0004 0.0000

2. H 0.0000 0.0000 0.0001 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000

3. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0007 0.0000

4. C 0.0094 0.0000 0.0004 0.0008 0.0005 0.0023 0.0000 0.0002 0.0000

5. H 0.0006 0.0000 0.0000 0.0003 0.0000 0.0019 0.0000 0.0001 0.0000

6. C 0.0012 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000

7. H 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8. H 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9. O 0.7622 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.9165 0.0034 0.0033 0.0084 0.0020 0.0085 0.0020

12. C 0.0000 0.9165 0.0000 1.4281 1.4383 0.0113 0.0033 0.0111 0.0035

13. C 0.0000 0.0034 1.4281 0.0000 0.0110 1.4446 0.9161 0.1091 0.0085

14. C 0.0000 0.0033 1.4383 0.0110 0.0000 0.1106 0.0084 1.4331 0.9163

15. C 0.0000 0.0084 0.0113 1.4446 0.1106 0.0000 0.0034 0.0114 0.0002

16. H 0.0000 0.0020 0.0033 0.9161 0.0084 0.0034 0.0000 0.0002 0.0004

17. C 0.0000 0.0085 0.0111 0.1091 1.4331 0.0114 0.0002 0.0000 0.0033

18. H 0.0000 0.0020 0.0035 0.0085 0.9163 0.0002 0.0004 0.0033 0.0000

19. C 0.0000 0.0002 0.1082 0.0117 0.0120 1.3887 0.0081 1.4115 0.0080

20. H 0.0000 0.0003 0.0081 0.0036 0.0003 0.9040 0.0020 0.0083 0.0004

21. H 0.0000 0.0004 0.0084 0.0003 0.0036 0.0092 0.0004 0.9167 0.0020

22. C 0.0000 0.0004 0.0011 0.0078 0.0072 0.0100 0.0003 0.0103 0.0003

23. H 0.0000 0.0000 0.0001 0.0001 0.0003 0.0065 0.0003 0.0016 0.0001

24. C 0.0000 0.0000 0.0027 0.0003 0.0003 0.0055 0.0000 0.0088 0.0001

25. N 0.0000 0.0000 0.0040 0.0002 0.0005 0.0072 0.0000 0.0091 0.0001

26. H 0.0000 0.0000 0.0007 0.0002 0.0003 0.0010 0.0000 0.0008 0.0000

27. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000

28. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0003 0.0000 0.0001 0.0000

29. C 0.0001 0.0000 0.0011 0.0004 0.0002 0.0028 0.0000 0.0012 0.0001

30. O 0.0000 0.0000 0.0011 0.0017 0.0016 0.0084 0.0000 0.0013 0.0000

31. H 0.0000 0.0000 0.0001 0.0000 0.0000 0.0003 0.0000 0.0002 0.0000

32. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0018 0.0000 0.0000 0.0007 0.0000 0.0008 0.0303 0.0000 0.0005

2. H 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0030 0.0000 0.0000

3. H 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000 0.0000

4. C 0.0056 0.0001 0.0001 0.0007 0.0000 0.0035 0.1179 0.0001 0.0004

5. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000

6. C 0.0001 0.0000 0.0000 0.0002 0.0000 0.0000 0.0008 0.0000 0.0000

7. H 0.0002 0.0000 0.0000 0.0001 0.0000 0.0001 0.0044 0.0000 0.0000

8. H 0.0002 0.0000 0.0000 0.0001 0.0000 0.0001 0.0041 0.0000 0.0000

9. O 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0002 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0002 0.0003 0.0004 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000

12. C 0.1082 0.0081 0.0084 0.0011 0.0001 0.0027 0.0040 0.0007 0.0000

Page 234: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

85

13. C 0.0117 0.0036 0.0003 0.0078 0.0001 0.0003 0.0002 0.0002 0.0000

14. C 0.0120 0.0003 0.0036 0.0072 0.0003 0.0003 0.0005 0.0003 0.0000

15. C 1.3887 0.9040 0.0092 0.0100 0.0065 0.0055 0.0072 0.0010 0.0001

16. H 0.0081 0.0020 0.0004 0.0003 0.0003 0.0000 0.0000 0.0000 0.0000

17. C 1.4115 0.0083 0.9167 0.0103 0.0016 0.0088 0.0091 0.0008 0.0001

18. H 0.0080 0.0004 0.0020 0.0003 0.0001 0.0001 0.0001 0.0000 0.0000

19. C 0.0000 0.0036 0.0036 0.9921 0.0024 0.0088 0.0133 0.0090 0.0005

20. H 0.0036 0.0000 0.0004 0.0018 0.0003 0.0003 0.0001 0.0000 0.0000

21. H 0.0036 0.0004 0.0000 0.0018 0.0008 0.0002 0.0001 0.0001 0.0000

22. C 0.9921 0.0018 0.0018 0.0000 0.9013 1.0042 0.9023 0.0017 0.0026

23. H 0.0024 0.0003 0.0008 0.9013 0.0000 0.0038 0.0022 0.0011 0.0005

24. C 0.0088 0.0003 0.0002 1.0042 0.0038 0.0000 0.0113 0.9274 0.9271

25. N 0.0133 0.0001 0.0001 0.9023 0.0022 0.0113 0.0000 0.0008 0.0097

26. H 0.0090 0.0000 0.0001 0.0017 0.0011 0.9274 0.0008 0.0000 0.0006

27. H 0.0005 0.0000 0.0000 0.0026 0.0005 0.9271 0.0097 0.0006 0.0000

28. H 0.0007 0.0006 0.0000 0.0023 0.0109 0.9189 0.0016 0.0005 0.0006

29. C 0.0087 0.0002 0.0001 0.0130 0.0003 0.0097 1.3199 0.0001 0.0003

30. O 0.0040 0.0039 0.0000 0.0540 0.0113 0.0045 1.2165 0.0004 0.0011

31. H 0.0003 0.0000 0.0000 0.0111 0.0002 0.0003 0.0034 0.0000 0.0002

32. H 0.0002 0.0000 0.0000 0.0003 0.0004 0.0003 0.0027 0.0000 0.0001

Atom 28 29 30 31 32

---- ------ ------ ------ ------ ------

1. C 0.0000 0.4275 0.0230 0.0012 0.0004

2. H 0.0000 0.0017 0.0067 0.0004 0.0000

3. H 0.0000 0.0006 0.0019 0.0002 0.0000

4. C 0.0000 0.0078 0.2929 0.0076 0.0005

5. H 0.0000 0.0024 0.0007 0.0000 0.0000

6. C 0.0000 0.0013 0.0056 0.0003 0.0000

7. H 0.0000 0.0002 0.0072 0.0002 0.0000

8. H 0.0000 0.0004 0.0110 0.0002 0.0000

9. O 0.0000 0.0029 0.0008 0.0057 0.0002

10. H 0.0000 0.0001 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000

12. C 0.0000 0.0011 0.0011 0.0001 0.0000

13. C 0.0001 0.0004 0.0017 0.0000 0.0000

14. C 0.0000 0.0002 0.0016 0.0000 0.0000

15. C 0.0003 0.0028 0.0084 0.0003 0.0001

16. H 0.0000 0.0000 0.0000 0.0000 0.0000

17. C 0.0001 0.0012 0.0013 0.0002 0.0001

18. H 0.0000 0.0001 0.0000 0.0000 0.0000

19. C 0.0007 0.0087 0.0040 0.0003 0.0002

20. H 0.0006 0.0002 0.0039 0.0000 0.0000

21. H 0.0000 0.0001 0.0000 0.0000 0.0000

22. C 0.0023 0.0130 0.0540 0.0111 0.0003

23. H 0.0109 0.0003 0.0113 0.0002 0.0004

24. C 0.9189 0.0097 0.0045 0.0003 0.0003

25. N 0.0016 1.3199 1.2165 0.0034 0.0027

26. H 0.0005 0.0001 0.0004 0.0000 0.0000

27. H 0.0006 0.0003 0.0011 0.0002 0.0001

28. H 0.0000 0.0005 0.0045 0.0000 0.0000

29. C 0.0005 0.0000 0.2152 0.9029 0.9271

30. O 0.0045 0.2152 0.0000 0.0036 0.0196

31. H 0.0000 0.9029 0.0036 0.0000 0.0004

32. H 0.0000 0.9271 0.0196 0.0004 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.8946

2. H 0.9388

3. H 0.9435

4. C 3.9570

5. H 0.9420

6. C 3.8070

7. H 0.9555

8. H 0.9642

9. O 1.7763

10. H 0.7747

11. H 0.9455

12. C 3.9484

13. C 3.9487

14. C 3.9486

15. C 3.9391

16. H 0.9452

17. C 3.9484

18. H 0.9454

19. C 4.0048

20. H 0.9384

Page 235: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

86

21. H 0.9483

22. C 3.9276

23. H 0.9445

24. C 3.8391

25. N 3.6674

26. H 0.9450

27. H 0.9444

28. H 0.9417

29. C 3.8487

30. O 1.9024

31. H 0.9390

32. H 0.9526

2tsn –nbo wiberg bond index by Tapas: Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.8655 0.9999 0.0107 0.0109 0.0079 0.0020 0.0071 0.0018

2. H 0.8655 0.0000 0.0024 0.0060 0.0015 0.0001 0.0003 0.0003 0.0007

3. C 0.9999 0.0024 0.0000 1.3889 1.4115 0.0120 0.0035 0.0118 0.0036

4. C 0.0107 0.0060 1.3889 0.0000 0.0115 1.4498 0.9121 0.1116 0.0090

5. C 0.0109 0.0015 1.4115 0.0115 0.0000 0.1086 0.0088 1.4312 0.9134

6. C 0.0079 0.0001 0.0120 1.4498 0.1086 0.0000 0.0036 0.0110 0.0003

7. H 0.0020 0.0003 0.0035 0.9121 0.0088 0.0036 0.0000 0.0003 0.0004

8. C 0.0071 0.0003 0.0118 0.1116 1.4312 0.0110 0.0003 0.0000 0.0035

9. H 0.0018 0.0007 0.0036 0.0090 0.9134 0.0003 0.0004 0.0035 0.0000

10. C 0.0011 0.0001 0.1085 0.0110 0.0110 1.4247 0.0084 1.4416 0.0083

11. H 0.0004 0.0003 0.0080 0.0033 0.0002 0.9158 0.0021 0.0084 0.0004

12. H 0.0003 0.0001 0.0080 0.0002 0.0033 0.0085 0.0004 0.9160 0.0021

13. H 0.0004 0.0000 0.0002 0.0083 0.0085 0.0033 0.0004 0.0034 0.0004

14. C 1.0042 0.0034 0.0101 0.0065 0.0099 0.0005 0.0002 0.0004 0.0001

15. H 0.0019 0.0007 0.0085 0.0011 0.0010 0.0001 0.0001 0.0002 0.0001

16. H 0.0031 0.0005 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000

17. H 0.0027 0.0104 0.0010 0.0005 0.0002 0.0001 0.0005 0.0000 0.0000

18. N 0.8952 0.0037 0.0067 0.0059 0.0087 0.0007 0.0004 0.0006 0.0002

19. C 0.0154 0.0097 0.0019 0.0026 0.0017 0.0005 0.0002 0.0001 0.0000

20. H 0.0126 0.0001 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

21. H 0.0003 0.0001 0.0028 0.0004 0.0001 0.0001 0.0000 0.0000 0.0000

22. O 0.0542 0.0019 0.0115 0.0032 0.0027 0.0005 0.0001 0.0007 0.0001

23. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. O 0.0069 0.0135 0.0001 0.0001 0.0002 0.0000 0.0000 0.0000 0.0005

25. C 0.0009 0.0012 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0008 0.0060 0.0002 0.0004 0.0002 0.0002 0.0002 0.0001 0.0000

27. H 0.0001 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

28. H 0.0003 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

29. C 0.0008 0.0023 0.0001 0.0003 0.0001 0.0000 0.0001 0.0000 0.0000

30. H 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

31. H 0.0000 0.0002 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

32. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0011 0.0004 0.0003 0.0004 1.0042 0.0019 0.0031 0.0027 0.8952

2. H 0.0001 0.0003 0.0001 0.0000 0.0034 0.0007 0.0005 0.0104 0.0037

3. C 0.1085 0.0080 0.0080 0.0002 0.0101 0.0085 0.0005 0.0010 0.0067

4. C 0.0110 0.0033 0.0002 0.0083 0.0065 0.0011 0.0002 0.0005 0.0059

5. C 0.0110 0.0002 0.0033 0.0085 0.0099 0.0010 0.0001 0.0002 0.0087

6. C 1.4247 0.9158 0.0085 0.0033 0.0005 0.0001 0.0000 0.0001 0.0007

7. H 0.0084 0.0021 0.0004 0.0004 0.0002 0.0001 0.0000 0.0005 0.0004

8. C 1.4416 0.0084 0.9160 0.0034 0.0004 0.0002 0.0000 0.0000 0.0006

9. H 0.0083 0.0004 0.0021 0.0004 0.0001 0.0001 0.0000 0.0000 0.0002

10. C 0.0000 0.0033 0.0034 0.9162 0.0036 0.0008 0.0000 0.0000 0.0031

11. H 0.0033 0.0000 0.0004 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0034 0.0004 0.0000 0.0020 0.0001 0.0000 0.0000 0.0000 0.0001

13. H 0.9162 0.0020 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

14. C 0.0036 0.0000 0.0001 0.0000 0.0000 0.9126 0.9264 0.9313 0.0100

15. H 0.0008 0.0000 0.0000 0.0000 0.9126 0.0000 0.0007 0.0005 0.0015

16. H 0.0000 0.0000 0.0000 0.0000 0.9264 0.0007 0.0000 0.0006 0.0098

17. H 0.0000 0.0000 0.0000 0.0000 0.9313 0.0005 0.0006 0.0000 0.0008

18. N 0.0031 0.0000 0.0001 0.0000 0.0100 0.0015 0.0098 0.0008 0.0000

19. C 0.0008 0.0000 0.0000 0.0000 0.0087 0.0004 0.0002 0.0004 1.3446

20. H 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0004 0.0000 0.0027

21. H 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0001 0.0000 0.0025

22. O 0.0018 0.0000 0.0001 0.0000 0.0064 0.0058 0.0013 0.0003 1.2247

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

24. O 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0001 0.0003

25. C 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0007

Page 236: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

87

26. C 0.0000 0.0000 0.0000 0.0000 0.0019 0.0000 0.0001 0.0001 0.1035

27. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0029

28. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0032

29. C 0.0001 0.0000 0.0000 0.0000 0.0003 0.0000 0.0003 0.0000 0.0319

30. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

31. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0012

32. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0024

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0154 0.0126 0.0003 0.0542 0.0001 0.0069 0.0009 0.0008 0.0001

2. H 0.0097 0.0001 0.0001 0.0019 0.0001 0.0135 0.0012 0.0060 0.0005

3. C 0.0019 0.0003 0.0028 0.0115 0.0000 0.0001 0.0001 0.0002 0.0000

4. C 0.0026 0.0000 0.0004 0.0032 0.0000 0.0001 0.0000 0.0004 0.0000

5. C 0.0017 0.0000 0.0001 0.0027 0.0000 0.0002 0.0000 0.0002 0.0000

6. C 0.0005 0.0000 0.0001 0.0005 0.0000 0.0000 0.0000 0.0002 0.0000

7. H 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000

8. C 0.0001 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0001 0.0000

9. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0005 0.0000 0.0000 0.0000

10. C 0.0008 0.0000 0.0000 0.0018 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

13. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

14. C 0.0087 0.0005 0.0004 0.0064 0.0000 0.0002 0.0001 0.0019 0.0000

15. H 0.0004 0.0000 0.0000 0.0058 0.0000 0.0001 0.0000 0.0000 0.0001

16. H 0.0002 0.0004 0.0001 0.0013 0.0000 0.0000 0.0000 0.0001 0.0000

17. H 0.0004 0.0000 0.0000 0.0003 0.0000 0.0001 0.0000 0.0001 0.0000

18. N 1.3446 0.0027 0.0025 1.2247 0.0001 0.0003 0.0007 0.1035 0.0029

19. C 0.0000 0.9161 0.9195 0.2151 0.0002 0.0004 0.0034 0.0051 0.0003

20. H 0.9161 0.0000 0.0003 0.0044 0.0000 0.0000 0.0000 0.0054 0.0002

21. H 0.9195 0.0003 0.0000 0.0184 0.0000 0.0000 0.0000 0.0003 0.0000

22. O 0.2151 0.0044 0.0184 0.0000 0.0000 0.0004 0.0048 0.3093 0.0050

23. H 0.0002 0.0000 0.0000 0.0000 0.0000 0.7596 0.0040 0.0005 0.0117

24. O 0.0004 0.0000 0.0000 0.0004 0.7596 0.0000 0.9323 0.0288 0.0074

25. C 0.0034 0.0000 0.0000 0.0048 0.0040 0.9323 0.0000 1.0285 0.9000

26. C 0.0051 0.0054 0.0003 0.3093 0.0005 0.0288 1.0285 0.0000 0.0023

27. H 0.0003 0.0002 0.0000 0.0050 0.0117 0.0074 0.9000 0.0023 0.0000

28. H 0.0005 0.0002 0.0000 0.0131 0.0004 0.0220 0.9054 0.0027 0.0005

29. C 0.4005 0.0012 0.0004 0.0271 0.0020 0.0059 0.0107 1.5443 0.0138

30. H 0.0008 0.0000 0.0000 0.0009 0.0000 0.0108 0.0029 0.9067 0.0001

31. H 0.0007 0.0001 0.0000 0.0023 0.0013 0.0039 0.0024 0.0052 0.0004

32. H 0.0011 0.0002 0.0000 0.0058 0.0000 0.0005 0.0091 0.0048 0.0001

Atom 28 29 30 31 32

---- ------ ------ ------ ------ ------

1. C 0.0003 0.0008 0.0001 0.0000 0.0001

2. H 0.0020 0.0023 0.0000 0.0002 0.0001

3. C 0.0000 0.0001 0.0000 0.0001 0.0000

4. C 0.0000 0.0003 0.0000 0.0000 0.0000

5. C 0.0000 0.0001 0.0000 0.0001 0.0000

6. C 0.0000 0.0000 0.0000 0.0000 0.0000

7. H 0.0000 0.0001 0.0000 0.0000 0.0000

8. C 0.0000 0.0000 0.0000 0.0000 0.0000

9. H 0.0000 0.0000 0.0000 0.0000 0.0000

10. C 0.0000 0.0001 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000

13. H 0.0000 0.0000 0.0000 0.0000 0.0000

14. C 0.0001 0.0003 0.0000 0.0000 0.0001

15. H 0.0000 0.0000 0.0000 0.0000 0.0000

16. H 0.0000 0.0003 0.0000 0.0000 0.0000

17. H 0.0000 0.0000 0.0000 0.0000 0.0000

18. N 0.0032 0.0319 0.0001 0.0012 0.0024

19. C 0.0005 0.4005 0.0008 0.0007 0.0011

20. H 0.0002 0.0012 0.0000 0.0001 0.0002

21. H 0.0000 0.0004 0.0000 0.0000 0.0000

22. O 0.0131 0.0271 0.0009 0.0023 0.0058

23. H 0.0004 0.0020 0.0000 0.0013 0.0000

24. O 0.0220 0.0059 0.0108 0.0039 0.0005

25. C 0.9054 0.0107 0.0029 0.0024 0.0091

26. C 0.0027 1.5443 0.9067 0.0052 0.0048

27. H 0.0005 0.0138 0.0001 0.0004 0.0001

28. H 0.0000 0.0122 0.0002 0.0001 0.0001

29. C 0.0122 0.0000 0.0052 0.9240 0.9161

30. H 0.0002 0.0052 0.0000 0.0126 0.0023

31. H 0.0001 0.9240 0.0126 0.0000 0.0003

32. H 0.0001 0.9161 0.0023 0.0003 0.0000

Wiberg bond index, Totals by atom:

Page 237: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

88

Atom 1

---- ------

1. C 3.9076

2. H 0.9337

3. C 4.0022

4. C 3.9440

5. C 3.9453

6. C 3.9483

7. H 0.9440

8. C 3.9483

9. H 0.9450

10. C 3.9480

11. H 0.9447

12. H 0.9449

13. H 0.9451

14. C 3.8380

15. H 0.9364

16. H 0.9442

17. H 0.9497

18. N 3.6684

19. C 3.8510

20. H 0.9448

21. H 0.9458

22. O 1.9218

23. H 0.7803

24. O 1.7941

25. C 3.8067

26. C 3.9578

27. H 0.9455

28. H 0.9631

29. C 3.8999

30. H 0.9429

31. H 0.9549

32. H 0.9432

Molecule = 1 E1, Final optimized geometry with frequency calculation.

---------------------------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------------------------

E(RB+HF-LYP) = -309.648271707 A.U.

--------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.476632 2.607700 0.000000

2 1 0 -2.414618 2.059053 0.000000

3 1 0 -1.555059 3.690568 0.000000

4 6 0 -0.280612 2.005550 0.000000

5 1 0 0.608807 2.636172 0.000000

6 6 0 0.000000 0.560111 0.000000

7 6 0 -1.008602 -0.421264 0.000000

8 6 0 1.337691 0.129380 0.000000

9 6 0 -0.687896 -1.775345 0.000000

10 1 0 -2.052973 -0.122549 0.000000

11 6 0 1.661449 -1.226931 0.000000

12 1 0 2.131855 0.872780 0.000000

13 6 0 0.648870 -2.186283 0.000000

14 1 0 -1.483672 -2.515830 0.000000

15 1 0 2.704322 -1.533175 0.000000

16 1 0 0.895734 -3.244542 0.000000

------------------------------------------------------------------------------------------

Rotational constants (GHZ): 5.1809692 1.5346142 1.1839312

-----------------------------------------------------------------------------------------

Zero-point correction= 0.133720 (Hartree/Particle)

Thermal correction to Energy= 0.140497

Thermal correction to Enthalpy= 0.141441

Thermal correction to Gibbs Free Energy= 0.102157

Sum of electronic and zero-point Energies= -309.514552

Sum of electronic and thermal Energies= -309.507775

Sum of electronic and thermal Enthalpies= -309.506831

Sum of electronic and thermal Free Energies= -309.546115

-------------------------------------------------------------------------------

________________________________________________________________________

Page 238: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

89

Molecule = 1 N1, Final optimised geometry with frequency calculation.

-------------------------------------------------------------------------------------

# opt=calcfc b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -518.801980805 A.U.

--------------------------------------------------------

Standard orientation:

----------------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

----------------------------------------------------------------------------

1 6 0 2.791968 -2.031656 -0.495928

2 1 0 2.499925 -2.992077 -0.928256

3 1 0 3.277253 -2.201260 0.473969

4 1 0 3.552925 -1.564615 -1.135369

5 6 0 1.610762 -1.138428 -0.339098

6 1 0 0.612836 -1.412042 -0.648431

7 7 0 1.777509 0.035328 0.211341

8 8 0 2.910039 0.463816 0.622261

9 6 0 0.640173 1.026102 0.409984

10 1 0 0.750155 1.278277 1.468770

11 6 0 0.964096 2.274276 -0.415421

12 1 0 0.240506 3.065345 -0.196263

13 1 0 1.967467 2.616366 -0.156336

14 1 0 0.937266 2.067154 -1.490246

15 6 0 -0.741846 0.441739 0.194285

16 6 0 -1.426446 -0.111554 1.286001

17 6 0 -1.369589 0.433243 -1.059841

18 6 0 -2.699760 -0.659710 1.133729

19 1 0 -0.953819 -0.109104 2.265651

20 6 0 -2.642558 -0.116863 -1.216732

21 1 0 -0.865789 0.859383 -1.922257

22 6 0 -3.311700 -0.664699 -0.120918

23 1 0 -3.214106 -1.078589 1.994434

24 1 0 -3.113314 -0.112911 -2.196218

25 1 0 -4.304784 -1.088456 -0.243293

---------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.6307890 0.5873298 0.5288821

---------------------------------------------------------------------------------------

Zero-point correction= 0.212032 (Hartree/Particle)

Thermal correction to Energy= 0.223712

Thermal correction to Enthalpy= 0.224656

Thermal correction to Gibbs Free Energy= 0.173434

Sum of electronic and zero-point Energies= -518.589949

Sum of electronic and thermal Energies= -518.578269

Sum of electronic and thermal Enthalpies= -518.577325

Sum of electronic and thermal Free Energies= -518.628547

________________________________________________________________________

Molecule = 1 PRN. Final optimized geometry with frequency calculation.

-----------------------------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

------------------------------------------------------

E(RB+HF-LYP) = -828.475033401 A.U.

--------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.963647 -2.538012 -1.090959

2 1 0 0.820380 -2.992145 -2.078868

3 1 0 0.435866 -3.151929 -0.354264

4 1 0 2.034220 -2.570220 -0.869786

5 6 0 0.436296 -1.094863 -1.108385

6 1 0 1.061790 -0.489026 -1.771747

7 7 0 0.341716 -0.358101 0.167947

8 8 0 -0.811422 -0.973816 0.835355

9 6 0 1.434847 -0.322412 1.159882

10 1 0 1.054574 0.377720 1.917353

11 6 0 1.738493 -1.625784 1.918633

12 1 0 2.403059 -1.408749 2.762685

13 1 0 0.806999 -2.036418 2.313811

14 1 0 2.214953 -2.392405 1.303696

15 6 0 2.637224 0.349640 0.498204

Page 239: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

90

16 6 0 2.474796 1.627004 -0.062837

17 6 0 3.903559 -0.242721 0.443554

18 6 0 3.543173 2.287298 -0.665231

19 1 0 1.494609 2.094038 -0.028590

20 6 0 4.978837 0.419240 -0.157342

21 1 0 4.065817 -1.223764 0.878363

22 6 0 4.802976 1.684003 -0.715165

23 1 0 3.395066 3.276122 -1.091882

24 1 0 5.954537 -0.059084 -0.185866

25 1 0 5.638995 2.198763 -1.181290

26 1 0 -1.692281 1.506344 0.461355

27 6 0 -2.715159 1.181240 0.296104

28 6 0 -2.956789 -0.159931 -0.030108

29 6 0 -3.773776 2.080634 0.410933

30 6 0 -1.809715 -1.139268 -0.185263

31 6 0 -4.274812 -0.581513 -0.230921

32 6 0 -5.088076 1.654000 0.199061

33 1 0 -3.574683 3.117778 0.669167

34 6 0 -1.042423 -1.010276 -1.531770

35 1 0 -2.195520 -2.158816 -0.062819

36 6 0 -5.336402 0.319849 -0.123166

37 1 0 -4.474603 -1.624622 -0.469295

38 1 0 -5.912124 2.356763 0.290382

39 1 0 -1.250144 -0.038212 -1.986457

40 1 0 -1.326770 -1.790150 -2.244221

41 1 0 -6.355555 -0.023530 -0.281540

---------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.7340377 0.1762062 0.1592351

---------------------------------------------------------------------------------------

Zero-point correction= 0.352109 (Hartree/Particle)

Thermal correction to Energy= 0.369806

Thermal correction to Enthalpy= 0.370750

Thermal correction to Gibbs Free Energy= 0.304171

Sum of electronic and zero-point Energies= -828.122925

Sum of electronic and thermal Energies= -828.105227

Sum of electronic and thermal Enthalpies= -828.104283

Sum of electronic and thermal Free Energies= -828.170862

-------------------------------------------------------------------------------

________________________________________________________________________

Molecule = 1 PRX. Final optimizwd geometry with frequency calculation.

------------------------------------------------------------------------------------------

# opt=calcfc b3lyp/6-31g(d) geom=connectivity

------------------------------------------------------------

E(RB+HF-LYP) = -828.485253757 A.U.

--------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.133612 2.519893 -0.563557

2 1 0 0.041393 3.045687 -1.509591

3 1 0 0.737692 2.673943 0.081324

4 1 0 -1.004706 2.965454 -0.073481

5 6 0 -0.364720 1.028364 -0.810297

6 1 0 -1.271882 0.898584 -1.407113

7 7 0 -0.561924 0.327066 0.481934

8 8 0 0.773194 -0.045802 0.863840

9 6 0 -1.416666 -0.884453 0.385373

10 1 0 -1.104868 -1.531752 -0.453437

11 6 0 -1.311715 -1.696813 1.683850

12 1 0 -1.979508 -2.562913 1.632983

13 1 0 -0.289075 -2.044401 1.847309

14 1 0 -1.605585 -1.082032 2.540679

15 6 0 -2.853646 -0.452203 0.129310

16 6 0 -3.627656 -1.101733 -0.839273

17 6 0 -3.443900 0.567109 0.890880

18 6 0 -4.964224 -0.750936 -1.041391

19 1 0 -3.180719 -1.891683 -1.439501

20 6 0 -4.776882 0.922665 0.686943

21 1 0 -2.844141 1.083754 1.633849

22 6 0 -5.542630 0.263554 -0.278302

23 1 0 -5.549818 -1.267463 -1.797541

24 1 0 -5.219871 1.716440 1.283084

25 1 0 -6.581466 0.541487 -0.435543

Page 240: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

91

26 1 0 3.484893 -2.007708 -1.333304

27 6 0 3.863742 -1.180243 -0.736695

28 6 0 2.962626 -0.311946 -0.109111

29 6 0 5.240685 -0.997569 -0.603350

30 6 0 1.475768 -0.496779 -0.317517

31 6 0 3.464736 0.735356 0.673377

32 6 0 5.733936 0.051644 0.173812

33 1 0 5.926499 -1.679932 -1.098765

34 6 0 0.853429 0.327526 -1.474403

35 1 0 1.274077 -1.566239 -0.475053

36 6 0 4.841263 0.913117 0.814963

37 1 0 2.770140 1.392265 1.186341

38 1 0 6.805777 0.192380 0.285266

39 1 0 1.563453 1.059578 -1.868941

40 1 0 0.554851 -0.323439 -2.301787

41 1 0 5.217560 1.725625 1.431289

---------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.0425217 0.1519429 0.1477526

----------------------------------------------------------------------------------------

Zero-point correction= 0.351931 (Hartree/Particle)

Thermal correction to Energy= 0.369713

Thermal correction to Enthalpy= 0.370657

Thermal correction to Gibbs Free Energy= 0.304069

Sum of electronic and zero-point Energies= -828.133323

Sum of electronic and thermal Energies= -828.115541

Sum of electronic and thermal Enthalpies= -828.114596

Sum of electronic and thermal Free Energies= -828.181185

---------------------------------------------------------------------------------

________________________________________________________________________

Molecule = 1PSN. Final optimized geometry with frequency calculation.

---------------------------------------------------------------------------------------

# opt=calcfc b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -828.482870341 A.U.

------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.998883 2.725134 -0.354167

2 1 0 2.056081 2.643374 -0.082726

3 1 0 0.449010 3.113483 0.509391

4 1 0 0.923369 3.457356 -1.166046

5 6 0 0.427772 1.377333 -0.817655

6 1 0 1.041539 0.974249 -1.628905

7 7 0 0.322145 0.316548 0.213833

8 8 0 -0.803418 0.799991 1.032227

9 6 0 1.449044 0.154134 1.146262

10 1 0 1.660594 1.104040 1.662191

11 6 0 1.088500 -0.892744 2.213733

12 1 0 1.936320 -1.036166 2.891845

13 1 0 0.220509 -0.569544 2.792490

14 1 0 0.856859 -1.854330 1.743693

15 6 0 2.687518 -0.266253 0.367410

16 6 0 3.922665 0.340315 0.624864

17 6 0 2.630894 -1.299674 -0.579270

18 6 0 5.077335 -0.073947 -0.042486

19 1 0 3.981713 1.141537 1.358574

20 6 0 3.781258 -1.709959 -1.252691

21 1 0 1.675554 -1.771171 -0.790115

22 6 0 5.009305 -1.099875 -0.985406

23 1 0 6.027332 0.408574 0.172328

24 1 0 3.719634 -2.509630 -1.986507

25 1 0 5.905512 -1.421920 -1.509087

26 1 0 -4.475870 1.761265 -0.036005

27 6 0 -4.274323 0.692689 -0.084865

28 6 0 -2.955083 0.235045 -0.008550

29 6 0 -5.335049 -0.206465 -0.216829

30 6 0 -1.810305 1.223921 0.099384

31 6 0 -2.711234 -1.144363 -0.052780

32 6 0 -5.084609 -1.577883 -0.262635

33 1 0 -6.355050 0.165030 -0.273937

34 6 0 -1.049282 1.465175 -1.236412

35 1 0 -2.196111 2.170373 0.496504

Page 241: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

92

36 6 0 -3.769312 -2.043254 -0.177251

37 1 0 -1.687516 -1.499777 0.014442

38 1 0 -5.907940 -2.280885 -0.358709

39 1 0 -1.290170 0.675892 -1.953429

40 1 0 -1.304231 2.427919 -1.689077

41 1 0 -3.568670 -3.111406 -0.205509

---------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.7924041 0.1723371 0.1599546

----------------------------------------------------------------------------------------

Zero-point correction= 0.351978 (Hartree/Particle)

Thermal correction to Energy= 0.369718

Thermal correction to Enthalpy= 0.370662

Thermal correction to Gibbs Free Energy= 0.304486

Sum of electronic and zero-point Energies= -828.130892

Sum of electronic and thermal Energies= -828.113153

Sum of electronic and thermal Enthalpies= -828.112208

Sum of electronic and thermal Free Energies= -828.178384

----------------------------------------------------------------------------------

________________________________________________________________________

Molecule = 1 PSX. Final optimized geometry with frequency calculation.

----------------------------------------------------------------------------------------

# opt=calcfc b3lyp/6-31g(d) geom=connectivity

----------------------------------------------------------

E(RB+HF-LYP) = -828.478962147 A.U.

-------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.064101 0.542761 1.873621

2 1 0 0.182469 0.319115 2.941207

3 1 0 -0.805465 1.195725 1.753540

4 1 0 0.949515 1.085784 1.530780

5 6 0 -0.128037 -0.752396 1.078712

6 1 0 -1.014376 -1.269098 1.463933

7 7 0 -0.319903 -0.435655 -0.371289

8 8 0 0.729004 -1.163291 -1.115277

9 6 0 -1.591716 -0.905795 -0.977497

10 1 0 -1.465243 -0.674692 -2.043053

11 6 0 -1.845707 -2.416836 -0.876666

12 1 0 -2.739053 -2.692737 -1.447163

13 1 0 -0.991822 -2.951901 -1.298018

14 1 0 -1.991070 -2.756861 0.154857

15 6 0 -2.719383 -0.017390 -0.455841

16 6 0 -2.634626 1.370405 -0.655210

17 6 0 -3.847316 -0.526094 0.196940

18 6 0 -3.646266 2.221074 -0.215971

19 1 0 -1.756823 1.776170 -1.149805

20 6 0 -4.865246 0.325256 0.638437

21 1 0 -3.947059 -1.594236 0.361746

22 6 0 -4.768873 1.700080 0.434370

23 1 0 -3.561071 3.291938 -0.382327

24 1 0 -5.733492 -0.092516 1.141649

25 1 0 -5.560180 2.362016 0.776246

26 1 0 4.155878 -1.381960 1.147893

27 6 0 4.005693 -0.467323 0.576762

28 6 0 2.837901 -0.303279 -0.180198

29 6 0 4.984297 0.525983 0.601425

30 6 0 1.798187 -1.419161 -0.217328

31 6 0 2.672695 0.869159 -0.923686

32 6 0 4.807484 1.699867 -0.134619

33 1 0 5.885182 0.382547 1.192677

34 6 0 1.090365 -1.696584 1.122696

35 1 0 2.278022 -2.330188 -0.597343

36 6 0 3.649957 1.866578 -0.895975

37 1 0 1.771770 0.990012 -1.514964

38 1 0 5.568314 2.475753 -0.116736

39 1 0 1.728089 -1.510454 1.990753

40 1 0 0.766250 -2.741884 1.150366

41 1 0 3.506413 2.775551 -1.474830

---------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.7546344 0.1850000 0.1683392

---------------------------------------------------------------------------------------

Page 242: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

93

Zero-point correction= 0.352153 (Hartree/Particle)

Thermal correction to Energy= 0.369737

Thermal correction to Enthalpy= 0.370682

Thermal correction to Gibbs Free Energy= 0.304824

Sum of electronic and zero-point Energies= -828.126809

Sum of electronic and thermal Energies= -828.109225

Sum of electronic and thermal Enthalpies= -828.108280

Sum of electronic and thermal Free Energies= -828.174138

----------------------------------------------------------------------------------

_______________________________________________________________________

Transition state = 1 TRN. Final optimized geometry with frequency calculation.

-----------------------------------------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------------------------------

E(RB+HF-LYP) = -828.423838630 A.U.

-----------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.800252 3.358597 -0.266064

2 1 0 0.112500 3.682381 0.235906

3 1 0 -1.656203 3.645578 0.359898

4 1 0 -0.896593 3.882304 -1.221797

5 6 0 -0.800243 1.864592 -0.479002

6 1 0 -1.614457 1.468446 -1.080807

7 7 0 -0.447061 1.071774 0.556099

8 8 0 0.616477 1.412809 1.204481

9 6 0 -0.771895 -0.396916 0.526586

10 1 0 -0.146314 -0.834193 -0.261646

11 6 0 -0.373207 -1.030598 1.862779

12 1 0 -0.571695 -2.106024 1.819354

13 1 0 0.686070 -0.864178 2.060391

14 1 0 -0.953438 -0.605965 2.688235

15 6 0 -2.232126 -0.635831 0.189025

16 6 0 -2.583744 -1.474358 -0.874867

17 6 0 -3.255101 -0.060876 0.958276

18 6 0 -3.924056 -1.741745 -1.163616

19 1 0 -1.800921 -1.925842 -1.480520

20 6 0 -4.593502 -0.320852 0.668863

21 1 0 -2.998018 0.599548 1.782293

22 6 0 -4.932619 -1.164535 -0.392530

23 1 0 -4.177224 -2.397553 -1.992458

24 1 0 -5.374043 0.134077 1.273097

25 1 0 -5.976371 -1.368000 -0.616291

26 1 0 1.976808 -0.900793 -2.035962

27 6 0 2.658152 -0.879660 -1.189703

28 6 0 2.761054 0.284884 -0.404125

29 6 0 3.433172 -2.004935 -0.916910

30 6 0 1.987441 1.505985 -0.670238

31 6 0 3.696511 0.277348 0.649469

32 6 0 4.347066 -1.996242 0.139382

33 1 0 3.332767 -2.889082 -1.541849

34 6 0 0.969065 1.651835 -1.608803

35 1 0 2.401598 2.407568 -0.229630

36 6 0 4.476397 -0.843629 0.918764

37 1 0 3.791376 1.164454 1.270616

38 1 0 4.955571 -2.872230 0.346992

39 1 0 0.703941 0.813654 -2.249945

40 1 0 0.842897 2.622073 -2.079624

41 1 0 5.186675 -0.819489 1.741486

--------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.5966111 0.2037530 0.1788933

---------------------------------------------------------------------------------------

Zero-point correction= 0.347724 (Hartree/Particle)

Thermal correction to Energy= 0.366175

Thermal correction to Enthalpy= 0.367119

Thermal correction to Gibbs Free Energy= 0.299396

Sum of electronic and zero-point Energies= -828.076115

Sum of electronic and thermal Energies= -828.057664

Sum of electronic and thermal Enthalpies= -828.056720

Sum of electronic and thermal Free Energies= -828.124442

________________________________________________________________________

Page 243: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

94

Transition state = 1 TRX. Final optimised geometry with frequency calculation.

-----------------------------------------------------------------------------------------

E(RB+HF-LYP) = -828.425407511 A.U.

-----------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.449403 -1.813582 -1.321284

2 1 0 1.415180 -1.329097 -1.465735

3 1 0 -0.044935 -1.895500 -2.299069

4 1 0 0.602076 -2.828066 -0.940757

5 6 0 -0.419461 -1.023695 -0.376102

6 1 0 -1.344291 -1.500027 -0.062603

7 7 0 -0.523310 0.311097 -0.567115

8 8 0 0.578402 0.948391 -0.798136

9 6 0 -1.584406 1.098960 0.142855

10 1 0 -1.242317 1.182380 1.186047

11 6 0 -1.647981 2.508480 -0.455712

12 1 0 -2.359123 3.112448 0.116360

13 1 0 -0.662034 2.973576 -0.423932

14 1 0 -1.983238 2.477143 -1.497350

15 6 0 -2.933757 0.405630 0.122865

16 6 0 -3.593597 0.106474 1.320357

17 6 0 -3.566184 0.090039 -1.089645

18 6 0 -4.857437 -0.488276 1.312956

19 1 0 -3.115530 0.344861 2.267989

20 6 0 -4.824184 -0.509877 -1.100150

21 1 0 -3.064030 0.308254 -2.028509

22 6 0 -5.475715 -0.798602 0.102062

23 1 0 -5.354865 -0.710277 2.253340

24 1 0 -5.298501 -0.750829 -2.047858

25 1 0 -6.457860 -1.263473 0.092814

26 1 0 3.175287 -2.141217 0.536577

27 6 0 3.686332 -1.202662 0.342724

28 6 0 3.030795 0.017932 0.597004

29 6 0 4.992837 -1.231151 -0.139693

30 6 0 1.666039 0.106996 1.122216

31 6 0 3.749221 1.205730 0.356598

32 6 0 5.686364 -0.041998 -0.375953

33 1 0 5.474914 -2.187937 -0.324827

34 6 0 0.788521 -0.951441 1.337285

35 1 0 1.398963 1.080282 1.521633

36 6 0 5.055307 1.178518 -0.122580

37 1 0 3.257811 2.158958 0.534781

38 1 0 6.706608 -0.066379 -0.749261

39 1 0 1.146994 -1.975133 1.270593

40 1 0 -0.010142 -0.811710 2.062489

41 1 0 5.582406 2.112092 -0.302661

---------------------------------------------------------------------------------

Rotational constants (GHZ): 0.9704071 0.1509260 0.1454273

----------------------------------------------------------------------------------

Zero-point correction= 0.347710 (Hartree/Particle)

Thermal correction to Energy= 0.366140

Thermal correction to Enthalpy= 0.367084

Thermal correction to Gibbs Free Energy= 0.299370

Sum of electronic and zero-point Energies= -828.077698

Sum of electronic and thermal Energies= -828.059267

Sum of electronic and thermal Enthalpies= -828.058323

Sum of electronic and thermal Free Energies= -828.126037

----------------------------------------------------------------------------------

_______________________________________________________________________

Transition state = 1 TSN. Final optimized geometry with frequency calculation.

---------------------------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

--------------------------------------------------------------

E(RB+HF-LYP) = -828.418011518 A.U.

----------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

Page 244: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

95

1 6 0 0.853855 3.474039 -0.705384

2 1 0 1.549518 4.007039 -0.043348

3 1 0 -0.155887 3.826679 -0.491139

4 1 0 1.114673 3.724849 -1.738138

5 6 0 0.970737 1.980295 -0.475572

6 1 0 1.914423 1.538791 -0.785137

7 7 0 0.506453 1.499461 0.703564

8 8 0 -0.671240 1.887325 1.049251

9 6 0 1.110733 0.336899 1.457596

10 1 0 1.658349 0.818913 2.279128

11 6 0 0.013997 -0.523912 2.088295

12 1 0 0.483849 -1.281480 2.723987

13 1 0 -0.645217 0.098947 2.693450

14 1 0 -0.599794 -1.025187 1.336257

15 6 0 2.127568 -0.448048 0.645767

16 6 0 3.495069 -0.189302 0.811931

17 6 0 1.743482 -1.445938 -0.262445

18 6 0 4.455896 -0.896456 0.086901

19 1 0 3.809800 0.573101 1.521508

20 6 0 2.700621 -2.154071 -0.988836

21 1 0 0.691335 -1.676749 -0.397250

22 6 0 4.059917 -1.880801 -0.818753

23 1 0 5.510857 -0.680687 0.233779

24 1 0 2.384410 -2.925871 -1.685766

25 1 0 4.803860 -2.435718 -1.383961

26 1 0 -1.316168 -1.335225 -1.672996

27 6 0 -2.143993 -1.152216 -0.994070

28 6 0 -2.442545 0.167922 -0.596640

29 6 0 -2.923925 -2.229241 -0.571912

30 6 0 -1.672320 1.328749 -1.036473

31 6 0 -3.577431 0.355856 0.221691

32 6 0 -4.033896 -2.020782 0.247775

33 1 0 -2.671217 -3.234594 -0.900340

34 6 0 -0.461146 1.302800 -1.736845

35 1 0 -2.189605 2.279675 -0.953199

36 6 0 -4.357763 -0.716564 0.637388

37 1 0 -3.826546 1.363744 0.544059

38 1 0 -4.644819 -2.859311 0.570666

39 1 0 -0.045090 0.342942 -2.035179

40 1 0 -0.292458 2.087905 -2.469344

41 1 0 -5.222670 -0.537984 1.271515

--------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.5229704 0.2426605 0.2014310

--------------------------------------------------------------------------------------

Zero-point correction= 0.348140 (Hartree/Particle)

Thermal correction to Energy= 0.366400

Thermal correction to Enthalpy= 0.367344

Thermal correction to Gibbs Free Energy= 0.300950

Sum of electronic and zero-point Energies= -828.069872

Sum of electronic and thermal Energies= -828.051612

Sum of electronic and thermal Enthalpies= -828.050668

Sum of electronic and thermal Free Energies= -828.117062

--------------------------------------------------------------------------------

________________________________________________________________________

Transition state = 1 TSX. Final optimized geometry with frequency calculation.

----------------------------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

-------------------------------------------------------------

E(RB+HF-LYP) = -828.420823447 A.U.

------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.360966 -2.129018 -0.359165

2 1 0 -0.515995 -2.862580 0.437864

3 1 0 0.183354 -2.628781 -1.171846

4 1 0 -1.327352 -1.801371 -0.743119

5 6 0 0.449550 -0.957935 0.148149

6 1 0 1.381537 -1.216641 0.644845

7 7 0 0.545214 0.130753 -0.652026

8 8 0 -0.555668 0.584946 -1.152707

9 6 0 1.671985 1.125179 -0.580089

10 1 0 1.711590 1.491585 -1.611847

Page 245: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

96

11 6 0 1.308438 2.321013 0.305161

12 1 0 2.077658 3.095158 0.218599

13 1 0 0.357217 2.733603 -0.036584

14 1 0 1.211143 2.051957 1.361207

15 6 0 3.002611 0.454525 -0.279302

16 6 0 3.601163 -0.331220 -1.276741

17 6 0 3.661823 0.585784 0.948896

18 6 0 4.818677 -0.970906 -1.053789

19 1 0 3.101667 -0.439245 -2.236921

20 6 0 4.884203 -0.052432 1.175617

21 1 0 3.230083 1.194219 1.737545

22 6 0 5.465460 -0.832887 0.177063

23 1 0 5.265716 -1.572062 -1.841068

24 1 0 5.381815 0.065428 2.134614

25 1 0 6.417237 -1.326771 0.353251

26 1 0 -3.141934 -1.708548 1.386661

27 6 0 -3.664219 -0.983444 0.769423

28 6 0 -3.046365 0.243485 0.455519

29 6 0 -4.948552 -1.279446 0.318672

30 6 0 -1.709364 0.616317 0.917904

31 6 0 -3.781180 1.161838 -0.321353

32 6 0 -5.658425 -0.356500 -0.452872

33 1 0 -5.401259 -2.233019 0.579194

34 6 0 -0.801546 -0.206744 1.587951

35 1 0 -1.492450 1.677167 0.863907

36 6 0 -5.065555 0.868815 -0.768768

37 1 0 -3.318398 2.108971 -0.586870

38 1 0 -6.661693 -0.587727 -0.800484

39 1 0 -1.139804 -1.162828 1.979742

40 1 0 -0.052312 0.271813 2.213274

41 1 0 -5.605399 1.596285 -1.369794

---------------------------------------------------------------------

Rotational constants (GHZ): 0.9961858 0.1510407 0.1459870

--------------------------------------------------------------------------------

Zero-point correction= 0.348140 (Hartree/Particle)

Thermal correction to Energy= 0.366480

Thermal correction to Enthalpy= 0.367424

Thermal correction to Gibbs Free Energy= 0.299345

Sum of electronic and zero-point Energies= -828.072683

Sum of electronic and thermal Energies= -828.054343

Sum of electronic and thermal Enthalpies= -828.053399

Sum of electronic and thermal Free Energies= -828.121478

--------------------------------------------------------------------------------

________________________________________________________________________

________________________________________________________________________

Molecule = E2. Final optimization geometry with frequency calculation.

-------------------------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

-----------------------------------------------------

E(RB+HF-LYP) = -193.108432428 A.U.

----------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.511830 -0.529368 -0.000005

2 1 0 -1.043184 -1.508005 0.000011

3 1 0 -2.597648 -0.492710 -0.000018

4 6 0 -0.781877 0.584088 -0.000008

5 1 0 -1.264671 1.561721 -0.000023

6 6 0 0.718437 0.630946 0.000010

7 1 0 1.058261 1.200952 -0.883973

8 1 0 1.058231 1.200951 0.884010

9 8 0 1.252798 -0.683462 0.000030

10 1 0 2.218249 -0.609210 -0.000224

-----------------------------------------------------------------------------------------

Rotational constants (GHZ): 17.1606430 5.9856185 4.5639885

-----------------------------------------------------------------------------------------

Zero-point correction= 0.084998 (Hartree/Particle)

Thermal correction to Energy= 0.090004

Thermal correction to Enthalpy= 0.090948

Thermal correction to Gibbs Free Energy= 0.057841

Page 246: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

97

Sum of electronic and zero-point Energies= -193.023435

Sum of electronic and thermal Energies= -193.018428

Sum of electronic and thermal Enthalpies= -193.017484

Sum of electronic and thermal Free Energies= -193.050592

----------------------------------------------------------------------------

________________________________________________________________________

Molecule = N2. Final optimization geometry frequency calculation.

-------------------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------------------

E(RB+HF-LYP) = -479.480661271 A.U.

---------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.066102 -0.659969 0.420240

2 1 0 -1.205010 -1.711466 0.154278

3 6 0 0.380561 -0.279463 0.155325

4 6 0 0.814658 1.052840 0.211123

5 6 0 1.313959 -1.286775 -0.117249

6 6 0 2.157156 1.362196 -0.005395

7 1 0 0.089979 1.838230 0.396500

8 6 0 2.659405 -0.976765 -0.322917

9 1 0 0.987938 -2.323969 -0.165133

10 6 0 3.084079 0.350767 -0.268181

11 1 0 2.480448 2.399167 0.032328

12 1 0 3.371049 -1.771540 -0.530348

13 1 0 4.129996 0.596724 -0.431392

14 6 0 -1.503393 -0.438175 1.869233

15 1 0 -2.534868 -0.774861 2.018880

16 1 0 -0.846856 -1.006779 2.534648

17 1 0 -1.443268 0.620818 2.125482

18 7 0 -1.994864 0.124344 -0.486507

19 6 0 -2.503115 -0.462152 -1.536112

20 1 0 -3.147035 0.124549 -2.176678

21 1 0 -2.258943 -1.494024 -1.741519

22 8 0 -2.210330 1.332215 -0.155988

---------------------------------------------------------------------

Rotational constants (GHZ): 2.1416719 0.7223104 0.6921257

--------------------------------------------------------------------------------

Zero-point correction= 0.183894 (Hartree/Particle)

Thermal correction to Energy= 0.193865

Thermal correction to Enthalpy= 0.194809

Thermal correction to Gibbs Free Energy= 0.147835

Sum of electronic and zero-point Energies= -479.296767

Sum of electronic and thermal Energies= -479.286796

Sum of electronic and thermal Enthalpies= -479.285852

Sum of electronic and thermal Free Energies= -479.332826

-------------------------------------------------------------------------------

________________________________________________________________________

Molecule = 2 PRN (PR). Final optimization geometry with frequency calculation.

--------------------------------------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

------------------------------------------------------

E(RB+HF-LYP) = -672.639134109

-----------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -2.238820 -1.027039 1.197284

2 1 0 -2.426553 -1.941867 0.628526

3 1 0 -2.632266 -1.175402 2.206785

4 6 0 -2.876781 0.190420 0.481631

5 1 0 -3.606734 0.708183 1.117428

6 6 0 -3.520423 -0.168626 -0.863423

7 1 0 -3.872225 0.749602 -1.356797

8 1 0 5.126953 -1.654210 -0.386546

9 6 0 4.201081 -1.095895 -0.275943

Page 247: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

98

10 6 0 3.138527 -1.315220 -1.156266

11 6 0 4.064612 -0.158000 0.747686

12 6 0 1.951269 -0.596977 -1.017609

13 1 0 3.235554 -2.046795 -1.954464

14 6 0 2.871470 0.553644 0.890027

15 1 0 4.883549 0.017489 1.440545

16 6 0 1.803930 0.347197 0.009220

17 1 0 1.122279 -0.772993 -1.696832

18 1 0 2.768498 1.279061 1.694128

19 6 0 0.529549 1.168841 0.138408

20 1 0 0.540088 1.686451 1.114236

21 6 0 0.433421 2.226971 -0.971750

22 7 0 -0.630474 0.266872 0.078095

23 1 0 -0.460746 2.840762 -0.842035

24 1 0 1.316530 2.873672 -0.944971

25 1 0 0.387372 1.746515 -1.954630

26 6 0 -0.748998 -0.652640 1.221817

27 8 0 -1.810456 1.123912 0.286967

28 1 0 -0.483235 -0.150220 2.166854

29 1 0 -0.083509 -1.505744 1.073914

30 1 0 -2.764674 -0.627170 -1.506883

31 8 0 -4.563608 -1.127887 -0.723905

32 1 0 -5.298085 -0.699709 -0.256905

---------------------------------------------------------------------

Rotational constants (GHZ): 1.3621612 0.2934313 0.2814692

-----------------------------------------------------------------------------------

Zero-point correction= 0.276010 (Hartree/Particle)

Thermal correction to Energy= 0.290252

Thermal correction to Enthalpy= 0.291196

Thermal correction to Gibbs Free Energy= 0.233869

Sum of electronic and zero-point Energies= -672.363124

Sum of electronic and thermal Energies= -672.348882

Sum of electronic and thermal Enthalpies= -672.347938

Sum of electronic and thermal Free Energies= -672.405265

------------------------------------------------------------------------------

________________________________________________________________________

Molecule = 2 PRX (PR). Final optimized geometry with frequency calculation.

-----------------------------------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

----------------------------------------------------

E(RB+HF-LYP) = -672.639134131 A.U.

------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -2.238814 -1.026625 1.197981

2 1 0 -2.427062 -1.941798 0.629972

3 1 0 -2.631871 -1.173999 2.207773

4 6 0 -2.876779 0.190573 0.481746

5 1 0 -3.607068 0.708320 1.117142

6 6 0 -3.519793 -0.169075 -0.863508

7 1 0 -3.871916 0.748893 -1.357137

8 1 0 -2.763418 -0.627187 -1.506544

9 8 0 -4.562561 -1.128840 -0.724394

10 1 0 -5.297441 -0.701002 -0.257764

11 1 0 5.126427 -1.654748 -0.386322

12 6 0 4.200674 -1.096203 -0.275824

13 6 0 3.138374 -1.314863 -1.156643

14 6 0 4.064110 -0.158700 0.748142

15 6 0 1.951264 -0.596359 -1.018097

16 1 0 3.235513 -2.046120 -1.955126

17 6 0 2.871097 0.553223 0.890361

18 1 0 4.882860 0.016279 1.441357

19 6 0 1.803822 0.347418 0.009101

20 1 0 1.122463 -0.771888 -1.697680

21 1 0 2.768068 1.278378 1.694694

22 6 0 0.529470 1.169157 0.138252

23 1 0 0.540050 1.686782 1.114052

24 6 0 0.433220 2.227217 -0.971951

25 7 0 -0.630570 0.267114 0.078069

26 1 0 -0.461014 2.840902 -0.842206

27 1 0 1.316262 2.874017 -0.945230

Page 248: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

99

28 1 0 0.387175 1.746720 -1.954809

29 6 0 -0.748869 -0.652462 1.221811

30 8 0 -1.810623 1.124178 0.287251

31 1 0 -0.083635 -1.505695 1.073510

32 1 0 -0.482588 -0.150166 2.166748

---------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.3616664 0.2934772 0.2815193

----------------------------------------------------------------------------------------

Zero-point correction= 0.276007 (Hartree/Particle)

Thermal correction to Energy= 0.290250

Thermal correction to Enthalpy= 0.291195

Thermal correction to Gibbs Free Energy= 0.233866

Sum of electronic and zero-point Energies= -672.363127

Sum of electronic and thermal Energies= -672.348884

Sum of electronic and thermal Enthalpies= -672.347940

Sum of electronic and thermal Free Energies= -672.405268

--------------------------------------------------------------------------------

_______________________________________________________________________

Molecule = 2 PSN (PS). Final optimization geometry with frequency calculation.

--------------------------------------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

-------------------------------------------------

E(RB+HF-LYP) = -672.636684289 A.U.

-----------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.040748 0.404095 0.535272

2 1 0 0.441408 1.082024 -0.185618

3 6 0 -1.506081 0.244483 0.159255

4 6 0 -2.306433 -0.733431 0.769075

5 6 0 -2.094644 1.103329 -0.776752

6 6 0 -3.659346 -0.844250 0.449764

7 1 0 -1.854190 -1.412890 1.485022

8 6 0 -3.451104 0.999281 -1.092718

9 1 0 -1.485669 1.865626 -1.258501

10 6 0 -4.237694 0.023307 -0.480389

11 1 0 -4.264993 -1.609368 0.929050

12 1 0 -3.890089 1.677697 -1.819917

13 1 0 -5.292771 -0.063038 -0.726793

14 6 0 0.108096 1.030491 1.928237

15 1 0 1.162182 1.196687 2.157220

16 1 0 -0.417179 1.990664 1.958424

17 1 0 -0.320388 0.374151 2.692988

18 7 0 0.602496 -0.937912 0.528434

19 6 0 0.728248 -1.545195 -0.802544

20 1 0 0.865409 -2.624787 -0.672584

21 1 0 -0.182138 -1.376804 -1.380793

22 8 0 1.978106 -0.808802 0.960519

23 1 0 2.785354 1.849488 -1.315866

24 8 0 2.937859 1.771645 -0.362506

25 6 0 3.683110 0.583785 -0.128588

26 6 0 2.869611 -0.714131 -0.180155

27 1 0 4.099503 0.686021 0.878009

28 1 0 4.528835 0.500117 -0.830368

29 6 0 1.988330 -0.918201 -1.421237

30 1 0 3.583318 -1.545329 -0.077667

31 1 0 1.747903 0.035209 -1.904321

32 1 0 2.460247 -1.564205 -2.166748

---------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.3006881 0.3379495 0.3288958

---------------------------------------------------------------------------------------

Zero-point correction= 0.276015 (Hartree/Particle)

Thermal correction to Energy= 0.290145

Thermal correction to Enthalpy= 0.291089

Thermal correction to Gibbs Free Energy= 0.234323

Sum of electronic and zero-point Energies= -672.360669

Sum of electronic and thermal Energies= -672.346539

Sum of electronic and thermal Enthalpies= -672.345595

Sum of electronic and thermal Free Energies= -672.402362

------------------------------------------------------------------------------

Page 249: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

100

Molecule = 2PSX (PS). Final potimized geometry with frequency calculation.

---------------------------------------------------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------

E(RB+HF-LYP) = -672.636686128 A.U.

--------------------------------------------------

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 1.976579 -0.857207 -1.455912

2 1 0 1.726194 0.114725 -1.894767

3 1 0 2.446304 -1.467073 -2.232673

4 6 0 2.865616 -0.702796 -0.213177

5 1 0 3.582710 -1.535088 -0.151750

6 6 0 3.675522 0.594344 -0.107624

7 1 0 4.076124 0.662872 0.908138

8 1 0 4.532239 0.535782 -0.798635

9 8 0 2.932922 1.789332 -0.311643

10 1 0 2.780572 1.890711 -1.262844

11 1 0 -5.284535 -0.023703 -0.745561

12 6 0 -4.230634 0.049750 -0.490140

13 6 0 -3.662760 -0.847662 0.417962

14 6 0 -3.435073 1.038929 -1.068631

15 6 0 -2.311458 -0.753253 0.749040

16 1 0 -4.275367 -1.623227 0.870869

17 6 0 -2.080194 1.126549 -0.741032

18 1 0 -3.865776 1.740684 -1.778429

19 6 0 -1.502140 0.237903 0.173426

20 1 0 -1.867647 -1.455884 1.447764

21 1 0 -1.464281 1.899369 -1.196462

22 6 0 -0.038350 0.377470 0.562538

23 1 0 0.448459 1.085914 -0.124936

24 6 0 0.105614 0.939992 1.983140

25 7 0 0.603395 -0.963992 0.499025

26 1 0 1.159430 1.084913 2.227760

27 1 0 -0.410141 1.903318 2.052047

28 1 0 -0.335008 0.254994 2.715130

29 6 0 0.725356 -1.518267 -0.855268

30 8 0 1.981432 -0.851493 0.928327

31 1 0 -0.189849 -1.337081 -1.421868

32 1 0 0.873510 -2.600512 -0.766368

---------------------------------------------------------------------

Rotational constants (GHZ): 1.2947282 0.3384939 0.3299917

--------------------------------------------------------------------------------------------------------------

Zero-point correction= 0.276046 (Hartree/Particle)

Thermal correction to Energy= 0.290157

Thermal correction to Enthalpy= 0.291101

Thermal correction to Gibbs Free Energy= 0.234434

Sum of electronic and zero-point Energies= -672.360640

Sum of electronic and thermal Energies= -672.346529

Sum of electronic and thermal Enthalpies= -672.345585

Sum of electronic and thermal Free Energies= -672.402253

-------------------------------------------------------------------------------

________________________________________________________________________

Transition state = 2TRN. Final optimized geometry with frequency calculation.

-----------------------------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

--------------------------------------------------------------

E(RB+HF-LYP) = -672.564967113 A.U.

-----------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.779910 0.576650 -1.703294

2 1 0 -1.039112 1.341129 -1.483341

3 1 0 -1.991734 0.454191 -2.761739

4 6 0 -2.795616 0.325444 -0.781702

5 1 0 -3.684486 -0.199730 -1.121314

6 6 0 -3.004522 1.111979 0.492471

7 1 0 -3.951272 1.674734 0.404544

8 1 0 -3.113115 0.447763 1.353115

9 8 0 -1.941922 2.002750 0.829239

Page 250: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

101

10 1 0 -1.858869 2.636407 0.098787

11 1 0 4.472131 1.750121 -0.660654

12 6 0 3.619815 1.137325 -0.379213

13 6 0 2.412316 1.737844 -0.013159

14 6 0 3.725760 -0.253282 -0.375766

15 6 0 1.316340 0.957231 0.353579

16 1 0 2.325662 2.821536 -0.007710

17 6 0 2.627664 -1.034483 -0.009418

18 1 0 4.661204 -0.731853 -0.653595

19 6 0 1.411609 -0.443423 0.357386

20 1 0 0.381628 1.431931 0.638035

21 1 0 2.717167 -2.118881 -0.002734

22 6 0 0.242242 -1.322348 0.770370

23 1 0 0.630049 -2.342374 0.892498

24 6 0 -0.393719 -0.911127 2.100083

25 7 0 -0.811496 -1.461412 -0.304656

26 1 0 -1.202391 -1.596721 2.358071

27 1 0 0.373748 -0.950934 2.879938

28 1 0 -0.797193 0.103071 2.060582

29 6 0 -0.614539 -1.144342 -1.593322

30 8 0 -2.057188 -1.538918 0.049539

31 1 0 -1.260366 -1.666940 -2.288018

32 1 0 0.405652 -0.959039 -1.912178

--------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.9770280 0.4177893 0.3789901

---------------------------------------------------------------------------------------

Zero-point correction= 0.272362 (Hartree/Particle)

Thermal correction to Energy= 0.286791

Thermal correction to Enthalpy= 0.287735

Thermal correction to Gibbs Free Energy= 0.231042

Sum of electronic and zero-point Energies= -672.292605

Sum of electronic and thermal Energies= -672.278176

Sum of electronic and thermal Enthalpies= -672.277232

Sum of electronic and thermal Free Energies= -672.333925

-----------------------------------------------------------------------------

________________________________________________________________________

Transition state = 2 TRX. Final optimized geometry with frequency calculation.

-----------------------------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

-------------------------------------------------------------

E(RB+HF-LYP) = -672.571197863 A.U.

-----------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -2.120684 -1.264115 0.786335

2 1 0 -2.464614 -2.140205 0.244787

3 1 0 -1.421376 -1.466656 1.593727

4 6 0 -2.927363 -0.141431 0.849278

5 1 0 -2.814144 0.567086 1.663802

6 6 0 -4.182092 0.009275 0.022795

7 1 0 -5.040724 0.203159 0.689213

8 1 0 -4.082893 0.875735 -0.637952

9 8 0 -4.449618 -1.094261 -0.837682

10 1 0 -4.651414 -1.856004 -0.271943

11 1 0 5.202067 -1.511928 -0.476291

12 6 0 4.253019 -1.018410 -0.285014

13 6 0 3.642782 -0.258101 -1.286295

14 6 0 3.635984 -1.141708 0.959601

15 6 0 2.427377 0.378730 -1.041254

16 1 0 4.115869 -0.159969 -2.259817

17 6 0 2.414114 -0.508877 1.199509

18 1 0 4.101134 -1.732447 1.744278

19 6 0 1.797039 0.261288 0.207158

20 1 0 1.956889 0.963797 -1.826919

21 1 0 1.935581 -0.611003 2.171063

22 6 0 0.493581 0.980827 0.495891

23 1 0 0.146569 0.701884 1.502094

24 6 0 0.640759 2.505253 0.441750

25 7 0 -0.606996 0.562526 -0.433257

26 1 0 -0.321772 2.978392 0.641066

27 1 0 1.370965 2.826822 1.190857

28 1 0 0.991377 2.831835 -0.542629

Page 251: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

102

29 6 0 -0.774129 -0.723021 -0.772059

30 8 0 -1.693158 1.267229 -0.359775

31 1 0 -1.530105 -0.900460 -1.525766

32 1 0 0.095441 -1.369722 -0.753286

--------------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.3299882 0.2878460 0.2715446

----------------------------------------------------------------------------------------------

Zero-point correction= 0.271580 (Hartree/Particle)

Thermal correction to Energy= 0.286397

Thermal correction to Enthalpy= 0.287341

Thermal correction to Gibbs Free Energy= 0.228188

Sum of electronic and zero-point Energies= -672.299618

Sum of electronic and thermal Energies= -672.284801

Sum of electronic and thermal Enthalpies= -672.283857

Sum of electronic and thermal Free Energies= -672.343009

-----------------------------------------------------------------------------

________________________________________________________________________

Transition state = 2TSN. Final optimised geometry with frequency calculation.

---------------------------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

-----------------------------------------------------------------

E(RB+HF-LYP) = -672.570974478 A.U.

------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.049623 -0.428486 0.755450

2 1 0 0.528331 0.480251 0.966375

3 6 0 -1.452255 -0.044263 0.326091

4 6 0 -2.390786 -1.013019 -0.061986

5 6 0 -1.846245 1.299044 0.345011

6 6 0 -3.686395 -0.645046 -0.421582

7 1 0 -2.100780 -2.060116 -0.089707

8 6 0 -3.146043 1.670228 -0.006485

9 1 0 -1.128124 2.058937 0.644374

10 6 0 -4.069430 0.698637 -0.392368

11 1 0 -4.399859 -1.407916 -0.722259

12 1 0 -3.434085 2.717917 0.019515

13 1 0 -5.080874 0.984111 -0.668926

14 6 0 -0.043528 -1.315529 2.005753

15 1 0 0.981135 -1.586632 2.264756

16 1 0 -0.495939 -0.769860 2.839510

17 1 0 -0.616818 -2.234635 1.844451

18 7 0 0.711161 -1.128800 -0.335921

19 6 0 0.590847 -0.763667 -1.617659

20 1 0 1.082529 -1.420388 -2.322810

21 1 0 -0.329251 -0.282135 -1.926930

22 8 0 1.880264 -1.581169 0.000504

23 1 0 2.580617 2.451463 0.353066

24 8 0 2.539723 1.733867 1.004289

25 6 0 3.449020 0.723043 0.575687

26 6 0 3.109772 0.078749 -0.749037

27 1 0 3.464820 -0.021332 1.374775

28 1 0 4.469487 1.142531 0.508706

29 6 0 2.233726 0.621025 -1.677017

30 1 0 3.843038 -0.649859 -1.084448

31 1 0 1.698771 1.538415 -1.442292

32 1 0 2.404625 0.454979 -2.736207

---------------------------------------------------------------------------------------

Rotational constants (GHZ): 1.0976850 0.3533219 0.3373883

----------------------------------------------------------------------------------------

Zero-point correction= 0.271905 (Hartree/Particle)

Thermal correction to Energy= 0.286589

Thermal correction to Enthalpy= 0.287533

Thermal correction to Gibbs Free Energy= 0.229450

Sum of electronic and zero-point Energies= -672.299070

Sum of electronic and thermal Energies= -672.284385

Sum of electronic and thermal Enthalpies= -672.283441

Sum of electronic and thermal Free Energies= -672.341524

---------------------------------------------------------------------------------

________________________________________________________________________

Page 252: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

103

Transition state = 2TSX. Final optimized geometry with frequency calculation.

----------------------------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

-------------------------------------------------------------

E(RB+HF-LYP) = -672.570343926 A.U.

--------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.493065 -0.997640 1.181303

2 1 0 -2.334914 -1.090155 1.860327

3 1 0 -0.519887 -1.242156 1.597470

4 6 0 -1.707234 -1.200884 -0.171724

5 1 0 -0.902106 -1.546104 -0.810210

6 6 0 -3.079556 -1.259211 -0.773793

7 1 0 -3.099618 -0.637613 -1.680619

8 1 0 -3.301887 -2.298495 -1.080502

9 8 0 -4.043179 -0.803907 0.176154

10 1 0 -4.882310 -0.689157 -0.292499

11 1 0 3.864913 -2.655629 -0.233767

12 6 0 3.219767 -1.785576 -0.144639

13 6 0 2.442793 -1.372775 -1.229560

14 6 0 3.164501 -1.072291 1.052960

15 6 0 1.617773 -0.252826 -1.121926

16 1 0 2.481183 -1.923715 -2.165897

17 6 0 2.333843 0.044769 1.161042

18 1 0 3.767003 -1.382189 1.902842

19 6 0 1.551859 0.469446 0.079399

20 1 0 1.006529 0.056129 -1.962260

21 1 0 2.297377 0.597365 2.097808

22 6 0 0.672019 1.701715 0.220034

23 1 0 0.841774 2.134491 1.211508

24 6 0 0.952220 2.771524 -0.841122

25 7 0 -0.785910 1.376242 0.176746

26 1 0 0.366753 3.673683 -0.634551

27 1 0 2.015299 3.031427 -0.844055

28 1 0 0.673091 2.405474 -1.832098

29 6 0 -1.476100 1.088791 1.290309

30 8 0 -1.251984 0.876638 -0.926558

31 1 0 -2.552651 1.120467 1.184836

32 1 0 -1.050795 1.420397 2.233975

----------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.9209061 0.4100940 0.3511866

-----------------------------------------------------------------------------------------

Zero-point correction= 0.271475 (Hartree/Particle)

Thermal correction to Energy= 0.286379

Thermal correction to Enthalpy= 0.287323

Thermal correction to Gibbs Free Energy= 0.228978

Sum of electronic and zero-point Energies= -672.298869

Sum of electronic and thermal Energies= -672.283965

Sum of electronic and thermal Enthalpies= -672.283021

Sum of electronic and thermal Free Energies= -672.341366

--------------------------------------------------------------------------------

_______________________________________________________________________

The image and IRC plot of the Transition states for 1st reactions (Scheme-1):

Fig. 5a. 1TSX image and the corresponding IRC plot

Page 253: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

104

Fig. 5b. 1TSN image and the corresponding IRC plot

Fig. 5c. 1TRX image and the corresponding IRC plot

Fig. 5d. 1TRN image and the corresponding IRC plot

The image and IRC plot of the Transition states for 2nd reaction (Scheme-2):

Fig. 5e. 2TSX image and the corresponding IRC plot

Fig. 5f. 2TSN image and the corresponding IRC plot

Page 254: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 3

105

Fig. 5g. 2TRX image and the corresponding IRC plot

Fig. 5h. 2TRN image and the corresponding IRC plot

Page 255: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

Page 256: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

106

1 trx nbo:

Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9142 0.9196 1.4421 0.0063 0.0178 0.0610 0.0012 0.0030

2. H 0.9142 0.0000 0.0003 0.0042 0.0102 0.0013 0.0004 0.0001 0.0000

3. H 0.9196 0.0003 0.0000 0.0033 0.0020 0.0089 0.0019 0.0000 0.0001

4. C 1.4421 0.0042 0.0033 0.0000 0.8877 1.1516 0.0524 0.0007 0.0034

5. H 0.0063 0.0102 0.0020 0.8877 0.0000 0.0036 0.0210 0.0000 0.0001

6. C 0.0178 0.0013 0.0089 1.1516 0.0036 0.0000 2.8061 0.0001 0.0001

7. N 0.0610 0.0004 0.0019 0.0524 0.0210 2.8061 0.0000 0.0001 0.0006

8. C 0.0012 0.0001 0.0000 0.0007 0.0000 0.0001 0.0001 0.0000 0.9215

9. H 0.0030 0.0000 0.0001 0.0034 0.0001 0.0001 0.0006 0.9215 0.0000

10. H 0.0004 0.0000 0.0000 0.0005 0.0000 0.0000 0.0002 0.8920 0.0006

11. H 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9210 0.0003

12. N 0.0422 0.0007 0.0008 0.0388 0.0006 0.0018 0.0075 0.9279 0.0049

13. N 0.4342 0.0026 0.0017 0.0497 0.0010 0.0058 0.0134 0.0308 0.0024

14. C 0.0047 0.0002 0.0007 0.0023 0.0001 0.0001 0.0005 0.0043 0.0002

15. O 0.0198 0.0002 0.0005 0.0031 0.0001 0.0007 0.0014 0.0145 0.0006

16. C 0.0018 0.0004 0.0001 0.0004 0.0000 0.0000 0.0000 0.0007 0.0001

17. H 0.0003 0.0001 0.0003 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000

18. H 0.0002 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

19. H 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0025 0.0026 0.0026 0.2137 0.0004 0.0053 0.0312 0.0185 0.0104

21. H 0.0015 0.0000 0.0000 0.0013 0.0000 0.0013 0.0012 0.0135 0.0002

22. C 0.0005 0.0000 0.0000 0.0011 0.0001 0.0006 0.0004 0.0013 0.0003

23. C 0.0001 0.0003 0.0003 0.0121 0.0002 0.0003 0.0024 0.0022 0.0012

24. C 0.0003 0.0004 0.0003 0.0170 0.0000 0.0003 0.0047 0.0005 0.0006

25. C 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0002 0.0011 0.0001

26. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0010 0.0004

27. C 0.0001 0.0000 0.0000 0.0003 0.0000 0.0000 0.0002 0.0006 0.0000

28. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0003 0.0000 0.0000

29. C 0.0002 0.0003 0.0003 0.0115 0.0000 0.0001 0.0027 0.0003 0.0006

30. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

31. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

32. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0004 0.0004 0.0422 0.4342 0.0047 0.0198 0.0018 0.0003 0.0002

2. H 0.0000 0.0000 0.0007 0.0026 0.0002 0.0002 0.0004 0.0001 0.0004

3. H 0.0000 0.0000 0.0008 0.0017 0.0007 0.0005 0.0001 0.0003 0.0000

4. C 0.0005 0.0000 0.0388 0.0497 0.0023 0.0031 0.0004 0.0001 0.0000

5. H 0.0000 0.0000 0.0006 0.0010 0.0001 0.0001 0.0000 0.0000 0.0000

6. C 0.0000 0.0000 0.0018 0.0058 0.0001 0.0007 0.0000 0.0000 0.0000

7. N 0.0002 0.0000 0.0075 0.0134 0.0005 0.0014 0.0000 0.0000 0.0000

8. C 0.8920 0.9210 0.9279 0.0308 0.0043 0.0145 0.0007 0.0002 0.0001

9. H 0.0006 0.0003 0.0049 0.0024 0.0002 0.0006 0.0001 0.0000 0.0000

10. H 0.0000 0.0012 0.0019 0.0030 0.0009 0.0150 0.0009 0.0000 0.0000

11. H 0.0012 0.0000 0.0018 0.0092 0.0008 0.0004 0.0002 0.0000 0.0000

12. N 0.0019 0.0018 0.0000 1.1141 0.0098 0.0073 0.0137 0.0001 0.0002

13. N 0.0030 0.0092 1.1141 0.0000 1.1850 0.1561 0.0127 0.0046 0.0015

14. C 0.0009 0.0008 0.0098 1.1850 0.0000 1.6570 0.9934 0.0042 0.0040

15. O 0.0150 0.0004 0.0073 0.1561 1.6570 0.0000 0.0544 0.0138 0.0150

16. C 0.0009 0.0002 0.0137 0.0127 0.9934 0.0544 0.0000 0.9156 0.9168

17. H 0.0000 0.0000 0.0001 0.0046 0.0042 0.0138 0.9156 0.0000 0.0008

18. H 0.0000 0.0000 0.0002 0.0015 0.0040 0.0150 0.9168 0.0008 0.0000

19. H 0.0000 0.0000 0.0007 0.0066 0.0027 0.0032 0.9183 0.0008 0.0007

20. C 0.0072 0.0013 1.3747 0.1172 0.0209 0.0185 0.0007 0.0006 0.0002

21. H 0.0002 0.0002 0.0030 0.0038 0.0003 0.0001 0.0002 0.0000 0.0000

22. C 0.0003 0.0008 0.0128 0.0112 0.0007 0.0004 0.0004 0.0000 0.0000

23. C 0.0008 0.0031 0.0183 0.0109 0.0012 0.0024 0.0001 0.0001 0.0000

24. C 0.0003 0.0001 0.0235 0.0119 0.0015 0.0024 0.0001 0.0001 0.0000

25. C 0.0000 0.0001 0.0011 0.0003 0.0000 0.0001 0.0000 0.0000 0.0000

26. H 0.0001 0.0003 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

27. C 0.0001 0.0001 0.0003 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000

28. H 0.0000 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

29. C 0.0003 0.0003 0.0127 0.0093 0.0011 0.0021 0.0000 0.0001 0.0000

30. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

31. H 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

32. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0005 0.0025 0.0015 0.0005 0.0001 0.0003 0.0000 0.0000 0.0001

2. H 0.0000 0.0026 0.0000 0.0000 0.0003 0.0004 0.0000 0.0000 0.0000

3. H 0.0000 0.0026 0.0000 0.0000 0.0003 0.0003 0.0000 0.0000 0.0000

4. C 0.0000 0.2137 0.0013 0.0011 0.0121 0.0170 0.0002 0.0001 0.0003

5. H 0.0000 0.0004 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000

Page 257: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

107

6. C 0.0000 0.0053 0.0013 0.0006 0.0003 0.0003 0.0001 0.0000 0.0000

7. N 0.0000 0.0312 0.0012 0.0004 0.0024 0.0047 0.0002 0.0000 0.0002

8. C 0.0000 0.0185 0.0135 0.0013 0.0022 0.0005 0.0011 0.0010 0.0006

9. H 0.0000 0.0104 0.0002 0.0003 0.0012 0.0006 0.0001 0.0004 0.0000

10. H 0.0000 0.0072 0.0002 0.0003 0.0008 0.0003 0.0000 0.0001 0.0001

11. H 0.0000 0.0013 0.0002 0.0008 0.0031 0.0001 0.0001 0.0003 0.0001

12. N 0.0007 1.3747 0.0030 0.0128 0.0183 0.0235 0.0011 0.0002 0.0003

13. N 0.0066 0.1172 0.0038 0.0112 0.0109 0.0119 0.0003 0.0002 0.0004

14. C 0.0027 0.0209 0.0003 0.0007 0.0012 0.0015 0.0000 0.0000 0.0001

15. O 0.0032 0.0185 0.0001 0.0004 0.0024 0.0024 0.0001 0.0000 0.0000

16. C 0.9183 0.0007 0.0002 0.0004 0.0001 0.0001 0.0000 0.0000 0.0000

17. H 0.0008 0.0006 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

18. H 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19. H 0.0000 0.0002 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0002 0.0000 0.8898 1.1214 0.0109 0.0147 0.0105 0.0011 0.0088

21. H 0.0000 0.8898 0.0000 0.0033 0.0069 0.0016 0.0001 0.0000 0.0003

22. C 0.0001 1.1214 0.0033 0.0000 1.3467 1.3504 0.0118 0.0030 0.0107

23. C 0.0000 0.0109 0.0069 1.3467 0.0000 0.0138 1.4608 0.9146 0.1042

24. C 0.0000 0.0147 0.0016 1.3504 0.0138 0.0000 0.1015 0.0085 1.4531

25. C 0.0000 0.0105 0.0001 0.0118 1.4608 0.1015 0.0000 0.0040 0.0109

26. H 0.0000 0.0011 0.0000 0.0030 0.9146 0.0085 0.0040 0.0000 0.0003

27. C 0.0000 0.0088 0.0003 0.0107 0.1042 1.4531 0.0109 0.0003 0.0000

28. H 0.0000 0.0017 0.0005 0.0028 0.0083 0.9095 0.0003 0.0004 0.0039

29. C 0.0000 0.0027 0.0003 0.0947 0.0114 0.0121 1.4182 0.0084 1.4269

30. H 0.0000 0.0003 0.0003 0.0081 0.0033 0.0003 0.9130 0.0021 0.0084

31. H 0.0000 0.0002 0.0001 0.0082 0.0003 0.0034 0.0083 0.0004 0.9111

32. H 0.0000 0.0003 0.0000 0.0002 0.0082 0.0084 0.0032 0.0003 0.0034

Atom 28 29 30 31 32

---- ------ ------ ------ ------ ------

1. C 0.0000 0.0002 0.0000 0.0000 0.0000

2. H 0.0000 0.0003 0.0000 0.0000 0.0000

3. H 0.0000 0.0003 0.0000 0.0000 0.0000

4. C 0.0001 0.0115 0.0000 0.0000 0.0000

5. H 0.0000 0.0000 0.0000 0.0000 0.0000

6. C 0.0001 0.0001 0.0000 0.0000 0.0000

7. N 0.0003 0.0027 0.0000 0.0000 0.0000

8. C 0.0000 0.0003 0.0000 0.0000 0.0000

9. H 0.0000 0.0006 0.0000 0.0000 0.0000

10. H 0.0000 0.0003 0.0000 0.0000 0.0000

11. H 0.0000 0.0003 0.0000 0.0000 0.0000

12. N 0.0003 0.0127 0.0000 0.0002 0.0000

13. N 0.0001 0.0093 0.0000 0.0000 0.0000

14. C 0.0000 0.0011 0.0000 0.0000 0.0000

15. O 0.0000 0.0021 0.0000 0.0000 0.0000

16. C 0.0000 0.0000 0.0000 0.0000 0.0000

17. H 0.0000 0.0001 0.0000 0.0000 0.0000

18. H 0.0000 0.0000 0.0000 0.0000 0.0000

19. H 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0017 0.0027 0.0003 0.0002 0.0003

21. H 0.0005 0.0003 0.0003 0.0001 0.0000

22. C 0.0028 0.0947 0.0081 0.0082 0.0002

23. C 0.0083 0.0114 0.0033 0.0003 0.0082

24. C 0.9095 0.0121 0.0003 0.0034 0.0084

25. C 0.0003 1.4182 0.9130 0.0083 0.0032

26. H 0.0004 0.0084 0.0021 0.0004 0.0003

27. C 0.0039 1.4269 0.0084 0.9111 0.0034

28. H 0.0000 0.0084 0.0004 0.0022 0.0004

29. C 0.0084 0.0000 0.0034 0.0034 0.9136

30. H 0.0004 0.0034 0.0000 0.0004 0.0020

31. H 0.0022 0.0034 0.0004 0.0000 0.0020

32. H 0.0004 0.9136 0.0020 0.0020 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.8751

2. H 0.9390

3. H 0.9438

4. C 3.8978

5. H 0.9338

6. C 4.0062

7. N 3.0099

8. C 3.7545

9. H 0.9519

10. H 0.9261

11. H 0.9417

12. N 3.6220

13. N 3.1998

14. C 3.8969

15. O 1.9896

Page 258: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

108

16. C 3.8314

17. H 0.9417

18. H 0.9401

19. H 0.9341

20. C 3.8911

21. H 0.9301

22. C 3.9926

23. C 3.9454

24. C 3.9413

25. C 3.9461

26. H 0.9457

27. C 3.9441

28. H 0.9396

29. C 3.9453

30. H 0.9421

31. H 0.9404

32. H 0.9421

-----------------------------0----------------------------o-------------------------

1trn nbo:

Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9196 0.9227 0.9061 0.9231 0.0323 0.0043 0.0056 0.0013

2. H 0.9196 0.0000 0.0009 0.0004 0.0017 0.0103 0.0005 0.0010 0.0000

3. H 0.9227 0.0009 0.0000 0.0005 0.0017 0.0015 0.0006 0.0002 0.0013

4. H 0.9061 0.0004 0.0005 0.0000 0.0032 0.0020 0.0001 0.0001 0.0001

5. N 0.9231 0.0017 0.0017 0.0032 0.0000 1.1325 0.0089 0.0196 0.0027

6. N 0.0323 0.0103 0.0015 0.0020 1.1325 0.0000 1.1788 0.1672 0.0108

7. C 0.0043 0.0005 0.0006 0.0001 0.0089 1.1788 0.0000 1.6798 0.9826

8. O 0.0056 0.0010 0.0002 0.0001 0.0196 0.1672 1.6798 0.0000 0.0602

9. C 0.0013 0.0000 0.0013 0.0001 0.0027 0.0108 0.9826 0.0602 0.0000

10. H 0.0002 0.0000 0.0001 0.0001 0.0007 0.0009 0.0026 0.0127 0.9296

11. H 0.0012 0.0000 0.0001 0.0000 0.0003 0.0088 0.0044 0.0069 0.9054

12. H 0.0003 0.0000 0.0003 0.0000 0.0001 0.0079 0.0038 0.0083 0.9131

13. C 0.0189 0.0009 0.0074 0.0121 1.3878 0.1519 0.0180 0.0187 0.0054

14. H 0.0140 0.0002 0.0003 0.0001 0.0021 0.0031 0.0003 0.0006 0.0000

15. C 0.0013 0.0010 0.0004 0.0004 0.0149 0.0111 0.0006 0.0009 0.0001

16. C 0.0021 0.0032 0.0008 0.0012 0.0194 0.0157 0.0009 0.0018 0.0008

17. C 0.0006 0.0001 0.0003 0.0008 0.0246 0.0148 0.0011 0.0019 0.0007

18. C 0.0011 0.0001 0.0001 0.0000 0.0007 0.0003 0.0000 0.0001 0.0000

19. H 0.0010 0.0002 0.0002 0.0003 0.0001 0.0001 0.0000 0.0000 0.0000

20. C 0.0006 0.0002 0.0001 0.0000 0.0007 0.0004 0.0001 0.0000 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000

22. C 0.0004 0.0002 0.0002 0.0007 0.0137 0.0126 0.0008 0.0016 0.0007

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0008 0.0002 0.0003 0.0017 0.0315 0.3734 0.0045 0.0084 0.0110

27. H 0.0000 0.0000 0.0000 0.0001 0.0011 0.0015 0.0005 0.0015 0.0001

28. H 0.0001 0.0000 0.0000 0.0000 0.0006 0.0021 0.0003 0.0009 0.0001

29. C 0.0007 0.0000 0.0004 0.0018 0.0313 0.0433 0.0019 0.0021 0.0019

30. H 0.0000 0.0000 0.0000 0.0001 0.0003 0.0007 0.0000 0.0000 0.0000

31. C 0.0006 0.0000 0.0000 0.0016 0.0005 0.0077 0.0002 0.0002 0.0004

32. N 0.0018 0.0000 0.0003 0.0017 0.0063 0.0137 0.0004 0.0004 0.0007

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0002 0.0012 0.0003 0.0189 0.0140 0.0013 0.0021 0.0006 0.0011

2. H 0.0000 0.0000 0.0000 0.0009 0.0002 0.0010 0.0032 0.0001 0.0001

3. H 0.0001 0.0001 0.0003 0.0074 0.0003 0.0004 0.0008 0.0003 0.0001

4. H 0.0001 0.0000 0.0000 0.0121 0.0001 0.0004 0.0012 0.0008 0.0000

5. N 0.0007 0.0003 0.0001 1.3878 0.0021 0.0149 0.0194 0.0246 0.0007

6. N 0.0009 0.0088 0.0079 0.1519 0.0031 0.0111 0.0157 0.0148 0.0003

7. C 0.0026 0.0044 0.0038 0.0180 0.0003 0.0006 0.0009 0.0011 0.0000

8. O 0.0127 0.0069 0.0083 0.0187 0.0006 0.0009 0.0018 0.0019 0.0001

9. C 0.9296 0.9054 0.9131 0.0054 0.0000 0.0001 0.0008 0.0007 0.0000

10. H 0.0000 0.0007 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0007 0.0000 0.0012 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0005 0.0012 0.0000 0.0009 0.0000 0.0000 0.0001 0.0001 0.0000

13. C 0.0001 0.0002 0.0009 0.0000 0.8993 1.1334 0.0107 0.0140 0.0098

14. H 0.0000 0.0000 0.0000 0.8993 0.0000 0.0033 0.0077 0.0019 0.0001

15. C 0.0000 0.0000 0.0000 1.1334 0.0033 0.0000 1.3440 1.3407 0.0111

16. C 0.0000 0.0000 0.0001 0.0107 0.0077 1.3440 0.0000 0.0144 1.4508

17. C 0.0000 0.0000 0.0001 0.0140 0.0019 1.3407 0.0144 0.0000 0.1032

18. C 0.0000 0.0000 0.0000 0.0098 0.0001 0.0111 1.4508 0.1032 0.0000

19. H 0.0000 0.0000 0.0000 0.0013 0.0001 0.0031 0.9006 0.0080 0.0042

20. C 0.0000 0.0000 0.0000 0.0105 0.0003 0.0113 0.1010 1.4649 0.0109

21. H 0.0000 0.0000 0.0000 0.0016 0.0005 0.0028 0.0085 0.9147 0.0003

Page 259: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

109

22. C 0.0000 0.0000 0.0001 0.0025 0.0007 0.0924 0.0122 0.0116 1.4279

23. H 0.0000 0.0000 0.0000 0.0002 0.0003 0.0081 0.0035 0.0003 0.9108

24. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0083 0.0003 0.0034 0.0083

25. H 0.0000 0.0000 0.0000 0.0004 0.0000 0.0002 0.0084 0.0082 0.0034

26. C 0.0003 0.0001 0.0005 0.0032 0.0003 0.0003 0.0003 0.0002 0.0000

27. H 0.0000 0.0000 0.0000 0.0032 0.0000 0.0000 0.0005 0.0004 0.0000

28. H 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 0.0002 0.0002 0.0000

29. C 0.0001 0.0004 0.0001 0.1493 0.0005 0.0005 0.0142 0.0125 0.0001

30. H 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000

31. C 0.0000 0.0000 0.0000 0.0046 0.0001 0.0006 0.0017 0.0004 0.0004

32. N 0.0000 0.0001 0.0000 0.0303 0.0003 0.0008 0.0097 0.0024 0.0006

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0010 0.0006 0.0000 0.0004 0.0000 0.0000 0.0000 0.0008 0.0000

2. H 0.0002 0.0002 0.0000 0.0002 0.0000 0.0000 0.0000 0.0002 0.0000

3. H 0.0002 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0003 0.0000

4. H 0.0003 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0017 0.0001

5. N 0.0001 0.0007 0.0003 0.0137 0.0000 0.0002 0.0000 0.0315 0.0011

6. N 0.0001 0.0004 0.0001 0.0126 0.0001 0.0001 0.0000 0.3734 0.0015

7. C 0.0000 0.0001 0.0000 0.0008 0.0000 0.0000 0.0000 0.0045 0.0005

8. O 0.0000 0.0000 0.0000 0.0016 0.0000 0.0000 0.0000 0.0084 0.0015

9. C 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0110 0.0001

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

12. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0005 0.0000

13. C 0.0013 0.0105 0.0016 0.0025 0.0002 0.0002 0.0004 0.0032 0.0032

14. H 0.0001 0.0003 0.0005 0.0007 0.0003 0.0000 0.0000 0.0003 0.0000

15. C 0.0031 0.0113 0.0028 0.0924 0.0081 0.0083 0.0002 0.0003 0.0000

16. C 0.9006 0.1010 0.0085 0.0122 0.0035 0.0003 0.0084 0.0003 0.0005

17. C 0.0080 1.4649 0.9147 0.0116 0.0003 0.0034 0.0082 0.0002 0.0004

18. C 0.0042 0.0109 0.0003 1.4279 0.9108 0.0083 0.0034 0.0000 0.0000

19. H 0.0000 0.0003 0.0004 0.0079 0.0021 0.0004 0.0003 0.0001 0.0000

20. C 0.0003 0.0000 0.0039 1.4151 0.0084 0.9125 0.0032 0.0000 0.0000

21. H 0.0004 0.0039 0.0000 0.0086 0.0004 0.0022 0.0004 0.0000 0.0000

22. C 0.0079 1.4151 0.0086 0.0000 0.0033 0.0035 0.9139 0.0002 0.0004

23. H 0.0021 0.0084 0.0004 0.0033 0.0000 0.0004 0.0020 0.0000 0.0000

24. H 0.0004 0.9125 0.0022 0.0035 0.0004 0.0000 0.0020 0.0000 0.0000

25. H 0.0003 0.0032 0.0004 0.9139 0.0020 0.0020 0.0000 0.0000 0.0000

26. C 0.0001 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.9127

27. H 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.9127 0.0000

28. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.9121 0.0004

29. C 0.0003 0.0002 0.0000 0.0109 0.0001 0.0000 0.0000 1.5055 0.0035

30. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0074 0.0110

31. C 0.0009 0.0002 0.0000 0.0002 0.0000 0.0000 0.0000 0.0198 0.0012

32. N 0.0051 0.0005 0.0000 0.0031 0.0001 0.0000 0.0000 0.0711 0.0003

Atom 28 29 30 31 32

---- ------ ------ ------ ------ ------

1. C 0.0001 0.0007 0.0000 0.0006 0.0018

2. H 0.0000 0.0000 0.0000 0.0000 0.0000

3. H 0.0000 0.0004 0.0000 0.0000 0.0003

4. H 0.0000 0.0018 0.0001 0.0016 0.0017

5. N 0.0006 0.0313 0.0003 0.0005 0.0063

6. N 0.0021 0.0433 0.0007 0.0077 0.0137

7. C 0.0003 0.0019 0.0000 0.0002 0.0004

8. O 0.0009 0.0021 0.0000 0.0002 0.0004

9. C 0.0001 0.0019 0.0000 0.0004 0.0007

10. H 0.0000 0.0001 0.0000 0.0000 0.0000

11. H 0.0000 0.0004 0.0000 0.0000 0.0001

12. H 0.0000 0.0001 0.0000 0.0000 0.0000

13. C 0.0014 0.1493 0.0006 0.0046 0.0303

14. H 0.0000 0.0005 0.0000 0.0001 0.0003

15. C 0.0000 0.0005 0.0000 0.0006 0.0008

16. C 0.0002 0.0142 0.0000 0.0017 0.0097

17. C 0.0002 0.0125 0.0000 0.0004 0.0024

18. C 0.0000 0.0001 0.0000 0.0004 0.0006

19. H 0.0000 0.0003 0.0000 0.0009 0.0051

20. C 0.0000 0.0002 0.0000 0.0002 0.0005

21. H 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0002 0.0109 0.0000 0.0002 0.0031

23. H 0.0000 0.0001 0.0000 0.0000 0.0001

24. H 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.9121 1.5055 0.0074 0.0198 0.0711

27. H 0.0004 0.0035 0.0110 0.0012 0.0003

28. H 0.0000 0.0032 0.0021 0.0095 0.0019

29. C 0.0032 0.0000 0.8873 1.1694 0.0549

30. H 0.0021 0.8873 0.0000 0.0036 0.0207

31. C 0.0095 1.1694 0.0036 0.0000 2.7791

32. N 0.0019 0.0549 0.0207 2.7791 0.0000

Page 260: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

110

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.7610

2. H 0.9407

3. H 0.9408

4. H 0.9353

5. N 3.6309

6. N 3.2056

7. C 3.8962

8. O 2.0008

9. C 3.8292

10. H 0.9488

11. H 0.9297

12. H 0.9375

13. C 3.8987

14. H 0.9359

15. C 3.9918

16. C 3.9345

17. C 3.9466

18. C 3.9444

19. H 0.9369

20. C 3.9454

21. H 0.9448

22. C 3.9456

23. H 0.9401

24. H 0.9419

25. H 0.9424

26. C 3.8660

27. H 0.9383

28. H 0.9354

29. C 3.8964

30. H 0.9340

31. C 4.0030

32. N 3.0066

--------------------------------o---------------------------------------------o----

1 tsx nbo:

Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9183 0.9197 0.9125 0.9292 0.0315 0.0042 0.0058 0.0014

2. H 0.9183 0.0000 0.0010 0.0003 0.0021 0.0103 0.0005 0.0011 0.0000

3. H 0.9197 0.0010 0.0000 0.0007 0.0014 0.0017 0.0007 0.0002 0.0011

4. H 0.9125 0.0003 0.0007 0.0000 0.0048 0.0029 0.0001 0.0001 0.0002

5. N 0.9292 0.0021 0.0014 0.0048 0.0000 1.1298 0.0093 0.0196 0.0027

6. N 0.0315 0.0103 0.0017 0.0029 1.1298 0.0000 1.1849 0.1693 0.0108

7. C 0.0042 0.0005 0.0007 0.0001 0.0093 1.1849 0.0000 1.6762 0.9813

8. O 0.0058 0.0011 0.0002 0.0001 0.0196 0.1693 1.6762 0.0000 0.0606

9. C 0.0014 0.0000 0.0011 0.0002 0.0027 0.0108 0.9813 0.0606 0.0000

10. H 0.0002 0.0000 0.0001 0.0002 0.0008 0.0009 0.0027 0.0127 0.9278

11. H 0.0011 0.0000 0.0000 0.0000 0.0004 0.0089 0.0044 0.0067 0.9027

12. H 0.0003 0.0000 0.0003 0.0000 0.0001 0.0080 0.0038 0.0083 0.9125

13. C 0.0193 0.0015 0.0061 0.0098 1.3722 0.1537 0.0175 0.0182 0.0056

14. H 0.0138 0.0001 0.0003 0.0001 0.0024 0.0035 0.0002 0.0006 0.0000

15. C 0.0013 0.0007 0.0002 0.0005 0.0140 0.0114 0.0006 0.0009 0.0001

16. C 0.0025 0.0026 0.0010 0.0018 0.0204 0.0172 0.0011 0.0021 0.0009

17. C 0.0005 0.0001 0.0002 0.0008 0.0272 0.0184 0.0013 0.0023 0.0010

18. C 0.0008 0.0001 0.0000 0.0001 0.0014 0.0003 0.0001 0.0001 0.0000

19. H 0.0013 0.0006 0.0001 0.0004 0.0002 0.0003 0.0000 0.0001 0.0000

20. C 0.0005 0.0002 0.0000 0.0000 0.0003 0.0004 0.0000 0.0001 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000

22. C 0.0003 0.0003 0.0002 0.0008 0.0154 0.0155 0.0010 0.0021 0.0009

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0010 0.0003 0.0001 0.0025 0.0324 0.3617 0.0044 0.0080 0.0111

27. H 0.0001 0.0000 0.0000 0.0000 0.0008 0.0023 0.0004 0.0013 0.0001

28. H 0.0000 0.0000 0.0000 0.0001 0.0007 0.0014 0.0005 0.0010 0.0001

29. C 0.0008 0.0001 0.0003 0.0035 0.0307 0.0422 0.0021 0.0025 0.0018

30. H 0.0000 0.0000 0.0000 0.0001 0.0003 0.0005 0.0001 0.0000 0.0000

31. C 0.0001 0.0000 0.0000 0.0000 0.0010 0.0062 0.0001 0.0002 0.0004

32. N 0.0001 0.0000 0.0001 0.0007 0.0053 0.0131 0.0004 0.0004 0.0007

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0002 0.0011 0.0003 0.0193 0.0138 0.0013 0.0025 0.0005 0.0008

2. H 0.0000 0.0000 0.0000 0.0015 0.0001 0.0007 0.0026 0.0001 0.0001

Page 261: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

111

3. H 0.0001 0.0000 0.0003 0.0061 0.0003 0.0002 0.0010 0.0002 0.0000

4. H 0.0002 0.0000 0.0000 0.0098 0.0001 0.0005 0.0018 0.0008 0.0001

5. N 0.0008 0.0004 0.0001 1.3722 0.0024 0.0140 0.0204 0.0272 0.0014

6. N 0.0009 0.0089 0.0080 0.1537 0.0035 0.0114 0.0172 0.0184 0.0003

7. C 0.0027 0.0044 0.0038 0.0175 0.0002 0.0006 0.0011 0.0013 0.0001

8. O 0.0127 0.0067 0.0083 0.0182 0.0006 0.0009 0.0021 0.0023 0.0001

9. C 0.9278 0.9027 0.9125 0.0056 0.0000 0.0001 0.0009 0.0010 0.0000

10. H 0.0000 0.0008 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0008 0.0000 0.0012 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0006 0.0012 0.0000 0.0009 0.0000 0.0000 0.0001 0.0001 0.0000

13. C 0.0001 0.0002 0.0009 0.0000 0.8892 1.1512 0.0101 0.0144 0.0115

14. H 0.0000 0.0000 0.0000 0.8892 0.0000 0.0036 0.0068 0.0017 0.0001

15. C 0.0000 0.0000 0.0000 1.1512 0.0036 0.0000 1.3351 1.3352 0.0119

16. C 0.0000 0.0000 0.0001 0.0101 0.0068 1.3351 0.0000 0.0135 1.4646

17. C 0.0000 0.0000 0.0001 0.0144 0.0017 1.3352 0.0135 0.0000 0.0992

18. C 0.0000 0.0000 0.0000 0.0115 0.0001 0.0119 1.4646 0.0992 0.0000

19. H 0.0000 0.0000 0.0000 0.0011 0.0000 0.0031 0.9148 0.0086 0.0041

20. C 0.0000 0.0000 0.0000 0.0093 0.0004 0.0104 0.1022 1.4588 0.0108

21. H 0.0000 0.0000 0.0000 0.0017 0.0006 0.0028 0.0081 0.9046 0.0004

22. C 0.0000 0.0000 0.0001 0.0022 0.0001 0.0903 0.0112 0.0123 1.4154

23. H 0.0000 0.0000 0.0000 0.0002 0.0003 0.0082 0.0033 0.0003 0.9115

24. H 0.0000 0.0000 0.0000 0.0002 0.0001 0.0084 0.0003 0.0036 0.0084

25. H 0.0000 0.0000 0.0000 0.0004 0.0000 0.0002 0.0083 0.0084 0.0033

26. C 0.0003 0.0001 0.0005 0.0026 0.0008 0.0003 0.0002 0.0003 0.0000

27. H 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0003 0.0003 0.0000

28. H 0.0000 0.0000 0.0000 0.0022 0.0000 0.0000 0.0003 0.0003 0.0000

29. C 0.0001 0.0005 0.0001 0.1544 0.0009 0.0008 0.0133 0.0166 0.0001

30. H 0.0000 0.0000 0.0000 0.0003 0.0000 0.0001 0.0001 0.0000 0.0000

31. C 0.0000 0.0000 0.0000 0.0055 0.0017 0.0005 0.0004 0.0005 0.0001

32. N 0.0000 0.0001 0.0000 0.0278 0.0012 0.0007 0.0028 0.0065 0.0002

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0013 0.0005 0.0000 0.0003 0.0000 0.0000 0.0000 0.0010 0.0001

2. H 0.0006 0.0002 0.0000 0.0003 0.0000 0.0000 0.0000 0.0003 0.0000

3. H 0.0001 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000

4. H 0.0004 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000 0.0025 0.0000

5. N 0.0002 0.0003 0.0003 0.0154 0.0000 0.0002 0.0000 0.0324 0.0008

6. N 0.0003 0.0004 0.0001 0.0155 0.0000 0.0000 0.0000 0.3617 0.0023

7. C 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0044 0.0004

8. O 0.0001 0.0001 0.0000 0.0021 0.0000 0.0000 0.0000 0.0080 0.0013

9. C 0.0000 0.0000 0.0000 0.0009 0.0000 0.0000 0.0000 0.0111 0.0001

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

12. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0005 0.0000

13. C 0.0011 0.0093 0.0017 0.0022 0.0002 0.0002 0.0004 0.0026 0.0017

14. H 0.0000 0.0004 0.0006 0.0001 0.0003 0.0001 0.0000 0.0008 0.0000

15. C 0.0031 0.0104 0.0028 0.0903 0.0082 0.0084 0.0002 0.0003 0.0000

16. C 0.9148 0.1022 0.0081 0.0112 0.0033 0.0003 0.0083 0.0002 0.0003

17. C 0.0086 1.4588 0.9046 0.0123 0.0003 0.0036 0.0084 0.0003 0.0003

18. C 0.0041 0.0108 0.0004 1.4154 0.9115 0.0084 0.0033 0.0000 0.0000

19. H 0.0000 0.0003 0.0005 0.0084 0.0021 0.0004 0.0003 0.0000 0.0000

20. C 0.0003 0.0000 0.0040 1.4228 0.0084 0.9086 0.0034 0.0001 0.0000

21. H 0.0005 0.0040 0.0000 0.0083 0.0004 0.0022 0.0004 0.0001 0.0000

22. C 0.0084 1.4228 0.0083 0.0000 0.0035 0.0034 0.9119 0.0002 0.0002

23. H 0.0021 0.0084 0.0004 0.0035 0.0000 0.0004 0.0020 0.0000 0.0000

24. H 0.0004 0.9086 0.0022 0.0034 0.0004 0.0000 0.0020 0.0000 0.0000

25. H 0.0003 0.0034 0.0004 0.9119 0.0020 0.0020 0.0000 0.0000 0.0000

26. C 0.0000 0.0001 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.9072

27. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.9072 0.0000

28. H 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.9152 0.0004

29. C 0.0001 0.0002 0.0002 0.0128 0.0000 0.0000 0.0000 1.5164 0.0038

30. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0072 0.0113

31. C 0.0000 0.0001 0.0003 0.0001 0.0000 0.0000 0.0000 0.0188 0.0012

32. N 0.0000 0.0002 0.0014 0.0033 0.0000 0.0000 0.0000 0.0702 0.0003

Atom 28 29 30 31 32

---- ------ ------ ------ ------ ------

1. C 0.0000 0.0008 0.0000 0.0001 0.0001

2. H 0.0000 0.0001 0.0000 0.0000 0.0000

3. H 0.0000 0.0003 0.0000 0.0000 0.0001

4. H 0.0001 0.0035 0.0001 0.0000 0.0007

5. N 0.0007 0.0307 0.0003 0.0010 0.0053

6. N 0.0014 0.0422 0.0005 0.0062 0.0131

7. C 0.0005 0.0021 0.0001 0.0001 0.0004

8. O 0.0010 0.0025 0.0000 0.0002 0.0004

9. C 0.0001 0.0018 0.0000 0.0004 0.0007

10. H 0.0000 0.0001 0.0000 0.0000 0.0000

11. H 0.0000 0.0005 0.0000 0.0000 0.0001

12. H 0.0000 0.0001 0.0000 0.0000 0.0000

13. C 0.0022 0.1544 0.0003 0.0055 0.0278

Page 262: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

112

14. H 0.0000 0.0009 0.0000 0.0017 0.0012

15. C 0.0000 0.0008 0.0001 0.0005 0.0007

16. C 0.0003 0.0133 0.0001 0.0004 0.0028

17. C 0.0003 0.0166 0.0000 0.0005 0.0065

18. C 0.0000 0.0001 0.0000 0.0001 0.0002

19. H 0.0000 0.0001 0.0000 0.0000 0.0000

20. C 0.0000 0.0002 0.0000 0.0001 0.0002

21. H 0.0000 0.0002 0.0000 0.0003 0.0014

22. C 0.0003 0.0128 0.0000 0.0001 0.0033

23. H 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.9152 1.5164 0.0072 0.0188 0.0702

27. H 0.0004 0.0038 0.0113 0.0012 0.0003

28. H 0.0000 0.0030 0.0020 0.0095 0.0018

29. C 0.0030 0.0000 0.8878 1.1552 0.0510

30. H 0.0020 0.8878 0.0000 0.0035 0.0213

31. C 0.0095 1.1552 0.0035 0.0000 2.8001

32. N 0.0018 0.0510 0.0213 2.8001 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.7667

2. H 0.9401

3. H 0.9356

4. H 0.9429

5. N 3.6250

6. N 3.2074

7. C 3.8980

8. O 2.0004

9. C 3.8240

10. H 0.9473

11. H 0.9272

12. H 0.9371

13. C 3.8911

14. H 0.9286

15. C 3.9926

16. C 3.9453

17. C 3.9370

18. C 3.9446

19. H 0.9469

20. C 3.9416

21. H 0.9362

22. C 3.9435

23. H 0.9408

24. H 0.9382

25. H 0.9406

26. C 3.8623

27. H 0.9318

28. H 0.9389

29. C 3.9011

30. H 0.9347

31. C 4.0057

32. N 3.0098

----------------------------o----------------------------------------o----------------------------------------------------

1 tsn nbo:

Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9059 0.9227 0.9196 0.9231 0.0322 0.0044 0.0057 0.0013

2. H 0.9059 0.0000 0.0005 0.0004 0.0032 0.0020 0.0001 0.0001 0.0001

3. H 0.9227 0.0005 0.0000 0.0009 0.0017 0.0015 0.0006 0.0002 0.0013

4. H 0.9196 0.0004 0.0009 0.0000 0.0017 0.0103 0.0005 0.0010 0.0000

5. N 0.9231 0.0032 0.0017 0.0017 0.0000 1.1324 0.0089 0.0196 0.0027

6. N 0.0322 0.0020 0.0015 0.0103 1.1324 0.0000 1.1777 0.1670 0.0108

7. C 0.0044 0.0001 0.0006 0.0005 0.0089 1.1777 0.0000 1.6808 0.9826

8. O 0.0057 0.0001 0.0002 0.0010 0.0196 0.1670 1.6808 0.0000 0.0604

9. C 0.0013 0.0001 0.0013 0.0000 0.0027 0.0108 0.9826 0.0604 0.0000

10. H 0.0003 0.0000 0.0002 0.0000 0.0001 0.0079 0.0038 0.0080 0.9131

11. H 0.0012 0.0000 0.0001 0.0000 0.0003 0.0087 0.0045 0.0071 0.9051

12. H 0.0002 0.0001 0.0001 0.0000 0.0008 0.0009 0.0026 0.0126 0.9297

13. C 0.0189 0.0121 0.0075 0.0009 1.3876 0.1517 0.0180 0.0185 0.0054

14. H 0.0140 0.0001 0.0003 0.0002 0.0021 0.0031 0.0003 0.0006 0.0000

15. C 0.0013 0.0004 0.0004 0.0010 0.0149 0.0111 0.0006 0.0009 0.0001

16. C 0.0006 0.0008 0.0003 0.0001 0.0246 0.0148 0.0011 0.0019 0.0007

Page 263: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

113

17. C 0.0021 0.0012 0.0008 0.0032 0.0194 0.0157 0.0009 0.0017 0.0008

18. C 0.0006 0.0000 0.0001 0.0002 0.0007 0.0004 0.0001 0.0000 0.0000

19. H 0.0010 0.0003 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000

20. C 0.0011 0.0000 0.0001 0.0001 0.0007 0.0003 0.0000 0.0001 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000

22. C 0.0004 0.0007 0.0002 0.0002 0.0138 0.0126 0.0008 0.0016 0.0007

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0008 0.0017 0.0003 0.0002 0.0314 0.3747 0.0045 0.0084 0.0110

27. H 0.0000 0.0001 0.0000 0.0000 0.0011 0.0015 0.0005 0.0015 0.0001

28. H 0.0001 0.0000 0.0000 0.0000 0.0006 0.0021 0.0003 0.0009 0.0001

29. C 0.0007 0.0018 0.0004 0.0000 0.0314 0.0433 0.0019 0.0021 0.0019

30. H 0.0000 0.0001 0.0000 0.0000 0.0003 0.0007 0.0000 0.0000 0.0000

31. C 0.0006 0.0016 0.0000 0.0000 0.0005 0.0077 0.0002 0.0002 0.0004

32. N 0.0018 0.0018 0.0003 0.0000 0.0063 0.0137 0.0004 0.0004 0.0007

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0003 0.0012 0.0002 0.0189 0.0140 0.0013 0.0006 0.0021 0.0006

2. H 0.0000 0.0000 0.0001 0.0121 0.0001 0.0004 0.0008 0.0012 0.0000

3. H 0.0002 0.0001 0.0001 0.0075 0.0003 0.0004 0.0003 0.0008 0.0001

4. H 0.0000 0.0000 0.0000 0.0009 0.0002 0.0010 0.0001 0.0032 0.0002

5. N 0.0001 0.0003 0.0008 1.3876 0.0021 0.0149 0.0246 0.0194 0.0007

6. N 0.0079 0.0087 0.0009 0.1517 0.0031 0.0111 0.0148 0.0157 0.0004

7. C 0.0038 0.0045 0.0026 0.0180 0.0003 0.0006 0.0011 0.0009 0.0001

8. O 0.0080 0.0071 0.0126 0.0185 0.0006 0.0009 0.0019 0.0017 0.0000

9. C 0.9131 0.9051 0.9297 0.0054 0.0000 0.0001 0.0007 0.0008 0.0000

10. H 0.0000 0.0012 0.0005 0.0009 0.0000 0.0000 0.0001 0.0001 0.0000

11. H 0.0012 0.0000 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0005 0.0007 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0009 0.0002 0.0001 0.0000 0.8993 1.1337 0.0140 0.0107 0.0105

14. H 0.0000 0.0000 0.0000 0.8993 0.0000 0.0033 0.0019 0.0077 0.0003

15. C 0.0000 0.0000 0.0000 1.1337 0.0033 0.0000 1.3406 1.3438 0.0113

16. C 0.0001 0.0000 0.0000 0.0140 0.0019 1.3406 0.0000 0.0144 1.4650

17. C 0.0001 0.0000 0.0000 0.0107 0.0077 1.3438 0.0144 0.0000 0.1010

18. C 0.0000 0.0000 0.0000 0.0105 0.0003 0.0113 1.4650 0.1010 0.0000

19. H 0.0000 0.0000 0.0000 0.0013 0.0001 0.0031 0.0080 0.9006 0.0003

20. C 0.0000 0.0000 0.0000 0.0098 0.0001 0.0111 0.1032 1.4509 0.0109

21. H 0.0000 0.0000 0.0000 0.0016 0.0005 0.0028 0.9147 0.0085 0.0039

22. C 0.0001 0.0000 0.0000 0.0025 0.0007 0.0923 0.0116 0.0122 1.4150

23. H 0.0000 0.0000 0.0000 0.0002 0.0003 0.0081 0.0003 0.0035 0.0084

24. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0083 0.0034 0.0003 0.9125

25. H 0.0000 0.0000 0.0000 0.0004 0.0000 0.0002 0.0082 0.0084 0.0032

26. C 0.0005 0.0001 0.0003 0.0033 0.0003 0.0003 0.0002 0.0003 0.0000

27. H 0.0000 0.0000 0.0000 0.0032 0.0000 0.0000 0.0004 0.0005 0.0000

28. H 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 0.0002 0.0002 0.0000

29. C 0.0001 0.0003 0.0001 0.1494 0.0005 0.0006 0.0126 0.0143 0.0002

30. H 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000

31. C 0.0000 0.0000 0.0000 0.0046 0.0001 0.0006 0.0004 0.0017 0.0002

32. N 0.0000 0.0001 0.0000 0.0304 0.0003 0.0008 0.0025 0.0098 0.0005

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0010 0.0011 0.0000 0.0004 0.0000 0.0000 0.0000 0.0008 0.0000

2. H 0.0003 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0017 0.0001

3. H 0.0002 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0003 0.0000

4. H 0.0002 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0002 0.0000

5. N 0.0001 0.0007 0.0003 0.0138 0.0000 0.0002 0.0000 0.0314 0.0011

6. N 0.0001 0.0003 0.0001 0.0126 0.0001 0.0001 0.0000 0.3747 0.0015

7. C 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000 0.0045 0.0005

8. O 0.0000 0.0001 0.0000 0.0016 0.0000 0.0000 0.0000 0.0084 0.0015

9. C 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0110 0.0001

10. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0005 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000

13. C 0.0013 0.0098 0.0016 0.0025 0.0002 0.0002 0.0004 0.0033 0.0032

14. H 0.0001 0.0001 0.0005 0.0007 0.0003 0.0000 0.0000 0.0003 0.0000

15. C 0.0031 0.0111 0.0028 0.0923 0.0081 0.0083 0.0002 0.0003 0.0000

16. C 0.0080 0.1032 0.9147 0.0116 0.0003 0.0034 0.0082 0.0002 0.0004

17. C 0.9006 1.4509 0.0085 0.0122 0.0035 0.0003 0.0084 0.0003 0.0005

18. C 0.0003 0.0109 0.0039 1.4150 0.0084 0.9125 0.0032 0.0000 0.0000

19. H 0.0000 0.0042 0.0004 0.0079 0.0021 0.0004 0.0003 0.0001 0.0000

20. C 0.0042 0.0000 0.0003 1.4279 0.9108 0.0083 0.0034 0.0000 0.0000

21. H 0.0004 0.0003 0.0000 0.0086 0.0004 0.0022 0.0004 0.0000 0.0000

22. C 0.0079 1.4279 0.0086 0.0000 0.0033 0.0035 0.9139 0.0002 0.0004

23. H 0.0021 0.9108 0.0004 0.0033 0.0000 0.0004 0.0020 0.0000 0.0000

24. H 0.0004 0.0083 0.0022 0.0035 0.0004 0.0000 0.0020 0.0000 0.0000

25. H 0.0003 0.0034 0.0004 0.9139 0.0020 0.0020 0.0000 0.0000 0.0000

26. C 0.0001 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.9127

27. H 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.9127 0.0000

Page 264: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

114

28. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.9120 0.0004

29. C 0.0003 0.0001 0.0000 0.0109 0.0001 0.0000 0.0000 1.5046 0.0035

30. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0074 0.0110

31. C 0.0009 0.0004 0.0000 0.0002 0.0000 0.0000 0.0000 0.0198 0.0012

32. N 0.0051 0.0006 0.0000 0.0032 0.0001 0.0000 0.0000 0.0710 0.0003

Atom 28 29 30 31 32

---- ------ ------ ------ ------ ------

1. C 0.0001 0.0007 0.0000 0.0006 0.0018

2. H 0.0000 0.0018 0.0001 0.0016 0.0018

3. H 0.0000 0.0004 0.0000 0.0000 0.0003

4. H 0.0000 0.0000 0.0000 0.0000 0.0000

5. N 0.0006 0.0314 0.0003 0.0005 0.0063

6. N 0.0021 0.0433 0.0007 0.0077 0.0137

7. C 0.0003 0.0019 0.0000 0.0002 0.0004

8. O 0.0009 0.0021 0.0000 0.0002 0.0004

9. C 0.0001 0.0019 0.0000 0.0004 0.0007

10. H 0.0000 0.0001 0.0000 0.0000 0.0000

11. H 0.0000 0.0003 0.0000 0.0000 0.0001

12. H 0.0000 0.0001 0.0000 0.0000 0.0000

13. C 0.0014 0.1494 0.0006 0.0046 0.0304

14. H 0.0000 0.0005 0.0000 0.0001 0.0003

15. C 0.0000 0.0006 0.0000 0.0006 0.0008

16. C 0.0002 0.0126 0.0000 0.0004 0.0025

17. C 0.0002 0.0143 0.0000 0.0017 0.0098

18. C 0.0000 0.0002 0.0000 0.0002 0.0005

19. H 0.0000 0.0003 0.0000 0.0009 0.0051

20. C 0.0000 0.0001 0.0000 0.0004 0.0006

21. H 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0002 0.0109 0.0000 0.0002 0.0032

23. H 0.0000 0.0001 0.0000 0.0000 0.0001

24. H 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.9120 1.5046 0.0074 0.0198 0.0710

27. H 0.0004 0.0035 0.0110 0.0012 0.0003

28. H 0.0000 0.0032 0.0021 0.0095 0.0019

29. C 0.0032 0.0000 0.8873 1.1697 0.0550

30. H 0.0021 0.8873 0.0000 0.0036 0.0207

31. C 0.0095 1.1697 0.0036 0.0000 2.7788

32. N 0.0019 0.0550 0.0207 2.7788 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.7609

2. H 0.9352

3. H 0.9408

4. H 0.9407

5. N 3.6306

6. N 3.2052

7. C 3.8961

8. O 2.0012

9. C 3.8292

10. H 0.9373

11. H 0.9297

12. H 0.9489

13. C 3.8987

14. H 0.9360

15. C 3.9918

16. C 3.9466

17. C 3.9345

18. C 3.9454

19. H 0.9369

20. C 3.9444

21. H 0.9448

22. C 3.9456

23. H 0.9401

24. H 0.9419

25. H 0.9424

26. C 3.8662

27. H 0.9383

28. H 0.9354

29. C 3.8962

30. H 0.9340

31. C 4.0030

32. N 3.0065

------------------------------o------------------------------------------------o-----------------------------------------

Page 265: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

115

2 trx nbo:

Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9096 0.9187 1.4682 0.0062 0.0230 0.0436 0.0087 0.0004

2. H 0.9096 0.0000 0.0003 0.0046 0.0113 0.0017 0.0005 0.0023 0.0001

3. H 0.9187 0.0003 0.0000 0.0036 0.0022 0.0079 0.0016 0.0014 0.0001

4. C 1.4682 0.0046 0.0036 0.0000 0.9029 1.1011 0.0608 0.0187 0.0159

5. H 0.0062 0.0113 0.0022 0.9029 0.0000 0.0033 0.0019 0.0070 0.0008

6. C 0.0230 0.0017 0.0079 1.1011 0.0033 0.0000 1.6910 0.9687 0.0096

7. O 0.0436 0.0005 0.0016 0.0608 0.0019 1.6910 0.0000 0.1454 0.0142

8. O 0.0087 0.0023 0.0014 0.0187 0.0070 0.9687 0.1454 0.0000 0.8894

9. C 0.0004 0.0001 0.0001 0.0159 0.0008 0.0096 0.0142 0.8894 0.0000

10. H 0.0001 0.0000 0.0000 0.0001 0.0003 0.0082 0.0025 0.0058 0.9352

11. H 0.0002 0.0001 0.0001 0.0004 0.0000 0.0019 0.0047 0.0176 0.9302

12. H 0.0003 0.0000 0.0000 0.0005 0.0000 0.0019 0.0039 0.0173 0.9295

13. C 0.0012 0.0001 0.0000 0.0008 0.0000 0.0002 0.0001 0.0001 0.0000

14. H 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15. H 0.0004 0.0000 0.0000 0.0005 0.0000 0.0001 0.0001 0.0000 0.0000

16. H 0.0033 0.0000 0.0001 0.0035 0.0001 0.0002 0.0004 0.0001 0.0000

17. N 0.0446 0.0005 0.0008 0.0382 0.0004 0.0043 0.0052 0.0012 0.0001

18. N 0.4071 0.0022 0.0016 0.0438 0.0008 0.0097 0.0109 0.0021 0.0001

19. C 0.0048 0.0002 0.0006 0.0021 0.0001 0.0002 0.0004 0.0001 0.0000

20. O 0.0196 0.0002 0.0004 0.0027 0.0001 0.0012 0.0012 0.0002 0.0000

21. C 0.0019 0.0003 0.0002 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000

22. H 0.0003 0.0005 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0002 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. C 0.0025 0.0019 0.0029 0.2194 0.0003 0.0120 0.0205 0.0065 0.0003

26. H 0.0013 0.0000 0.0000 0.0014 0.0000 0.0005 0.0004 0.0051 0.0001

27. C 0.0007 0.0000 0.0000 0.0012 0.0001 0.0005 0.0005 0.0003 0.0000

28. C 0.0002 0.0002 0.0003 0.0098 0.0003 0.0009 0.0009 0.0005 0.0000

29. C 0.0002 0.0002 0.0003 0.0152 0.0000 0.0006 0.0020 0.0006 0.0000

30. C 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000

31. H 0.0001 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000

32. C 0.0002 0.0000 0.0000 0.0003 0.0000 0.0000 0.0001 0.0000 0.0000

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

34. C 0.0001 0.0002 0.0003 0.0093 0.0000 0.0005 0.0009 0.0004 0.0000

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

36. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0001 0.0002 0.0003 0.0012 0.0004 0.0004 0.0033 0.0446 0.4071

2. H 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0005 0.0022

3. H 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0008 0.0016

4. C 0.0001 0.0004 0.0005 0.0008 0.0000 0.0005 0.0035 0.0382 0.0438

5. H 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0008

6. C 0.0082 0.0019 0.0019 0.0002 0.0000 0.0001 0.0002 0.0043 0.0097

7. O 0.0025 0.0047 0.0039 0.0001 0.0000 0.0001 0.0004 0.0052 0.0109

8. O 0.0058 0.0176 0.0173 0.0001 0.0000 0.0000 0.0001 0.0012 0.0021

9. C 0.9352 0.9302 0.9295 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

10. H 0.0000 0.0003 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0003 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0004 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

13. C 0.0000 0.0000 0.0000 0.0000 0.9198 0.8895 0.9196 0.9275 0.0314

14. H 0.0000 0.0000 0.0000 0.9198 0.0000 0.0012 0.0004 0.0017 0.0092

15. H 0.0000 0.0000 0.0000 0.8895 0.0012 0.0000 0.0006 0.0020 0.0029

16. H 0.0000 0.0000 0.0000 0.9196 0.0004 0.0006 0.0000 0.0048 0.0023

17. N 0.0000 0.0000 0.0001 0.9275 0.0017 0.0020 0.0048 0.0000 1.1199

18. N 0.0000 0.0000 0.0001 0.0314 0.0092 0.0029 0.0023 1.1199 0.0000

19. C 0.0000 0.0000 0.0000 0.0044 0.0009 0.0009 0.0002 0.0097 1.1970

20. O 0.0000 0.0000 0.0000 0.0148 0.0004 0.0157 0.0005 0.0076 0.1570

21. C 0.0000 0.0000 0.0000 0.0007 0.0002 0.0009 0.0001 0.0138 0.0128

22. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0003 0.0012

23. H 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0001 0.0056

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0070

25. C 0.0000 0.0001 0.0002 0.0184 0.0011 0.0075 0.0108 1.3759 0.1232

26. H 0.0000 0.0000 0.0002 0.0135 0.0002 0.0002 0.0002 0.0029 0.0037

27. C 0.0000 0.0000 0.0000 0.0013 0.0009 0.0003 0.0002 0.0117 0.0114

28. C 0.0000 0.0000 0.0000 0.0021 0.0033 0.0008 0.0010 0.0179 0.0107

29. C 0.0000 0.0000 0.0000 0.0006 0.0001 0.0004 0.0006 0.0220 0.0115

30. C 0.0000 0.0000 0.0000 0.0012 0.0001 0.0001 0.0001 0.0009 0.0003

31. H 0.0000 0.0000 0.0000 0.0009 0.0002 0.0001 0.0004 0.0002 0.0002

32. C 0.0000 0.0000 0.0000 0.0007 0.0001 0.0001 0.0000 0.0004 0.0004

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001

34. C 0.0000 0.0000 0.0000 0.0004 0.0003 0.0003 0.0005 0.0117 0.0088

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

Page 266: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

116

36. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0048 0.0196 0.0019 0.0003 0.0002 0.0005 0.0025 0.0013 0.0007

2. H 0.0002 0.0002 0.0003 0.0005 0.0000 0.0000 0.0019 0.0000 0.0000

3. H 0.0006 0.0004 0.0002 0.0001 0.0003 0.0000 0.0029 0.0000 0.0000

4. C 0.0021 0.0027 0.0004 0.0001 0.0000 0.0000 0.2194 0.0014 0.0012

5. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0001

6. C 0.0002 0.0012 0.0000 0.0000 0.0000 0.0000 0.0120 0.0005 0.0005

7. O 0.0004 0.0012 0.0000 0.0000 0.0000 0.0000 0.0205 0.0004 0.0005

8. O 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0065 0.0051 0.0003

9. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0000

13. C 0.0044 0.0148 0.0007 0.0001 0.0002 0.0000 0.0184 0.0135 0.0013

14. H 0.0009 0.0004 0.0002 0.0000 0.0001 0.0000 0.0011 0.0002 0.0009

15. H 0.0009 0.0157 0.0009 0.0000 0.0000 0.0000 0.0075 0.0002 0.0003

16. H 0.0002 0.0005 0.0001 0.0000 0.0000 0.0000 0.0108 0.0002 0.0002

17. N 0.0097 0.0076 0.0138 0.0003 0.0001 0.0007 1.3759 0.0029 0.0117

18. N 1.1970 0.1570 0.0128 0.0012 0.0056 0.0070 0.1232 0.0037 0.0114

19. C 0.0000 1.6471 0.9925 0.0038 0.0043 0.0028 0.0222 0.0003 0.0006

20. O 1.6471 0.0000 0.0551 0.0144 0.0133 0.0033 0.0203 0.0001 0.0004

21. C 0.9925 0.0551 0.0000 0.9177 0.9128 0.9171 0.0007 0.0002 0.0004

22. H 0.0038 0.0144 0.9177 0.0000 0.0008 0.0007 0.0001 0.0000 0.0000

23. H 0.0043 0.0133 0.9128 0.0008 0.0000 0.0009 0.0008 0.0000 0.0000

24. H 0.0028 0.0033 0.9171 0.0007 0.0009 0.0000 0.0003 0.0000 0.0001

25. C 0.0222 0.0203 0.0007 0.0001 0.0008 0.0003 0.0000 0.8868 1.1068

26. H 0.0003 0.0001 0.0002 0.0000 0.0000 0.0000 0.8868 0.0000 0.0032

27. C 0.0006 0.0004 0.0004 0.0000 0.0000 0.0001 1.1068 0.0032 0.0000

28. C 0.0012 0.0024 0.0001 0.0000 0.0001 0.0000 0.0110 0.0071 1.3530

29. C 0.0014 0.0023 0.0001 0.0000 0.0001 0.0000 0.0141 0.0016 1.3575

30. C 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0099 0.0001 0.0116

31. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0012 0.0000 0.0031

32. C 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0087 0.0003 0.0110

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016 0.0005 0.0029

34. C 0.0010 0.0021 0.0000 0.0000 0.0001 0.0000 0.0023 0.0006 0.0970

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0003 0.0081

36. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0082

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0002

Atom 28 29 30 31 32 33 34 35 36

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0002 0.0002 0.0000 0.0001 0.0002 0.0000 0.0001 0.0000 0.0000

2. H 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

3. H 0.0003 0.0003 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000

4. C 0.0098 0.0152 0.0002 0.0002 0.0003 0.0000 0.0093 0.0000 0.0000

5. H 0.0003 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

6. C 0.0009 0.0006 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000

7. O 0.0009 0.0020 0.0001 0.0000 0.0001 0.0000 0.0009 0.0000 0.0000

8. O 0.0005 0.0006 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000

9. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0021 0.0006 0.0012 0.0009 0.0007 0.0000 0.0004 0.0000 0.0000

14. H 0.0033 0.0001 0.0001 0.0002 0.0001 0.0000 0.0003 0.0000 0.0000

15. H 0.0008 0.0004 0.0001 0.0001 0.0001 0.0000 0.0003 0.0000 0.0000

16. H 0.0010 0.0006 0.0001 0.0004 0.0000 0.0000 0.0005 0.0000 0.0000

17. N 0.0179 0.0220 0.0009 0.0002 0.0004 0.0003 0.0117 0.0001 0.0002

18. N 0.0107 0.0115 0.0003 0.0002 0.0004 0.0001 0.0088 0.0000 0.0001

19. C 0.0012 0.0014 0.0000 0.0000 0.0001 0.0000 0.0010 0.0000 0.0000

20. O 0.0024 0.0023 0.0001 0.0000 0.0000 0.0000 0.0021 0.0000 0.0000

21. C 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. C 0.0110 0.0141 0.0099 0.0012 0.0087 0.0016 0.0023 0.0003 0.0002

26. H 0.0071 0.0016 0.0001 0.0000 0.0003 0.0005 0.0006 0.0003 0.0000

27. C 1.3530 1.3575 0.0116 0.0031 0.0110 0.0029 0.0970 0.0081 0.0082

28. C 0.0000 0.0135 1.4571 0.9121 0.1047 0.0085 0.0114 0.0034 0.0003

29. C 0.0135 0.0000 0.1030 0.0085 1.4514 0.9119 0.0117 0.0003 0.0034

30. C 1.4571 0.1030 0.0000 0.0040 0.0109 0.0004 1.4207 0.9115 0.0084

31. H 0.9121 0.0085 0.0040 0.0000 0.0003 0.0004 0.0084 0.0021 0.0004

32. C 0.1047 1.4514 0.0109 0.0003 0.0000 0.0039 1.4271 0.0084 0.9110

33. H 0.0085 0.9119 0.0004 0.0004 0.0039 0.0000 0.0085 0.0004 0.0022

34. C 0.0114 0.0117 1.4207 0.0084 1.4271 0.0085 0.0000 0.0035 0.0035

35. H 0.0034 0.0003 0.9115 0.0021 0.0084 0.0004 0.0035 0.0000 0.0004

36. H 0.0003 0.0034 0.0084 0.0004 0.9110 0.0022 0.0035 0.0004 0.0000

Page 267: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

117

37. H 0.0083 0.0084 0.0033 0.0003 0.0034 0.0004 0.9124 0.0020 0.0020

Atom 37

---- ------

1. C 0.0000

2. H 0.0000

3. H 0.0000

4. C 0.0000

5. H 0.0000

6. C 0.0000

7. O 0.0000

8. O 0.0000

9. C 0.0000

10. H 0.0000

11. H 0.0000

12. H 0.0000

13. C 0.0000

14. H 0.0000

15. H 0.0000

16. H 0.0000

17. N 0.0000

18. N 0.0000

19. C 0.0000

20. O 0.0000

21. C 0.0000

22. H 0.0000

23. H 0.0000

24. H 0.0000

25. C 0.0004

26. H 0.0000

27. C 0.0002

28. C 0.0083

29. C 0.0084

30. C 0.0033

31. H 0.0003

32. C 0.0034

33. H 0.0004

34. C 0.9124

35. H 0.0020

36. H 0.0020

37. H 0.0000

---------------------------------o------------------------------------------o------------------------------------------------

2 trn nbo:

Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9114 0.9156 1.4518 0.0063 0.0237 0.0436 0.0088 0.0004

2. H 0.9114 0.0000 0.0003 0.0043 0.0112 0.0016 0.0004 0.0024 0.0001

3. H 0.9156 0.0003 0.0000 0.0040 0.0023 0.0079 0.0015 0.0013 0.0001

4. C 1.4518 0.0043 0.0040 0.0000 0.9004 1.1233 0.0619 0.0195 0.0155

5. H 0.0063 0.0112 0.0023 0.9004 0.0000 0.0036 0.0020 0.0071 0.0008

6. C 0.0237 0.0016 0.0079 1.1233 0.0036 0.0000 1.6857 0.9496 0.0095

7. O 0.0436 0.0004 0.0015 0.0619 0.0020 1.6857 0.0000 0.1407 0.0148

8. O 0.0088 0.0024 0.0013 0.0195 0.0071 0.9496 0.1407 0.0000 0.8905

9. C 0.0004 0.0001 0.0001 0.0155 0.0008 0.0095 0.0148 0.8905 0.0000

10. H 0.0001 0.0000 0.0000 0.0001 0.0003 0.0084 0.0026 0.0056 0.9355

11. H 0.0002 0.0000 0.0000 0.0005 0.0000 0.0017 0.0039 0.0176 0.9284

12. H 0.0003 0.0001 0.0001 0.0004 0.0000 0.0018 0.0044 0.0184 0.9304

13. C 0.0011 0.0000 0.0001 0.0007 0.0000 0.0003 0.0005 0.0034 0.0002

14. H 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15. H 0.0005 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0003 0.0000

16. H 0.0023 0.0001 0.0000 0.0021 0.0000 0.0002 0.0018 0.0052 0.0002

17. N 0.0421 0.0009 0.0007 0.0405 0.0004 0.0030 0.0060 0.0016 0.0001

18. N 0.4274 0.0015 0.0028 0.0447 0.0010 0.0114 0.0110 0.0021 0.0000

19. C 0.0048 0.0006 0.0003 0.0022 0.0000 0.0002 0.0004 0.0001 0.0000

20. O 0.0194 0.0004 0.0002 0.0027 0.0001 0.0013 0.0011 0.0002 0.0000

21. C 0.0020 0.0002 0.0004 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000

22. H 0.0002 0.0001 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0003 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. C 0.0024 0.0028 0.0025 0.2061 0.0008 0.0111 0.0246 0.0042 0.0002

26. H 0.0008 0.0000 0.0000 0.0009 0.0001 0.0004 0.0003 0.0002 0.0000

27. C 0.0004 0.0000 0.0000 0.0009 0.0001 0.0008 0.0006 0.0002 0.0001

28. C 0.0002 0.0004 0.0003 0.0136 0.0000 0.0009 0.0043 0.0014 0.0004

29. C 0.0002 0.0003 0.0003 0.0133 0.0000 0.0012 0.0013 0.0004 0.0000

30. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0005 0.0001 0.0001

Page 268: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

118

31. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0002 0.0016 0.0002

32. C 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0005 0.0000 0.0000

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

34. C 0.0001 0.0003 0.0002 0.0102 0.0000 0.0005 0.0015 0.0003 0.0000

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

36. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0001 0.0002 0.0003 0.0011 0.0004 0.0005 0.0023 0.0421 0.4274

2. H 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0009 0.0015

3. H 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0007 0.0028

4. C 0.0001 0.0005 0.0004 0.0007 0.0000 0.0007 0.0021 0.0405 0.0447

5. H 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0010

6. C 0.0084 0.0017 0.0018 0.0003 0.0000 0.0000 0.0002 0.0030 0.0114

7. O 0.0026 0.0039 0.0044 0.0005 0.0000 0.0000 0.0018 0.0060 0.0110

8. O 0.0056 0.0176 0.0184 0.0034 0.0000 0.0003 0.0052 0.0016 0.0021

9. C 0.9355 0.9284 0.9304 0.0002 0.0000 0.0000 0.0002 0.0001 0.0000

10. H 0.0000 0.0004 0.0003 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

11. H 0.0004 0.0000 0.0003 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001

12. H 0.0003 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0000 0.0001 0.0000 0.0000 0.9216 0.8924 0.9088 0.9228 0.0312

14. H 0.0000 0.0000 0.0000 0.9216 0.0000 0.0012 0.0004 0.0017 0.0090

15. H 0.0000 0.0000 0.0000 0.8924 0.0012 0.0000 0.0006 0.0020 0.0028

16. H 0.0001 0.0002 0.0000 0.9088 0.0004 0.0006 0.0000 0.0036 0.0019

17. N 0.0000 0.0001 0.0000 0.9228 0.0017 0.0020 0.0036 0.0000 1.1181

18. N 0.0000 0.0001 0.0000 0.0312 0.0090 0.0028 0.0019 1.1181 0.0000

19. C 0.0000 0.0000 0.0000 0.0044 0.0009 0.0009 0.0002 0.0098 1.1910

20. O 0.0000 0.0000 0.0000 0.0143 0.0004 0.0146 0.0005 0.0074 0.1577

21. C 0.0000 0.0000 0.0000 0.0007 0.0002 0.0009 0.0001 0.0137 0.0127

22. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0003 0.0015

23. H 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0001 0.0049

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0067

25. C 0.0000 0.0002 0.0001 0.0184 0.0011 0.0076 0.0112 1.3860 0.1185

26. H 0.0000 0.0000 0.0000 0.0138 0.0002 0.0002 0.0001 0.0027 0.0034

27. C 0.0000 0.0000 0.0000 0.0013 0.0009 0.0003 0.0003 0.0127 0.0113

28. C 0.0000 0.0001 0.0002 0.0019 0.0033 0.0007 0.0010 0.0180 0.0111

29. C 0.0000 0.0000 0.0000 0.0005 0.0001 0.0004 0.0007 0.0228 0.0107

30. C 0.0000 0.0000 0.0001 0.0012 0.0001 0.0001 0.0000 0.0007 0.0003

31. H 0.0000 0.0001 0.0002 0.0008 0.0002 0.0001 0.0003 0.0001 0.0001

32. C 0.0000 0.0000 0.0000 0.0007 0.0001 0.0001 0.0000 0.0005 0.0003

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001

34. C 0.0000 0.0000 0.0000 0.0003 0.0002 0.0003 0.0006 0.0122 0.0087

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

36. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0048 0.0194 0.0020 0.0002 0.0003 0.0005 0.0024 0.0008 0.0004

2. H 0.0006 0.0004 0.0002 0.0001 0.0003 0.0000 0.0028 0.0000 0.0000

3. H 0.0003 0.0002 0.0004 0.0005 0.0001 0.0000 0.0025 0.0000 0.0000

4. C 0.0022 0.0027 0.0004 0.0001 0.0000 0.0000 0.2061 0.0009 0.0009

5. H 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0008 0.0001 0.0001

6. C 0.0002 0.0013 0.0000 0.0000 0.0000 0.0000 0.0111 0.0004 0.0008

7. O 0.0004 0.0011 0.0000 0.0000 0.0000 0.0000 0.0246 0.0003 0.0006

8. O 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0042 0.0002 0.0002

9. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

13. C 0.0044 0.0143 0.0007 0.0001 0.0002 0.0000 0.0184 0.0138 0.0013

14. H 0.0009 0.0004 0.0002 0.0000 0.0001 0.0000 0.0011 0.0002 0.0009

15. H 0.0009 0.0146 0.0009 0.0000 0.0000 0.0000 0.0076 0.0002 0.0003

16. H 0.0002 0.0005 0.0001 0.0000 0.0000 0.0000 0.0112 0.0001 0.0003

17. N 0.0098 0.0074 0.0137 0.0003 0.0001 0.0007 1.3860 0.0027 0.0127

18. N 1.1910 0.1577 0.0127 0.0015 0.0049 0.0067 0.1185 0.0034 0.0113

19. C 0.0000 1.6527 0.9925 0.0039 0.0042 0.0027 0.0213 0.0003 0.0006

20. O 1.6527 0.0000 0.0547 0.0150 0.0137 0.0033 0.0188 0.0001 0.0004

21. C 0.9925 0.0547 0.0000 0.9173 0.9128 0.9173 0.0007 0.0002 0.0004

22. H 0.0039 0.0150 0.9173 0.0000 0.0009 0.0007 0.0001 0.0000 0.0000

23. H 0.0042 0.0137 0.9128 0.0009 0.0000 0.0009 0.0007 0.0000 0.0000

24. H 0.0027 0.0033 0.9173 0.0007 0.0009 0.0000 0.0002 0.0000 0.0001

25. C 0.0213 0.0188 0.0007 0.0001 0.0007 0.0002 0.0000 0.8949 1.1125

26. H 0.0003 0.0001 0.0002 0.0000 0.0000 0.0000 0.8949 0.0000 0.0032

27. C 0.0006 0.0004 0.0004 0.0000 0.0000 0.0001 1.1125 0.0032 0.0000

28. C 0.0011 0.0024 0.0001 0.0000 0.0001 0.0000 0.0109 0.0074 1.3518

29. C 0.0014 0.0021 0.0001 0.0000 0.0001 0.0000 0.0142 0.0017 1.3529

30. C 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0094 0.0001 0.0114

31. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0012 0.0001 0.0032

Page 269: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

119

32. C 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0095 0.0003 0.0111

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016 0.0005 0.0029

34. C 0.0010 0.0019 0.0000 0.0000 0.0001 0.0000 0.0025 0.0007 0.0959

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0003 0.0081

36. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0082

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0002

Atom 28 29 30 31 32 33 34 35 36

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

2. H 0.0004 0.0003 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000

3. H 0.0003 0.0003 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

4. C 0.0136 0.0133 0.0001 0.0000 0.0002 0.0000 0.0102 0.0000 0.0000

5. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6. C 0.0009 0.0012 0.0001 0.0004 0.0001 0.0000 0.0005 0.0000 0.0000

7. O 0.0043 0.0013 0.0005 0.0002 0.0005 0.0000 0.0015 0.0000 0.0000

8. O 0.0014 0.0004 0.0001 0.0016 0.0000 0.0000 0.0003 0.0000 0.0000

9. C 0.0004 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0002 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0019 0.0005 0.0012 0.0008 0.0007 0.0000 0.0003 0.0000 0.0000

14. H 0.0033 0.0001 0.0001 0.0002 0.0001 0.0000 0.0002 0.0000 0.0000

15. H 0.0007 0.0004 0.0001 0.0001 0.0001 0.0000 0.0003 0.0000 0.0000

16. H 0.0010 0.0007 0.0000 0.0003 0.0000 0.0000 0.0006 0.0000 0.0000

17. N 0.0180 0.0228 0.0007 0.0001 0.0005 0.0003 0.0122 0.0000 0.0002

18. N 0.0111 0.0107 0.0003 0.0001 0.0003 0.0001 0.0087 0.0000 0.0001

19. C 0.0011 0.0014 0.0000 0.0000 0.0001 0.0000 0.0010 0.0000 0.0000

20. O 0.0024 0.0021 0.0001 0.0000 0.0000 0.0000 0.0019 0.0000 0.0000

21. C 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. C 0.0109 0.0142 0.0094 0.0012 0.0095 0.0016 0.0025 0.0002 0.0002

26. H 0.0074 0.0017 0.0001 0.0001 0.0003 0.0005 0.0007 0.0003 0.0000

27. C 1.3518 1.3529 0.0114 0.0032 0.0111 0.0029 0.0959 0.0081 0.0082

28. C 0.0000 0.0136 1.4519 0.9088 0.1033 0.0085 0.0117 0.0034 0.0003

29. C 0.0136 0.0000 0.1039 0.0084 1.4572 0.9126 0.0116 0.0003 0.0034

30. C 1.4519 0.1039 0.0000 0.0041 0.0108 0.0004 1.4255 0.9114 0.0084

31. H 0.9088 0.0084 0.0041 0.0000 0.0003 0.0004 0.0082 0.0021 0.0004

32. C 0.1033 1.4572 0.0108 0.0003 0.0000 0.0039 1.4216 0.0084 0.9111

33. H 0.0085 0.9126 0.0004 0.0004 0.0039 0.0000 0.0086 0.0004 0.0022

34. C 0.0117 0.0116 1.4255 0.0082 1.4216 0.0086 0.0000 0.0035 0.0035

35. H 0.0034 0.0003 0.9114 0.0021 0.0084 0.0004 0.0035 0.0000 0.0004

36. H 0.0003 0.0034 0.0084 0.0004 0.9111 0.0022 0.0035 0.0004 0.0000

37. H 0.0083 0.0083 0.0034 0.0003 0.0033 0.0004 0.9125 0.0020 0.0020

Atom 37

---- ------

1. C 0.0000

2. H 0.0000

3. H 0.0000

4. C 0.0000

5. H 0.0000

6. C 0.0000

7. O 0.0000

8. O 0.0000

9. C 0.0000

10. H 0.0000

11. H 0.0000

12. H 0.0000

13. C 0.0000

14. H 0.0000

15. H 0.0000

16. H 0.0000

17. N 0.0000

18. N 0.0000

19. C 0.0000

20. O 0.0000

21. C 0.0000

22. H 0.0000

23. H 0.0000

24. H 0.0000

25. C 0.0004

26. H 0.0000

27. C 0.0002

28. C 0.0083

29. C 0.0083

30. C 0.0034

31. H 0.0003

32. C 0.0033

Page 270: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

120

33. H 0.0004

34. C 0.9125

35. H 0.0020

36. H 0.0020

37. H 0.0000

------------------------------------o--------------------------------------o------------------------------------------------

2 tsx nbo: Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9067 0.9183 1.4299 0.0061 0.0247 0.0420 0.0094 0.0005

2. H 0.9067 0.0000 0.0004 0.0047 0.0107 0.0017 0.0005 0.0026 0.0001

3. H 0.9183 0.0004 0.0000 0.0036 0.0021 0.0079 0.0017 0.0014 0.0001

4. C 1.4299 0.0047 0.0036 0.0000 0.9026 1.1314 0.0660 0.0207 0.0158

5. H 0.0061 0.0107 0.0021 0.9026 0.0000 0.0035 0.0018 0.0070 0.0008

6. C 0.0247 0.0017 0.0079 1.1314 0.0035 0.0000 1.6446 0.9760 0.0097

7. O 0.0420 0.0005 0.0017 0.0660 0.0018 1.6446 0.0000 0.1402 0.0142

8. O 0.0094 0.0026 0.0014 0.0207 0.0070 0.9760 0.1402 0.0000 0.8883

9. C 0.0005 0.0001 0.0001 0.0158 0.0008 0.0097 0.0142 0.8883 0.0000

10. H 0.0001 0.0000 0.0000 0.0001 0.0003 0.0081 0.0025 0.0058 0.9349

11. H 0.0003 0.0000 0.0000 0.0005 0.0000 0.0020 0.0037 0.0170 0.9296

12. H 0.0003 0.0001 0.0001 0.0004 0.0000 0.0019 0.0045 0.0173 0.9299

13. C 0.0009 0.0003 0.0001 0.0018 0.0000 0.0003 0.0002 0.0001 0.0000

14. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

15. H 0.0028 0.0000 0.0003 0.0021 0.0000 0.0001 0.0002 0.0001 0.0000

16. H 0.0007 0.0000 0.0000 0.0006 0.0000 0.0001 0.0001 0.0001 0.0000

17. N 0.0369 0.0009 0.0011 0.0419 0.0004 0.0048 0.0057 0.0019 0.0001

18. N 0.4536 0.0026 0.0018 0.0448 0.0009 0.0109 0.0115 0.0022 0.0001

19. C 0.0048 0.0002 0.0007 0.0023 0.0001 0.0002 0.0005 0.0001 0.0000

20. O 0.0201 0.0002 0.0006 0.0028 0.0001 0.0014 0.0013 0.0003 0.0000

21. C 0.0019 0.0004 0.0002 0.0005 0.0000 0.0001 0.0000 0.0000 0.0000

22. H 0.0002 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0005 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0003 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

25. C 0.0030 0.0029 0.0034 0.2149 0.0003 0.0127 0.0205 0.0083 0.0003

26. H 0.0007 0.0000 0.0000 0.0009 0.0000 0.0004 0.0004 0.0046 0.0001

27. C 0.0002 0.0000 0.0000 0.0008 0.0001 0.0002 0.0001 0.0001 0.0000

28. C 0.0002 0.0002 0.0002 0.0112 0.0000 0.0006 0.0018 0.0003 0.0000

29. C 0.0002 0.0001 0.0001 0.0061 0.0002 0.0020 0.0073 0.0009 0.0000

30. C 0.0001 0.0000 0.0000 0.0003 0.0000 0.0001 0.0001 0.0000 0.0000

31. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

32. C 0.0001 0.0000 0.0000 0.0004 0.0000 0.0001 0.0002 0.0001 0.0000

33. H 0.0002 0.0000 0.0000 0.0002 0.0000 0.0012 0.0137 0.0016 0.0000

34. C 0.0001 0.0001 0.0001 0.0057 0.0000 0.0005 0.0011 0.0002 0.0000

35. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

36. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0002 0.0000 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0001 0.0003 0.0003 0.0009 0.0000 0.0028 0.0007 0.0369 0.4536

2. H 0.0000 0.0000 0.0001 0.0003 0.0000 0.0000 0.0000 0.0009 0.0026

3. H 0.0000 0.0000 0.0001 0.0001 0.0000 0.0003 0.0000 0.0011 0.0018

4. C 0.0001 0.0005 0.0004 0.0018 0.0001 0.0021 0.0006 0.0419 0.0448

5. H 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0009

6. C 0.0081 0.0020 0.0019 0.0003 0.0000 0.0001 0.0001 0.0048 0.0109

7. O 0.0025 0.0037 0.0045 0.0002 0.0000 0.0002 0.0001 0.0057 0.0115

8. O 0.0058 0.0170 0.0173 0.0001 0.0000 0.0001 0.0001 0.0019 0.0022

9. C 0.9349 0.9296 0.9299 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

10. H 0.0000 0.0004 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0004 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

12. H 0.0004 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0000 0.0000 0.0000 0.0000 0.9191 0.9178 0.8976 0.9217 0.0320

14. H 0.0000 0.0000 0.0000 0.9191 0.0000 0.0008 0.0008 0.0011 0.0081

15. H 0.0000 0.0000 0.0000 0.9178 0.0008 0.0000 0.0005 0.0030 0.0013

16. H 0.0000 0.0000 0.0000 0.8976 0.0008 0.0005 0.0000 0.0026 0.0014

17. N 0.0000 0.0001 0.0000 0.9217 0.0011 0.0030 0.0026 0.0000 1.1114

18. N 0.0000 0.0001 0.0000 0.0320 0.0081 0.0013 0.0014 1.1114 0.0000

19. C 0.0000 0.0000 0.0000 0.0046 0.0014 0.0003 0.0005 0.0092 1.1788

20. O 0.0000 0.0000 0.0000 0.0115 0.0013 0.0001 0.0096 0.0074 0.1565

21. C 0.0000 0.0000 0.0000 0.0008 0.0006 0.0000 0.0008 0.0136 0.0124

22. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0003 0.0012

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0068

24. H 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0001 0.0053

25. C 0.0000 0.0003 0.0002 0.0183 0.0005 0.0122 0.0106 1.4120 0.1166

26. H 0.0000 0.0002 0.0000 0.0138 0.0004 0.0001 0.0002 0.0017 0.0037

27. C 0.0000 0.0000 0.0000 0.0015 0.0018 0.0005 0.0001 0.0105 0.0116

28. C 0.0000 0.0000 0.0000 0.0016 0.0039 0.0008 0.0004 0.0148 0.0069

Page 271: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

121

29. C 0.0000 0.0000 0.0000 0.0009 0.0001 0.0006 0.0002 0.0174 0.0055

30. C 0.0000 0.0000 0.0000 0.0016 0.0001 0.0001 0.0000 0.0010 0.0004

31. H 0.0000 0.0000 0.0000 0.0004 0.0002 0.0001 0.0000 0.0001 0.0001

32. C 0.0000 0.0000 0.0000 0.0008 0.0002 0.0002 0.0000 0.0006 0.0005

33. H 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001

34. C 0.0000 0.0000 0.0000 0.0006 0.0001 0.0004 0.0001 0.0074 0.0040

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001

36. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0048 0.0201 0.0019 0.0002 0.0005 0.0003 0.0030 0.0007 0.0002

2. H 0.0002 0.0002 0.0004 0.0004 0.0000 0.0000 0.0029 0.0000 0.0000

3. H 0.0007 0.0006 0.0002 0.0001 0.0000 0.0003 0.0034 0.0000 0.0000

4. C 0.0023 0.0028 0.0005 0.0000 0.0001 0.0001 0.2149 0.0009 0.0008

5. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0001

6. C 0.0002 0.0014 0.0001 0.0000 0.0000 0.0000 0.0127 0.0004 0.0002

7. O 0.0005 0.0013 0.0000 0.0000 0.0000 0.0000 0.0205 0.0004 0.0001

8. O 0.0001 0.0003 0.0000 0.0000 0.0000 0.0000 0.0083 0.0046 0.0001

9. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0002 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

13. C 0.0046 0.0115 0.0008 0.0001 0.0000 0.0001 0.0183 0.0138 0.0015

14. H 0.0014 0.0013 0.0006 0.0000 0.0000 0.0001 0.0005 0.0004 0.0018

15. H 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0122 0.0001 0.0005

16. H 0.0005 0.0096 0.0008 0.0000 0.0000 0.0000 0.0106 0.0002 0.0001

17. N 0.0092 0.0074 0.0136 0.0003 0.0006 0.0001 1.4120 0.0017 0.0105

18. N 1.1788 0.1565 0.0124 0.0012 0.0068 0.0053 0.1166 0.0037 0.0116

19. C 0.0000 1.6632 0.9936 0.0039 0.0028 0.0044 0.0220 0.0004 0.0006

20. O 1.6632 0.0000 0.0547 0.0147 0.0034 0.0136 0.0190 0.0001 0.0005

21. C 0.9936 0.0547 0.0000 0.9160 0.9166 0.9125 0.0006 0.0002 0.0005

22. H 0.0039 0.0147 0.9160 0.0000 0.0007 0.0009 0.0001 0.0000 0.0000

23. H 0.0028 0.0034 0.9166 0.0007 0.0000 0.0009 0.0002 0.0000 0.0001

24. H 0.0044 0.0136 0.9125 0.0009 0.0009 0.0000 0.0008 0.0000 0.0000

25. C 0.0220 0.0190 0.0006 0.0001 0.0002 0.0008 0.0000 0.8801 1.0734

26. H 0.0004 0.0001 0.0002 0.0000 0.0000 0.0000 0.8801 0.0000 0.0032

27. C 0.0006 0.0005 0.0005 0.0000 0.0001 0.0000 1.0734 0.0032 0.0000

28. C 0.0011 0.0018 0.0001 0.0000 0.0000 0.0001 0.0115 0.0087 1.3687

29. C 0.0011 0.0017 0.0001 0.0000 0.0000 0.0001 0.0124 0.0042 1.3719

30. C 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0086 0.0001 0.0122

31. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 0.0001 0.0029

32. C 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0094 0.0001 0.0109

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 0.0001 0.0034

34. C 0.0007 0.0014 0.0000 0.0000 0.0000 0.0000 0.0021 0.0028 0.1015

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0080

36. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0082

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0002

Atom 28 29 30 31 32 33 34 35 36

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0002 0.0002 0.0001 0.0000 0.0001 0.0002 0.0001 0.0000 0.0000

2. H 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

3. H 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

4. C 0.0112 0.0061 0.0003 0.0000 0.0004 0.0002 0.0057 0.0002 0.0001

5. H 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6. C 0.0006 0.0020 0.0001 0.0000 0.0001 0.0012 0.0005 0.0000 0.0000

7. O 0.0018 0.0073 0.0001 0.0000 0.0002 0.0137 0.0011 0.0000 0.0002

8. O 0.0003 0.0009 0.0000 0.0000 0.0001 0.0016 0.0002 0.0000 0.0000

9. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

13. C 0.0016 0.0009 0.0016 0.0004 0.0008 0.0000 0.0006 0.0000 0.0000

14. H 0.0039 0.0001 0.0001 0.0002 0.0002 0.0000 0.0001 0.0000 0.0000

15. H 0.0008 0.0006 0.0001 0.0001 0.0002 0.0000 0.0004 0.0000 0.0000

16. H 0.0004 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

17. N 0.0148 0.0174 0.0010 0.0001 0.0006 0.0002 0.0074 0.0002 0.0002

18. N 0.0069 0.0055 0.0004 0.0001 0.0005 0.0001 0.0040 0.0001 0.0001

19. C 0.0011 0.0011 0.0001 0.0000 0.0001 0.0000 0.0007 0.0000 0.0000

20. O 0.0018 0.0017 0.0000 0.0000 0.0001 0.0000 0.0014 0.0000 0.0000

21. C 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. C 0.0115 0.0124 0.0086 0.0013 0.0094 0.0013 0.0021 0.0003 0.0002

26. H 0.0087 0.0042 0.0001 0.0001 0.0001 0.0001 0.0028 0.0001 0.0000

27. C 1.3687 1.3719 0.0122 0.0029 0.0109 0.0034 0.1015 0.0080 0.0082

28. C 0.0000 0.0146 1.4448 0.9105 0.1057 0.0076 0.0113 0.0034 0.0003

29. C 0.0146 0.0000 0.1073 0.0086 1.4495 0.8849 0.0119 0.0003 0.0037

Page 272: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

122

30. C 1.4448 0.1073 0.0000 0.0040 0.0109 0.0003 1.4294 0.9114 0.0084

31. H 0.9105 0.0086 0.0040 0.0000 0.0003 0.0004 0.0084 0.0021 0.0004

32. C 0.1057 1.4495 0.0109 0.0003 0.0000 0.0041 1.4271 0.0084 0.9103

33. H 0.0076 0.8849 0.0003 0.0004 0.0041 0.0000 0.0077 0.0003 0.0020

34. C 0.0113 0.0119 1.4294 0.0084 1.4271 0.0077 0.0000 0.0036 0.0033

35. H 0.0034 0.0003 0.9114 0.0021 0.0084 0.0003 0.0036 0.0000 0.0004

36. H 0.0003 0.0037 0.0084 0.0004 0.9103 0.0020 0.0033 0.0004 0.0000

37. H 0.0084 0.0085 0.0033 0.0004 0.0035 0.0003 0.9129 0.0020 0.0020

Atom 37

---- ------

1. C 0.0000

2. H 0.0000

3. H 0.0000

4. C 0.0000

5. H 0.0000

6. C 0.0000

7. O 0.0000

8. O 0.0000

9. C 0.0000

10. H 0.0000

11. H 0.0000

12. H 0.0000

13. C 0.0000

14. H 0.0000

15. H 0.0000

16. H 0.0000

17. N 0.0000

18. N 0.0000

19. C 0.0000

20. O 0.0000

21. C 0.0000

22. H 0.0000

23. H 0.0000

24. H 0.0000

25. C 0.0004

26. H 0.0000

27. C 0.0002

28. C 0.0084

29. C 0.0085

30. C 0.0033

31. H 0.0004

32. C 0.0035

33. H 0.0003

34. C 0.9129

35. H 0.0020

36. H 0.0020

37. H 0.0000

------------------------------------o-----------------------------------o------------------------------------

2 tsn nbo: Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9125 0.9158 1.4218 0.0062 0.0234 0.0415 0.0087 0.0004

2. H 0.9125 0.0000 0.0003 0.0042 0.0110 0.0016 0.0004 0.0024 0.0001

3. H 0.9158 0.0003 0.0000 0.0040 0.0022 0.0077 0.0015 0.0012 0.0001

4. C 1.4218 0.0042 0.0040 0.0000 0.9050 1.1388 0.0653 0.0210 0.0154

5. H 0.0062 0.0110 0.0022 0.9050 0.0000 0.0036 0.0020 0.0072 0.0008

6. C 0.0234 0.0016 0.0077 1.1388 0.0036 0.0000 1.6516 0.9639 0.0096

7. O 0.0415 0.0004 0.0015 0.0653 0.0020 1.6516 0.0000 0.1380 0.0145

8. O 0.0087 0.0024 0.0012 0.0210 0.0072 0.9639 0.1380 0.0000 0.8889

9. C 0.0004 0.0001 0.0001 0.0154 0.0008 0.0096 0.0145 0.8889 0.0000

10. H 0.0001 0.0000 0.0000 0.0001 0.0003 0.0082 0.0025 0.0056 0.9376

11. H 0.0003 0.0001 0.0001 0.0005 0.0000 0.0019 0.0041 0.0176 0.9314

12. H 0.0002 0.0000 0.0000 0.0005 0.0000 0.0018 0.0040 0.0173 0.9304

13. C 0.0008 0.0001 0.0002 0.0017 0.0000 0.0005 0.0007 0.0030 0.0002

14. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000

15. H 0.0023 0.0002 0.0000 0.0015 0.0001 0.0001 0.0011 0.0037 0.0002

16. H 0.0009 0.0000 0.0000 0.0009 0.0000 0.0001 0.0000 0.0008 0.0000

17. N 0.0383 0.0011 0.0010 0.0456 0.0003 0.0034 0.0060 0.0017 0.0001

18. N 0.4635 0.0015 0.0029 0.0437 0.0008 0.0124 0.0118 0.0022 0.0000

19. C 0.0049 0.0007 0.0002 0.0022 0.0000 0.0002 0.0004 0.0001 0.0000

20. O 0.0202 0.0006 0.0002 0.0026 0.0001 0.0014 0.0012 0.0002 0.0000

21. C 0.0020 0.0002 0.0004 0.0005 0.0000 0.0000 0.0001 0.0000 0.0000

22. H 0.0002 0.0001 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0003 0.0003 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

25. C 0.0030 0.0033 0.0032 0.2131 0.0006 0.0141 0.0253 0.0058 0.0001

Page 273: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

123

26. H 0.0004 0.0000 0.0000 0.0009 0.0001 0.0005 0.0001 0.0001 0.0000

27. C 0.0002 0.0000 0.0000 0.0007 0.0001 0.0006 0.0007 0.0001 0.0000

28. C 0.0002 0.0002 0.0002 0.0106 0.0000 0.0009 0.0013 0.0003 0.0000

29. C 0.0003 0.0002 0.0002 0.0094 0.0001 0.0012 0.0087 0.0006 0.0001

30. C 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0004 0.0000 0.0000

31. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

32. C 0.0000 0.0000 0.0000 0.0003 0.0000 0.0003 0.0006 0.0001 0.0000

33. H 0.0001 0.0000 0.0000 0.0004 0.0001 0.0004 0.0076 0.0011 0.0000

34. C 0.0001 0.0001 0.0001 0.0064 0.0000 0.0004 0.0013 0.0002 0.0000

35. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

36. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0001 0.0003 0.0002 0.0008 0.0000 0.0023 0.0009 0.0383 0.4635

2. H 0.0000 0.0001 0.0000 0.0001 0.0000 0.0002 0.0000 0.0011 0.0015

3. H 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0010 0.0029

4. C 0.0001 0.0005 0.0005 0.0017 0.0001 0.0015 0.0009 0.0456 0.0437

5. H 0.0003 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0003 0.0008

6. C 0.0082 0.0019 0.0018 0.0005 0.0000 0.0001 0.0001 0.0034 0.0124

7. O 0.0025 0.0041 0.0040 0.0007 0.0000 0.0011 0.0000 0.0060 0.0118

8. O 0.0056 0.0176 0.0173 0.0030 0.0001 0.0037 0.0008 0.0017 0.0022

9. C 0.9376 0.9314 0.9304 0.0002 0.0000 0.0002 0.0000 0.0001 0.0000

10. H 0.0000 0.0003 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0003 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

12. H 0.0003 0.0002 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0001

13. C 0.0000 0.0000 0.0001 0.0000 0.9225 0.9109 0.9020 0.9181 0.0318

14. H 0.0000 0.0000 0.0000 0.9225 0.0000 0.0009 0.0007 0.0011 0.0079

15. H 0.0000 0.0000 0.0001 0.9109 0.0009 0.0000 0.0004 0.0025 0.0011

16. H 0.0000 0.0000 0.0000 0.9020 0.0007 0.0004 0.0000 0.0026 0.0015

17. N 0.0000 0.0001 0.0001 0.9181 0.0011 0.0025 0.0026 0.0000 1.1128

18. N 0.0000 0.0001 0.0001 0.0318 0.0079 0.0011 0.0015 1.1128 0.0000

19. C 0.0000 0.0000 0.0000 0.0045 0.0014 0.0003 0.0005 0.0094 1.1760

20. O 0.0000 0.0000 0.0000 0.0113 0.0013 0.0001 0.0091 0.0073 0.1573

21. C 0.0000 0.0000 0.0000 0.0008 0.0005 0.0000 0.0007 0.0135 0.0122

22. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0003 0.0013

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0066

24. H 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0001 0.0049

25. C 0.0000 0.0002 0.0002 0.0181 0.0005 0.0122 0.0102 1.4121 0.1138

26. H 0.0000 0.0000 0.0000 0.0139 0.0004 0.0001 0.0002 0.0015 0.0034

27. C 0.0000 0.0000 0.0000 0.0014 0.0017 0.0004 0.0001 0.0111 0.0115

28. C 0.0000 0.0000 0.0000 0.0015 0.0035 0.0007 0.0004 0.0148 0.0067

29. C 0.0000 0.0001 0.0000 0.0009 0.0001 0.0006 0.0002 0.0166 0.0061

30. C 0.0000 0.0000 0.0000 0.0015 0.0001 0.0001 0.0000 0.0011 0.0004

31. H 0.0000 0.0000 0.0000 0.0004 0.0002 0.0001 0.0000 0.0001 0.0001

32. C 0.0000 0.0000 0.0000 0.0008 0.0001 0.0001 0.0000 0.0005 0.0005

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

34. C 0.0000 0.0000 0.0000 0.0006 0.0001 0.0004 0.0001 0.0072 0.0040

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001

36. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0049 0.0202 0.0020 0.0002 0.0005 0.0003 0.0030 0.0004 0.0002

2. H 0.0007 0.0006 0.0002 0.0001 0.0000 0.0003 0.0033 0.0000 0.0000

3. H 0.0002 0.0002 0.0004 0.0005 0.0000 0.0001 0.0032 0.0000 0.0000

4. C 0.0022 0.0026 0.0005 0.0000 0.0000 0.0001 0.2131 0.0009 0.0007

5. H 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0006 0.0001 0.0001

6. C 0.0002 0.0014 0.0000 0.0000 0.0000 0.0000 0.0141 0.0005 0.0006

7. O 0.0004 0.0012 0.0001 0.0000 0.0000 0.0000 0.0253 0.0001 0.0007

8. O 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0058 0.0001 0.0001

9. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

13. C 0.0045 0.0113 0.0008 0.0001 0.0000 0.0001 0.0181 0.0139 0.0014

14. H 0.0014 0.0013 0.0005 0.0000 0.0000 0.0001 0.0005 0.0004 0.0017

15. H 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0122 0.0001 0.0004

16. H 0.0005 0.0091 0.0007 0.0000 0.0000 0.0000 0.0102 0.0002 0.0001

17. N 0.0094 0.0073 0.0135 0.0003 0.0006 0.0001 1.4121 0.0015 0.0111

18. N 1.1760 0.1573 0.0122 0.0013 0.0066 0.0049 0.1138 0.0034 0.0115

19. C 0.0000 1.6664 0.9934 0.0039 0.0027 0.0042 0.0215 0.0004 0.0007

20. O 1.6664 0.0000 0.0545 0.0151 0.0033 0.0138 0.0183 0.0001 0.0005

21. C 0.9934 0.0545 0.0000 0.9185 0.9187 0.9142 0.0006 0.0002 0.0005

22. H 0.0039 0.0151 0.9185 0.0000 0.0007 0.0008 0.0001 0.0000 0.0000

23. H 0.0027 0.0033 0.9187 0.0007 0.0000 0.0008 0.0002 0.0000 0.0001

24. H 0.0042 0.0138 0.9142 0.0008 0.0008 0.0000 0.0007 0.0000 0.0000

25. C 0.0215 0.0183 0.0006 0.0001 0.0002 0.0007 0.0000 0.8877 1.0766

26. H 0.0004 0.0001 0.0002 0.0000 0.0000 0.0000 0.8877 0.0000 0.0031

Page 274: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

124

27. C 0.0007 0.0005 0.0005 0.0000 0.0001 0.0000 1.0766 0.0031 0.0000

28. C 0.0010 0.0017 0.0001 0.0000 0.0000 0.0000 0.0117 0.0088 1.3650

29. C 0.0011 0.0017 0.0001 0.0000 0.0000 0.0000 0.0124 0.0044 1.3713

30. C 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0091 0.0001 0.0122

31. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 0.0001 0.0028

32. C 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0088 0.0001 0.0109

33. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 0.0001 0.0031

34. C 0.0007 0.0013 0.0000 0.0000 0.0000 0.0000 0.0020 0.0028 0.1009

35. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0080

36. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0081

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0002

Atom 28 29 30 31 32 33 34 35 36

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0002 0.0003 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000

2. H 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

3. H 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

4. C 0.0106 0.0094 0.0002 0.0000 0.0003 0.0004 0.0064 0.0002 0.0001

5. H 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

6. C 0.0009 0.0012 0.0001 0.0000 0.0003 0.0004 0.0004 0.0000 0.0000

7. O 0.0013 0.0087 0.0004 0.0000 0.0006 0.0076 0.0013 0.0000 0.0001

8. O 0.0003 0.0006 0.0000 0.0000 0.0001 0.0011 0.0002 0.0000 0.0000

9. C 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0015 0.0009 0.0015 0.0004 0.0008 0.0000 0.0006 0.0000 0.0000

14. H 0.0035 0.0001 0.0001 0.0002 0.0001 0.0000 0.0001 0.0000 0.0000

15. H 0.0007 0.0006 0.0001 0.0001 0.0001 0.0000 0.0004 0.0000 0.0000

16. H 0.0004 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

17. N 0.0148 0.0166 0.0011 0.0001 0.0005 0.0001 0.0072 0.0002 0.0002

18. N 0.0067 0.0061 0.0004 0.0001 0.0005 0.0001 0.0040 0.0001 0.0001

19. C 0.0010 0.0011 0.0001 0.0000 0.0001 0.0000 0.0007 0.0000 0.0000

20. O 0.0017 0.0017 0.0000 0.0000 0.0001 0.0000 0.0013 0.0000 0.0000

21. C 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. C 0.0117 0.0124 0.0091 0.0013 0.0088 0.0013 0.0020 0.0003 0.0002

26. H 0.0088 0.0044 0.0001 0.0001 0.0001 0.0001 0.0028 0.0001 0.0000

27. C 1.3650 1.3713 0.0122 0.0028 0.0109 0.0031 0.1009 0.0080 0.0081

28. C 0.0000 0.0145 1.4489 0.9122 0.1067 0.0079 0.0113 0.0033 0.0003

29. C 0.0145 0.0000 0.1063 0.0085 1.4454 0.8958 0.0118 0.0003 0.0035

30. C 1.4489 0.1063 0.0000 0.0039 0.0109 0.0003 1.4258 0.9131 0.0084

31. H 0.9122 0.0085 0.0039 0.0000 0.0003 0.0004 0.0084 0.0021 0.0004

32. C 0.1067 1.4454 0.0109 0.0003 0.0000 0.0041 1.4309 0.0084 0.9118

33. H 0.0079 0.8958 0.0003 0.0004 0.0041 0.0000 0.0079 0.0003 0.0021

34. C 0.0113 0.0118 1.4258 0.0084 1.4309 0.0079 0.0000 0.0035 0.0033

35. H 0.0033 0.0003 0.9131 0.0021 0.0084 0.0003 0.0035 0.0000 0.0004

36. H 0.0003 0.0035 0.0084 0.0004 0.9118 0.0021 0.0033 0.0004 0.0000

37. H 0.0083 0.0084 0.0032 0.0004 0.0034 0.0003 0.9146 0.0020 0.0020

Atom 37

---- ------

1. C 0.0000

2. H 0.0000

3. H 0.0000

4. C 0.0000

5. H 0.0000

6. C 0.0000

7. O 0.0000

8. O 0.0000

9. C 0.0000

10. H 0.0000

11. H 0.0000

12. H 0.0000

13. C 0.0000

14. H 0.0000

15. H 0.0000

16. H 0.0000

17. N 0.0000

18. N 0.0000

19. C 0.0000

20. O 0.0000

21. C 0.0000

22. H 0.0000

23. H 0.0000

24. H 0.0000

25. C 0.0004

26. H 0.0000

27. C 0.0002

Page 275: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

125

28. C 0.0083

29. C 0.0084

30. C 0.0032

31. H 0.0004

32. C 0.0034

33. H 0.0003

34. C 0.9146

35. H 0.0020

36. H 0.0020

37. H 0.0000

------------------------------------o---------------------------o--------------

3 trx nbo: Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9200 0.9211 0.9144 0.9260 0.0324 0.0045 0.0058 0.0013

2. H 0.9200 0.0000 0.0009 0.0003 0.0016 0.0108 0.0006 0.0013 0.0000

3. H 0.9211 0.0009 0.0000 0.0005 0.0018 0.0015 0.0004 0.0002 0.0014

4. H 0.9144 0.0003 0.0005 0.0000 0.0042 0.0022 0.0001 0.0001 0.0002

5. N 0.9260 0.0016 0.0018 0.0042 0.0000 1.1368 0.0093 0.0198 0.0030

6. N 0.0324 0.0108 0.0015 0.0022 1.1368 0.0000 1.1994 0.1729 0.0107

7. C 0.0045 0.0006 0.0004 0.0001 0.0093 1.1994 0.0000 1.6627 0.9793

8. O 0.0058 0.0013 0.0002 0.0001 0.0198 0.1729 1.6627 0.0000 0.0595

9. C 0.0013 0.0000 0.0014 0.0002 0.0030 0.0107 0.9793 0.0595 0.0000

10. H 0.0002 0.0000 0.0001 0.0002 0.0007 0.0011 0.0026 0.0130 0.9301

11. H 0.0011 0.0000 0.0000 0.0000 0.0004 0.0090 0.0041 0.0058 0.9065

12. H 0.0003 0.0000 0.0004 0.0000 0.0001 0.0080 0.0037 0.0088 0.9151

13. C 0.0193 0.0008 0.0074 0.0116 1.3879 0.1649 0.0184 0.0205 0.0060

14. H 0.0132 0.0002 0.0002 0.0001 0.0024 0.0027 0.0002 0.0005 0.0000

15. C 0.0014 0.0009 0.0003 0.0003 0.0121 0.0116 0.0006 0.0010 0.0001

16. C 0.0023 0.0030 0.0009 0.0013 0.0197 0.0161 0.0009 0.0021 0.0008

17. C 0.0006 0.0001 0.0003 0.0008 0.0247 0.0171 0.0012 0.0022 0.0009

18. C 0.0011 0.0001 0.0001 0.0001 0.0009 0.0003 0.0000 0.0001 0.0000

19. H 0.0010 0.0002 0.0001 0.0004 0.0002 0.0002 0.0000 0.0000 0.0000

20. C 0.0006 0.0002 0.0001 0.0000 0.0004 0.0004 0.0000 0.0001 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000

22. C 0.0004 0.0002 0.0002 0.0007 0.0137 0.0139 0.0009 0.0020 0.0008

23. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0014 0.0003 0.0002 0.0023 0.0326 0.3239 0.0037 0.0053 0.0100

27. H 0.0000 0.0000 0.0000 0.0000 0.0010 0.0019 0.0004 0.0017 0.0002

28. C 0.0011 0.0000 0.0003 0.0030 0.0260 0.0458 0.0026 0.0038 0.0019

29. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000

30. C 0.0002 0.0000 0.0000 0.0001 0.0029 0.0118 0.0002 0.0004 0.0007

31. C 0.0002 0.0000 0.0000 0.0000 0.0010 0.0053 0.0008 0.0042 0.0006

32. O 0.0001 0.0000 0.0001 0.0003 0.0025 0.0094 0.0003 0.0004 0.0006

33. O 0.0003 0.0000 0.0000 0.0002 0.0018 0.0122 0.0006 0.0014 0.0008

34. O 0.0001 0.0000 0.0000 0.0001 0.0011 0.0046 0.0002 0.0002 0.0003

35. O 0.0002 0.0001 0.0000 0.0000 0.0006 0.0020 0.0008 0.0008 0.0001

36. C 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

40. C 0.0000 0.0000 0.0000 0.0000 0.0001 0.0008 0.0001 0.0001 0.0000

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

42. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

43. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0002 0.0011 0.0003 0.0193 0.0132 0.0014 0.0023 0.0006 0.0011

2. H 0.0000 0.0000 0.0000 0.0008 0.0002 0.0009 0.0030 0.0001 0.0001

3. H 0.0001 0.0000 0.0004 0.0074 0.0002 0.0003 0.0009 0.0003 0.0001

4. H 0.0002 0.0000 0.0000 0.0116 0.0001 0.0003 0.0013 0.0008 0.0001

5. N 0.0007 0.0004 0.0001 1.3879 0.0024 0.0121 0.0197 0.0247 0.0009

6. N 0.0011 0.0090 0.0080 0.1649 0.0027 0.0116 0.0161 0.0171 0.0003

7. C 0.0026 0.0041 0.0037 0.0184 0.0002 0.0006 0.0009 0.0012 0.0000

8. O 0.0130 0.0058 0.0088 0.0205 0.0005 0.0010 0.0021 0.0022 0.0001

9. C 0.9301 0.9065 0.9151 0.0060 0.0000 0.0001 0.0008 0.0009 0.0000

10. H 0.0000 0.0007 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0007 0.0000 0.0011 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0005 0.0011 0.0000 0.0009 0.0000 0.0000 0.0001 0.0001 0.0000

13. C 0.0001 0.0002 0.0009 0.0000 0.8823 1.1229 0.0106 0.0138 0.0104

14. H 0.0000 0.0000 0.0000 0.8823 0.0000 0.0033 0.0070 0.0017 0.0001

15. C 0.0000 0.0000 0.0000 1.1229 0.0033 0.0000 1.3476 1.3482 0.0116

16. C 0.0000 0.0000 0.0001 0.0106 0.0070 1.3476 0.0000 0.0134 1.4586

Page 276: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

126

17. C 0.0000 0.0000 0.0001 0.0138 0.0017 1.3482 0.0134 0.0000 0.1019

18. C 0.0000 0.0000 0.0000 0.0104 0.0001 0.0116 1.4586 0.1019 0.0000

19. H 0.0000 0.0000 0.0000 0.0012 0.0000 0.0030 0.9142 0.0085 0.0040

20. C 0.0000 0.0000 0.0000 0.0092 0.0003 0.0108 0.1033 1.4561 0.0109

21. H 0.0000 0.0000 0.0000 0.0017 0.0004 0.0029 0.0083 0.9103 0.0003

22. C 0.0000 0.0000 0.0001 0.0019 0.0005 0.0949 0.0114 0.0117 1.4204

23. H 0.0000 0.0000 0.0000 0.0003 0.0003 0.0081 0.0033 0.0003 0.9128

24. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0082 0.0003 0.0034 0.0084

25. H 0.0000 0.0000 0.0000 0.0003 0.0000 0.0002 0.0083 0.0083 0.0033

26. C 0.0002 0.0001 0.0004 0.0026 0.0006 0.0005 0.0002 0.0002 0.0000

27. H 0.0000 0.0000 0.0000 0.0030 0.0000 0.0000 0.0004 0.0004 0.0000

28. C 0.0000 0.0006 0.0000 0.1484 0.0010 0.0006 0.0088 0.0129 0.0001

29. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000

30. C 0.0000 0.0001 0.0000 0.0127 0.0005 0.0007 0.0008 0.0005 0.0000

31. C 0.0000 0.0000 0.0000 0.0005 0.0002 0.0000 0.0000 0.0000 0.0000

32. O 0.0000 0.0001 0.0000 0.0145 0.0036 0.0007 0.0009 0.0021 0.0002

33. O 0.0000 0.0000 0.0000 0.0005 0.0005 0.0000 0.0001 0.0001 0.0000

34. O 0.0000 0.0000 0.0000 0.0069 0.0005 0.0005 0.0006 0.0002 0.0001

35. O 0.0000 0.0001 0.0000 0.0019 0.0035 0.0001 0.0001 0.0000 0.0000

36. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0002 0.0001

37. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0001 0.0004 0.0000

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

40. C 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

42. H 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

43. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0010 0.0006 0.0000 0.0004 0.0000 0.0000 0.0000 0.0014 0.0000

2. H 0.0002 0.0002 0.0000 0.0002 0.0000 0.0000 0.0000 0.0003 0.0000

3. H 0.0001 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0002 0.0000

4. H 0.0004 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0023 0.0000

5. N 0.0002 0.0004 0.0003 0.0137 0.0001 0.0002 0.0000 0.0326 0.0010

6. N 0.0002 0.0004 0.0001 0.0139 0.0001 0.0001 0.0000 0.3239 0.0019

7. C 0.0000 0.0000 0.0000 0.0009 0.0000 0.0000 0.0000 0.0037 0.0004

8. O 0.0000 0.0001 0.0000 0.0020 0.0000 0.0000 0.0000 0.0053 0.0017

9. C 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000 0.0100 0.0002

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

12. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0004 0.0000

13. C 0.0012 0.0092 0.0017 0.0019 0.0003 0.0002 0.0003 0.0026 0.0030

14. H 0.0000 0.0003 0.0004 0.0005 0.0003 0.0000 0.0000 0.0006 0.0000

15. C 0.0030 0.0108 0.0029 0.0949 0.0081 0.0082 0.0002 0.0005 0.0000

16. C 0.9142 0.1033 0.0083 0.0114 0.0033 0.0003 0.0083 0.0002 0.0004

17. C 0.0085 1.4561 0.9103 0.0117 0.0003 0.0034 0.0083 0.0002 0.0004

18. C 0.0040 0.0109 0.0003 1.4204 0.9128 0.0084 0.0033 0.0000 0.0000

19. H 0.0000 0.0003 0.0004 0.0084 0.0021 0.0004 0.0003 0.0000 0.0000

20. C 0.0003 0.0000 0.0038 1.4237 0.0084 0.9118 0.0033 0.0001 0.0000

21. H 0.0004 0.0038 0.0000 0.0084 0.0004 0.0022 0.0004 0.0000 0.0000

22. C 0.0084 1.4237 0.0084 0.0000 0.0034 0.0034 0.9138 0.0001 0.0003

23. H 0.0021 0.0084 0.0004 0.0034 0.0000 0.0004 0.0020 0.0000 0.0000

24. H 0.0004 0.9118 0.0022 0.0034 0.0004 0.0000 0.0020 0.0000 0.0000

25. H 0.0003 0.0033 0.0004 0.9138 0.0020 0.0020 0.0000 0.0000 0.0000

26. C 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.8797

27. H 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.8797 0.0000

28. C 0.0002 0.0002 0.0000 0.0086 0.0000 0.0000 0.0000 1.5136 0.0048

29. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0058 0.0025

30. C 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0244 0.0082

31. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9701 0.0033

32. O 0.0000 0.0001 0.0002 0.0011 0.0000 0.0000 0.0000 0.0325 0.0005

33. O 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0605 0.0050

34. O 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0204 0.0002

35. O 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0129 0.0062

36. C 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0003

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000

38. H 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

40. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0186 0.0005

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001

42. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001

43. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

Atom 28 29 30 31 32 33 34 35 36

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0011 0.0000 0.0002 0.0002 0.0001 0.0003 0.0001 0.0002 0.0000

2. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

3. H 0.0003 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

4. H 0.0030 0.0001 0.0001 0.0000 0.0003 0.0002 0.0001 0.0000 0.0000

5. N 0.0260 0.0000 0.0029 0.0010 0.0025 0.0018 0.0011 0.0006 0.0001

Page 277: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

127

6. N 0.0458 0.0002 0.0118 0.0053 0.0094 0.0122 0.0046 0.0020 0.0002

7. C 0.0026 0.0000 0.0002 0.0008 0.0003 0.0006 0.0002 0.0008 0.0000

8. O 0.0038 0.0000 0.0004 0.0042 0.0004 0.0014 0.0002 0.0008 0.0000

9. C 0.0019 0.0000 0.0007 0.0006 0.0006 0.0008 0.0003 0.0001 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0006 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.1484 0.0001 0.0127 0.0005 0.0145 0.0005 0.0069 0.0019 0.0001

14. H 0.0010 0.0000 0.0005 0.0002 0.0036 0.0005 0.0005 0.0035 0.0000

15. C 0.0006 0.0000 0.0007 0.0000 0.0007 0.0000 0.0005 0.0001 0.0001

16. C 0.0088 0.0001 0.0008 0.0000 0.0009 0.0001 0.0006 0.0001 0.0000

17. C 0.0129 0.0000 0.0005 0.0000 0.0021 0.0001 0.0002 0.0000 0.0002

18. C 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000 0.0001

19. H 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0002 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001

21. H 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

22. C 0.0086 0.0000 0.0004 0.0000 0.0011 0.0001 0.0001 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 1.5136 0.0058 0.0244 0.9701 0.0325 0.0605 0.0204 0.0129 0.0010

27. H 0.0048 0.0025 0.0082 0.0033 0.0005 0.0050 0.0002 0.0062 0.0003

28. C 0.0000 0.9046 1.0976 0.0139 0.0658 0.0256 0.0153 0.0052 0.0157

29. H 0.9046 0.0000 0.0036 0.0103 0.0099 0.0015 0.0008 0.0006 0.0003

30. C 1.0976 0.0036 0.0000 0.0016 1.6636 0.0020 0.9946 0.0007 0.0097

31. C 0.0139 0.0103 0.0016 0.0000 0.0088 1.7425 0.0019 1.0459 0.0001

32. O 0.0658 0.0099 1.6636 0.0088 0.0000 0.0037 0.1484 0.0022 0.0132

33. O 0.0256 0.0015 0.0020 1.7425 0.0037 0.0000 0.0017 0.1679 0.0001

34. O 0.0153 0.0008 0.9946 0.0019 0.1484 0.0017 0.0000 0.0004 0.8912

35. O 0.0052 0.0006 0.0007 1.0459 0.0022 0.1679 0.0004 0.0000 0.0001

36. C 0.0157 0.0003 0.0097 0.0001 0.0132 0.0001 0.8912 0.0001 0.0000

37. H 0.0004 0.0000 0.0020 0.0000 0.0043 0.0000 0.0166 0.0000 0.9303

38. H 0.0003 0.0000 0.0022 0.0000 0.0042 0.0001 0.0169 0.0000 0.9321

39. H 0.0000 0.0001 0.0081 0.0000 0.0022 0.0000 0.0059 0.0000 0.9369

40. C 0.0006 0.0005 0.0002 0.0106 0.0012 0.0127 0.0002 0.8777 0.0000

41. H 0.0001 0.0000 0.0000 0.0028 0.0009 0.0043 0.0001 0.0147 0.0000

42. H 0.0001 0.0000 0.0000 0.0023 0.0000 0.0049 0.0000 0.0150 0.0000

43. H 0.0002 0.0000 0.0000 0.0075 0.0000 0.0022 0.0000 0.0058 0.0000

Atom 37 38 39 40 41 42 43

---- ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5. N 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

6. N 0.0002 0.0001 0.0000 0.0008 0.0001 0.0000 0.0001

7. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

8. O 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000

9. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0002 0.0002 0.0000 0.0001 0.0000 0.0001 0.0000

14. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000

15. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16. C 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

17. C 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000

18. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0005 0.0006 0.0001 0.0186 0.0002 0.0003 0.0001

27. H 0.0000 0.0000 0.0000 0.0005 0.0001 0.0001 0.0001

28. C 0.0004 0.0003 0.0000 0.0006 0.0001 0.0001 0.0002

29. H 0.0000 0.0000 0.0001 0.0005 0.0000 0.0000 0.0000

30. C 0.0020 0.0022 0.0081 0.0002 0.0000 0.0000 0.0000

31. C 0.0000 0.0000 0.0000 0.0106 0.0028 0.0023 0.0075

32. O 0.0043 0.0042 0.0022 0.0012 0.0009 0.0000 0.0000

33. O 0.0000 0.0001 0.0000 0.0127 0.0043 0.0049 0.0022

34. O 0.0166 0.0169 0.0059 0.0002 0.0001 0.0000 0.0000

35. O 0.0000 0.0000 0.0000 0.8777 0.0147 0.0150 0.0058

36. C 0.9303 0.9321 0.9369 0.0000 0.0000 0.0000 0.0000

37. H 0.0000 0.0002 0.0003 0.0000 0.0000 0.0000 0.0000

38. H 0.0002 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000

39. H 0.0003 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

40. C 0.0000 0.0000 0.0000 0.0000 0.9291 0.9299 0.9378

Page 278: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

128

41. H 0.0000 0.0000 0.0000 0.9291 0.0000 0.0002 0.0003

42. H 0.0000 0.0000 0.0000 0.9299 0.0002 0.0000 0.0003

43. H 0.0000 0.0000 0.0000 0.9378 0.0003 0.0003 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.7709

2. H 0.9418

3. H 0.9388

4. H 0.9436

5. N 3.6359

6. N 3.2307

7. C 3.8990

8. O 1.9968

9. C 3.8309

10. H 0.9497

11. H 0.9300

12. H 0.9396

13. C 3.8847

14. H 0.9263

15. C 3.9935

16. C 3.9457

17. C 3.9426

18. C 3.9459

19. H 0.9455

20. C 3.9448

21. H 0.9402

22. C 3.9457

23. H 0.9419

24. H 0.9411

25. H 0.9423

26. C 3.9261

27. H 0.9209

28. C 3.9300

29. H 0.9413

30. C 3.8508

31. C 3.8349

32. O 1.9984

33. O 2.0533

34. O 2.1299

35. O 2.1652

36. C 3.7320

37. H 0.9553

38. H 0.9581

39. H 0.9541

40. C 3.7209

41. H 0.9530

42. H 0.9535

43. H 0.9545

---------------------------o---------------------------o----------------------------

3 trn nbo: Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9233 0.9225 0.8904 0.9194 0.0333 0.0045 0.0056 0.0014

2. H 0.9233 0.0000 0.0009 0.0005 0.0017 0.0097 0.0005 0.0010 0.0000

3. H 0.9225 0.0009 0.0000 0.0007 0.0016 0.0016 0.0006 0.0002 0.0014

4. H 0.8904 0.0005 0.0007 0.0000 0.0027 0.0025 0.0001 0.0001 0.0001

5. N 0.9194 0.0017 0.0016 0.0027 0.0000 1.1485 0.0089 0.0196 0.0030

6. N 0.0333 0.0097 0.0016 0.0025 1.1485 0.0000 1.1751 0.1629 0.0109

7. C 0.0045 0.0005 0.0006 0.0001 0.0089 1.1751 0.0000 1.6769 0.9829

8. O 0.0056 0.0010 0.0002 0.0001 0.0196 0.1629 1.6769 0.0000 0.0588

9. C 0.0014 0.0000 0.0014 0.0001 0.0030 0.0109 0.9829 0.0588 0.0000

10. H 0.0002 0.0000 0.0001 0.0001 0.0006 0.0008 0.0027 0.0126 0.9293

11. H 0.0013 0.0000 0.0001 0.0000 0.0003 0.0088 0.0044 0.0066 0.9062

12. H 0.0003 0.0000 0.0003 0.0000 0.0001 0.0076 0.0040 0.0087 0.9119

13. C 0.0194 0.0009 0.0077 0.0109 1.3824 0.1519 0.0180 0.0179 0.0053

14. H 0.0137 0.0002 0.0003 0.0001 0.0022 0.0032 0.0003 0.0006 0.0000

15. C 0.0013 0.0009 0.0003 0.0003 0.0129 0.0113 0.0005 0.0008 0.0001

16. C 0.0022 0.0032 0.0008 0.0011 0.0191 0.0152 0.0008 0.0017 0.0007

17. C 0.0007 0.0001 0.0004 0.0007 0.0244 0.0147 0.0011 0.0018 0.0007

18. C 0.0012 0.0001 0.0001 0.0000 0.0008 0.0003 0.0000 0.0001 0.0000

19. H 0.0010 0.0002 0.0001 0.0003 0.0001 0.0001 0.0000 0.0000 0.0000

20. C 0.0007 0.0001 0.0001 0.0000 0.0005 0.0004 0.0000 0.0000 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000

22. C 0.0004 0.0002 0.0003 0.0006 0.0135 0.0123 0.0007 0.0015 0.0006

Page 279: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

129

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0006 0.0000 0.0004 0.0016 0.0286 0.0445 0.0019 0.0022 0.0021

27. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0000 0.0000 0.0000

28. C 0.0007 0.0003 0.0004 0.0021 0.0345 0.3477 0.0039 0.0078 0.0100

29. H 0.0001 0.0000 0.0000 0.0000 0.0007 0.0022 0.0004 0.0015 0.0002

30. C 0.0006 0.0001 0.0000 0.0001 0.0022 0.0075 0.0019 0.0071 0.0012

31. C 0.0002 0.0000 0.0000 0.0001 0.0018 0.0114 0.0002 0.0003 0.0007

32. O 0.0058 0.0015 0.0002 0.0079 0.0014 0.0056 0.0013 0.0025 0.0004

33. O 0.0003 0.0000 0.0000 0.0010 0.0035 0.0117 0.0003 0.0004 0.0007

34. O 0.0007 0.0001 0.0000 0.0007 0.0012 0.0064 0.0009 0.0013 0.0004

35. O 0.0015 0.0000 0.0002 0.0022 0.0011 0.0025 0.0001 0.0001 0.0002

36. C 0.0000 0.0000 0.0000 0.0000 0.0001 0.0012 0.0001 0.0003 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0000

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

40. C 0.0001 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000

41. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000

42. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

43. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0002 0.0013 0.0003 0.0194 0.0137 0.0013 0.0022 0.0007 0.0012

2. H 0.0000 0.0000 0.0000 0.0009 0.0002 0.0009 0.0032 0.0001 0.0001

3. H 0.0001 0.0001 0.0003 0.0077 0.0003 0.0003 0.0008 0.0004 0.0001

4. H 0.0001 0.0000 0.0000 0.0109 0.0001 0.0003 0.0011 0.0007 0.0000

5. N 0.0006 0.0003 0.0001 1.3824 0.0022 0.0129 0.0191 0.0244 0.0008

6. N 0.0008 0.0088 0.0076 0.1519 0.0032 0.0113 0.0152 0.0147 0.0003

7. C 0.0027 0.0044 0.0040 0.0180 0.0003 0.0005 0.0008 0.0011 0.0000

8. O 0.0126 0.0066 0.0087 0.0179 0.0006 0.0008 0.0017 0.0018 0.0001

9. C 0.9293 0.9062 0.9119 0.0053 0.0000 0.0001 0.0007 0.0007 0.0000

10. H 0.0000 0.0007 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0007 0.0000 0.0012 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0005 0.0012 0.0000 0.0009 0.0000 0.0000 0.0001 0.0001 0.0000

13. C 0.0001 0.0002 0.0009 0.0000 0.8980 1.1240 0.0105 0.0137 0.0099

14. H 0.0000 0.0000 0.0000 0.8980 0.0000 0.0032 0.0075 0.0018 0.0001

15. C 0.0000 0.0000 0.0000 1.1240 0.0032 0.0000 1.3462 1.3484 0.0115

16. C 0.0000 0.0000 0.0001 0.0105 0.0075 1.3462 0.0000 0.0136 1.4552

17. C 0.0000 0.0000 0.0001 0.0137 0.0018 1.3484 0.0136 0.0000 0.1027

18. C 0.0000 0.0000 0.0000 0.0099 0.0001 0.0115 1.4552 0.1027 0.0000

19. H 0.0000 0.0000 0.0000 0.0012 0.0000 0.0031 0.9092 0.0083 0.0041

20. C 0.0000 0.0000 0.0000 0.0097 0.0003 0.0111 0.1026 1.4586 0.0109

21. H 0.0000 0.0000 0.0000 0.0016 0.0005 0.0028 0.0085 0.9144 0.0003

22. C 0.0000 0.0000 0.0001 0.0020 0.0007 0.0947 0.0117 0.0117 1.4232

23. H 0.0000 0.0000 0.0000 0.0002 0.0003 0.0081 0.0034 0.0003 0.9132

24. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0082 0.0003 0.0034 0.0083

25. H 0.0000 0.0000 0.0000 0.0004 0.0000 0.0002 0.0083 0.0083 0.0033

26. C 0.0001 0.0003 0.0001 0.1682 0.0006 0.0007 0.0132 0.0126 0.0001

27. H 0.0000 0.0000 0.0000 0.0004 0.0001 0.0001 0.0000 0.0000 0.0000

28. C 0.0003 0.0001 0.0005 0.0030 0.0005 0.0002 0.0002 0.0002 0.0000

29. H 0.0000 0.0000 0.0000 0.0022 0.0000 0.0000 0.0003 0.0003 0.0000

30. C 0.0001 0.0000 0.0001 0.0021 0.0001 0.0000 0.0002 0.0002 0.0000

31. C 0.0000 0.0001 0.0000 0.0100 0.0002 0.0008 0.0008 0.0012 0.0001

32. O 0.0000 0.0000 0.0002 0.0006 0.0000 0.0000 0.0001 0.0000 0.0000

33. O 0.0000 0.0001 0.0000 0.0217 0.0001 0.0005 0.0026 0.0013 0.0003

34. O 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0001 0.0001 0.0000

35. O 0.0000 0.0000 0.0000 0.0043 0.0001 0.0003 0.0021 0.0003 0.0002

36. C 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

40. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0003 0.0000 0.0002

41. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000

42. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0004 0.0001 0.0003

43. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0010 0.0007 0.0000 0.0004 0.0000 0.0000 0.0000 0.0006 0.0000

2. H 0.0002 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

3. H 0.0001 0.0001 0.0000 0.0003 0.0000 0.0000 0.0000 0.0004 0.0000

4. H 0.0003 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0016 0.0000

5. N 0.0001 0.0005 0.0003 0.0135 0.0000 0.0002 0.0000 0.0286 0.0001

6. N 0.0001 0.0004 0.0001 0.0123 0.0001 0.0001 0.0000 0.0445 0.0005

7. C 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000 0.0000 0.0019 0.0000

8. O 0.0000 0.0000 0.0000 0.0015 0.0000 0.0000 0.0000 0.0022 0.0000

9. C 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0021 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000

Page 280: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

130

12. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000

13. C 0.0012 0.0097 0.0016 0.0020 0.0002 0.0002 0.0004 0.1682 0.0004

14. H 0.0000 0.0003 0.0005 0.0007 0.0003 0.0000 0.0000 0.0006 0.0001

15. C 0.0031 0.0111 0.0028 0.0947 0.0081 0.0082 0.0002 0.0007 0.0001

16. C 0.9092 0.1026 0.0085 0.0117 0.0034 0.0003 0.0083 0.0132 0.0000

17. C 0.0083 1.4586 0.9144 0.0117 0.0003 0.0034 0.0083 0.0126 0.0000

18. C 0.0041 0.0109 0.0003 1.4232 0.9132 0.0083 0.0033 0.0001 0.0000

19. H 0.0000 0.0003 0.0004 0.0082 0.0021 0.0004 0.0003 0.0000 0.0000

20. C 0.0003 0.0000 0.0039 1.4212 0.0084 0.9126 0.0033 0.0002 0.0000

21. H 0.0004 0.0039 0.0000 0.0086 0.0004 0.0022 0.0004 0.0000 0.0000

22. C 0.0082 1.4212 0.0086 0.0000 0.0034 0.0034 0.9142 0.0101 0.0000

23. H 0.0021 0.0084 0.0004 0.0034 0.0000 0.0004 0.0020 0.0000 0.0000

24. H 0.0004 0.9126 0.0022 0.0034 0.0004 0.0000 0.0020 0.0000 0.0000

25. H 0.0003 0.0033 0.0004 0.9142 0.0020 0.0020 0.0000 0.0000 0.0000

26. C 0.0000 0.0002 0.0000 0.0101 0.0000 0.0000 0.0000 0.0000 0.9004

27. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9004 0.0000

28. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 1.4986 0.0057

29. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0055 0.0031

30. C 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0163 0.0098

31. C 0.0002 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 1.1030 0.0037

32. O 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0161 0.0010

33. O 0.0004 0.0003 0.0000 0.0013 0.0000 0.0000 0.0000 0.0587 0.0023

34. O 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0113 0.0003

35. O 0.0021 0.0001 0.0000 0.0003 0.0000 0.0000 0.0000 0.0183 0.0071

36. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0004

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000

40. C 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0164 0.0009

41. H 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000

42. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000

43. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003

Atom 28 29 30 31 32 33 34 35 36

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0007 0.0001 0.0006 0.0002 0.0058 0.0003 0.0007 0.0015 0.0000

2. H 0.0003 0.0000 0.0001 0.0000 0.0015 0.0000 0.0001 0.0000 0.0000

3. H 0.0004 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0002 0.0000

4. H 0.0021 0.0000 0.0001 0.0001 0.0079 0.0010 0.0007 0.0022 0.0000

5. N 0.0345 0.0007 0.0022 0.0018 0.0014 0.0035 0.0012 0.0011 0.0001

6. N 0.3477 0.0022 0.0075 0.0114 0.0056 0.0117 0.0064 0.0025 0.0012

7. C 0.0039 0.0004 0.0019 0.0002 0.0013 0.0003 0.0009 0.0001 0.0001

8. O 0.0078 0.0015 0.0071 0.0003 0.0025 0.0004 0.0013 0.0001 0.0003

9. C 0.0100 0.0002 0.0012 0.0007 0.0004 0.0007 0.0004 0.0002 0.0000

10. H 0.0003 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0001 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000

12. H 0.0005 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

13. C 0.0030 0.0022 0.0021 0.0100 0.0006 0.0217 0.0004 0.0043 0.0003

14. H 0.0005 0.0000 0.0001 0.0002 0.0000 0.0001 0.0000 0.0001 0.0000

15. C 0.0002 0.0000 0.0000 0.0008 0.0000 0.0005 0.0000 0.0003 0.0000

16. C 0.0002 0.0003 0.0002 0.0008 0.0001 0.0026 0.0001 0.0021 0.0000

17. C 0.0002 0.0003 0.0002 0.0012 0.0000 0.0013 0.0001 0.0003 0.0000

18. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0003 0.0000 0.0002 0.0000

19. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0004 0.0000 0.0021 0.0000

20. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0001 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0001 0.0002 0.0002 0.0005 0.0000 0.0013 0.0000 0.0003 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 1.4986 0.0055 0.0163 1.1030 0.0161 0.0587 0.0113 0.0183 0.0017

27. H 0.0057 0.0031 0.0098 0.0037 0.0010 0.0023 0.0003 0.0071 0.0004

28. C 0.0000 0.8781 0.9780 0.0224 0.0483 0.0453 0.0157 0.0095 0.0175

29. H 0.8781 0.0000 0.0037 0.0079 0.0110 0.0010 0.0011 0.0008 0.0001

30. C 0.9780 0.0037 0.0000 0.0012 1.7254 0.0018 1.0413 0.0039 0.0105

31. C 0.0224 0.0079 0.0012 0.0000 0.0013 1.6829 0.0006 0.9774 0.0001

32. O 0.0483 0.0110 1.7254 0.0013 0.0000 0.0023 0.1638 0.0019 0.0122

33. O 0.0453 0.0010 0.0018 1.6829 0.0023 0.0000 0.0013 0.1466 0.0002

34. O 0.0157 0.0011 1.0413 0.0006 0.1638 0.0013 0.0000 0.0005 0.8793

35. O 0.0095 0.0008 0.0039 0.9774 0.0019 0.1466 0.0005 0.0000 0.0001

36. C 0.0175 0.0001 0.0105 0.0001 0.0122 0.0002 0.8793 0.0001 0.0000

37. H 0.0003 0.0000 0.0026 0.0000 0.0045 0.0000 0.0153 0.0000 0.9325

38. H 0.0003 0.0000 0.0026 0.0000 0.0046 0.0000 0.0145 0.0000 0.9291

39. H 0.0001 0.0000 0.0074 0.0000 0.0021 0.0000 0.0058 0.0000 0.9354

40. C 0.0003 0.0002 0.0003 0.0099 0.0009 0.0144 0.0001 0.8878 0.0000

41. H 0.0003 0.0000 0.0000 0.0019 0.0000 0.0041 0.0000 0.0169 0.0000

42. H 0.0003 0.0000 0.0001 0.0020 0.0000 0.0045 0.0000 0.0175 0.0000

43. H 0.0000 0.0000 0.0000 0.0081 0.0002 0.0026 0.0000 0.0058 0.0000

Page 281: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

131

Atom 37 38 39 40 41 42 43

---- ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

2. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4. H 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000

5. N 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

6. N 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000

7. C 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

8. O 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

9. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0000 0.0000 0.0000 0.0001 0.0002 0.0001 0.0000

14. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

16. C 0.0000 0.0000 0.0000 0.0003 0.0001 0.0004 0.0000

17. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

18. C 0.0000 0.0000 0.0000 0.0002 0.0000 0.0003 0.0000

19. H 0.0000 0.0000 0.0000 0.0002 0.0001 0.0001 0.0000

20. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0001 0.0003 0.0002 0.0164 0.0004 0.0003 0.0001

27. H 0.0000 0.0000 0.0000 0.0009 0.0000 0.0000 0.0003

28. C 0.0003 0.0003 0.0001 0.0003 0.0003 0.0003 0.0000

29. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000

30. C 0.0026 0.0026 0.0074 0.0003 0.0000 0.0001 0.0000

31. C 0.0000 0.0000 0.0000 0.0099 0.0019 0.0020 0.0081

32. O 0.0045 0.0046 0.0021 0.0009 0.0000 0.0000 0.0002

33. O 0.0000 0.0000 0.0000 0.0144 0.0041 0.0045 0.0026

34. O 0.0153 0.0145 0.0058 0.0001 0.0000 0.0000 0.0000

35. O 0.0000 0.0000 0.0000 0.8878 0.0169 0.0175 0.0058

36. C 0.9325 0.9291 0.9354 0.0000 0.0000 0.0000 0.0000

37. H 0.0000 0.0002 0.0003 0.0000 0.0000 0.0000 0.0000

38. H 0.0002 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000

39. H 0.0003 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

40. C 0.0000 0.0000 0.0000 0.0000 0.9305 0.9319 0.9357

41. H 0.0000 0.0000 0.0000 0.9305 0.0000 0.0002 0.0003

42. H 0.0000 0.0000 0.0000 0.9319 0.0002 0.0000 0.0003

43. H 0.0000 0.0000 0.0000 0.9357 0.0003 0.0003 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.7532

2. H 0.9456

3. H 0.9414

4. H 0.9273

5. N 3.6382

6. N 3.2131

7. C 3.8934

8. O 2.0014

9. C 3.8294

10. H 0.9483

11. H 0.9306

12. H 0.9369

13. C 3.9005

14. H 0.9346

15. C 3.9929

16. C 3.9421

17. C 3.9461

18. C 3.9464

19. H 0.9428

20. C 3.9455

21. H 0.9444

22. C 3.9460

23. H 0.9424

24. H 0.9419

25. H 0.9427

26. C 3.9359

27. H 0.9365

28. C 3.9330

29. H 0.9207

30. C 3.8287

Page 282: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

132

31. C 3.8509

32. O 2.0234

33. O 2.0147

34. O 2.1630

35. O 2.1117

36. C 3.7213

37. H 0.9561

38. H 0.9526

39. H 0.9518

40. C 3.7308

41. H 0.9554

42. H 0.9584

43. H 0.9536

---------------------o-------------------------o-------------------------------------o--------------------o-------------

3 tsx nbo: Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9315 0.9309 0.9103 0.9054 0.0257 0.0044 0.0071 0.0008

2. H 0.9315 0.0000 0.0007 0.0005 0.0011 0.0060 0.0012 0.0012 0.0004

3. H 0.9309 0.0007 0.0000 0.0003 0.0029 0.0005 0.0005 0.0001 0.0000

4. H 0.9103 0.0005 0.0003 0.0000 0.0033 0.0005 0.0005 0.0044 0.0004

5. N 0.9054 0.0011 0.0029 0.0033 0.0000 1.0700 0.0099 0.0040 0.0103

6. N 0.0257 0.0060 0.0005 0.0005 1.0700 0.0000 1.1423 0.1155 0.0097

7. C 0.0044 0.0012 0.0005 0.0005 0.0099 1.1423 0.0000 1.6183 1.0000

8. O 0.0071 0.0012 0.0001 0.0044 0.0040 0.1155 1.6183 0.0000 0.0417

9. C 0.0008 0.0004 0.0000 0.0004 0.0103 0.0097 1.0000 0.0417 0.0000

10. H 0.0001 0.0000 0.0000 0.0000 0.0001 0.0022 0.0050 0.0105 0.9086

11. H 0.0000 0.0000 0.0000 0.0000 0.0004 0.0054 0.0027 0.0020 0.9267

12. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0017 0.0038 0.0101 0.9344

13. C 0.0171 0.0007 0.0109 0.0092 1.4849 0.0954 0.0178 0.0090 0.0004

14. H 0.0107 0.0003 0.0001 0.0001 0.0015 0.0023 0.0003 0.0000 0.0001

15. C 0.0013 0.0018 0.0004 0.0001 0.0100 0.0091 0.0004 0.0002 0.0003

16. C 0.0012 0.0000 0.0013 0.0005 0.0284 0.4538 0.0046 0.0109 0.0012

17. C 0.0011 0.0001 0.0007 0.0002 0.0234 0.0617 0.0026 0.0026 0.0004

18. C 0.0008 0.0001 0.0001 0.0000 0.0008 0.0002 0.0000 0.0000 0.0000

19. H 0.0005 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000

20. C 0.0005 0.0001 0.0001 0.0000 0.0003 0.0003 0.0000 0.0000 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000

22. C 0.0004 0.0001 0.0003 0.0001 0.0055 0.0015 0.0003 0.0003 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0008 0.0001 0.0004 0.0001 0.0138 0.0026 0.0005 0.0005 0.0000

27. H 0.0001 0.0000 0.0000 0.0000 0.0002 0.0005 0.0000 0.0000 0.0000

28. C 0.0019 0.0021 0.0007 0.0003 0.0130 0.0034 0.0006 0.0005 0.0000

29. H 0.0001 0.0000 0.0000 0.0000 0.0007 0.0034 0.0008 0.0004 0.0002

30. C 0.0002 0.0000 0.0000 0.0000 0.0013 0.0077 0.0005 0.0003 0.0021

31. C 0.0002 0.0000 0.0001 0.0000 0.0032 0.0115 0.0003 0.0008 0.0001

32. O 0.0001 0.0000 0.0000 0.0000 0.0006 0.0023 0.0003 0.0001 0.0015

33. O 0.0001 0.0000 0.0000 0.0000 0.0021 0.0087 0.0003 0.0006 0.0000

34. O 0.0001 0.0000 0.0000 0.0000 0.0006 0.0057 0.0002 0.0002 0.0004

35. O 0.0000 0.0000 0.0000 0.0000 0.0005 0.0015 0.0001 0.0001 0.0000

36. C 0.0000 0.0000 0.0000 0.0000 0.0002 0.0008 0.0000 0.0000 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

40. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

42. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

43. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0001 0.0000 0.0000 0.0171 0.0107 0.0013 0.0012 0.0011 0.0008

2. H 0.0000 0.0000 0.0000 0.0007 0.0003 0.0018 0.0000 0.0001 0.0001

3. H 0.0000 0.0000 0.0000 0.0109 0.0001 0.0004 0.0013 0.0007 0.0001

4. H 0.0000 0.0000 0.0000 0.0092 0.0001 0.0001 0.0005 0.0002 0.0000

5. N 0.0001 0.0004 0.0001 1.4849 0.0015 0.0100 0.0284 0.0234 0.0008

6. N 0.0022 0.0054 0.0017 0.0954 0.0023 0.0091 0.4538 0.0617 0.0002

7. C 0.0050 0.0027 0.0038 0.0178 0.0003 0.0004 0.0046 0.0026 0.0000

8. O 0.0105 0.0020 0.0101 0.0090 0.0000 0.0002 0.0109 0.0026 0.0000

9. C 0.9086 0.9267 0.9344 0.0004 0.0001 0.0003 0.0012 0.0004 0.0000

10. H 0.0000 0.0008 0.0007 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000

11. H 0.0008 0.0000 0.0006 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000

12. H 0.0007 0.0006 0.0000 0.0003 0.0000 0.0000 0.0003 0.0002 0.0000

13. C 0.0002 0.0001 0.0003 0.0000 0.8889 1.0488 0.0038 0.1534 0.0066

14. H 0.0000 0.0000 0.0000 0.8889 0.0000 0.0032 0.0005 0.0010 0.0001

Page 283: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

133

15. C 0.0000 0.0000 0.0000 1.0488 0.0032 0.0000 0.0003 0.0006 0.0136

16. C 0.0001 0.0001 0.0003 0.0038 0.0005 0.0003 0.0000 1.4003 0.0000

17. C 0.0000 0.0000 0.0002 0.1534 0.0010 0.0006 1.4003 0.0000 0.0001

18. C 0.0000 0.0000 0.0000 0.0066 0.0001 0.0136 0.0000 0.0001 0.0000

19. H 0.0000 0.0000 0.0000 0.0008 0.0001 0.0029 0.0000 0.0000 0.0041

20. C 0.0000 0.0000 0.0000 0.0070 0.0001 0.0121 0.0000 0.0002 0.0122

21. H 0.0000 0.0000 0.0000 0.0009 0.0000 0.0036 0.0002 0.0005 0.0002

22. C 0.0000 0.0000 0.0000 0.0031 0.0021 0.1046 0.0000 0.0021 1.4285

23. H 0.0000 0.0000 0.0000 0.0002 0.0001 0.0065 0.0000 0.0001 0.9187

24. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0066 0.0000 0.0000 0.0068

25. H 0.0000 0.0000 0.0000 0.0003 0.0000 0.0001 0.0000 0.0000 0.0034

26. C 0.0000 0.0000 0.0000 0.0133 0.0036 1.3879 0.0002 0.0028 0.1080

27. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0054 0.9095 0.0000

28. C 0.0000 0.0000 0.0000 0.0138 0.0067 1.3789 0.0001 0.0051 1.4477

29. H 0.0000 0.0000 0.0003 0.0033 0.0000 0.0000 0.8928 0.0066 0.0000

30. C 0.0005 0.0002 0.0005 0.0011 0.0002 0.0000 0.9607 0.0143 0.0000

31. C 0.0000 0.0000 0.0000 0.0102 0.0005 0.0003 0.0274 1.1365 0.0000

32. O 0.0023 0.0006 0.0003 0.0003 0.0005 0.0000 0.0417 0.0084 0.0000

33. O 0.0000 0.0000 0.0000 0.0096 0.0003 0.0001 0.0279 0.0654 0.0000

34. O 0.0003 0.0000 0.0001 0.0004 0.0001 0.0000 0.0135 0.0050 0.0000

35. O 0.0000 0.0000 0.0000 0.0032 0.0025 0.0001 0.0052 0.0185 0.0000

36. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0141 0.0010 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000

40. C 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0002 0.0130 0.0000

41. H 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0001 0.0004 0.0000

42. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0000

43. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0005 0.0005 0.0000 0.0004 0.0000 0.0000 0.0000 0.0008 0.0001

2. H 0.0001 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000

3. H 0.0001 0.0001 0.0000 0.0003 0.0000 0.0000 0.0000 0.0004 0.0000

4. H 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000

5. N 0.0001 0.0003 0.0001 0.0055 0.0001 0.0001 0.0000 0.0138 0.0002

6. N 0.0001 0.0003 0.0001 0.0015 0.0000 0.0000 0.0000 0.0026 0.0005

7. C 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0005 0.0000

8. O 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0005 0.0000

9. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0008 0.0070 0.0009 0.0031 0.0002 0.0001 0.0003 0.0133 0.0002

14. H 0.0001 0.0001 0.0000 0.0021 0.0001 0.0000 0.0000 0.0036 0.0000

15. C 0.0029 0.0121 0.0036 0.1046 0.0065 0.0066 0.0001 1.3879 0.0000

16. C 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0002 0.0054

17. C 0.0000 0.0002 0.0005 0.0021 0.0001 0.0000 0.0000 0.0028 0.9095

18. C 0.0041 0.0122 0.0002 1.4285 0.9187 0.0068 0.0034 0.1080 0.0000

19. H 0.0000 0.0002 0.0002 0.0067 0.0015 0.0003 0.0002 0.0069 0.0000

20. C 0.0002 0.0000 0.0044 1.4347 0.0068 0.9178 0.0035 1.4429 0.0000

21. H 0.0002 0.0044 0.0000 0.0062 0.0003 0.0015 0.0001 0.8935 0.0000

22. C 0.0067 1.4347 0.0062 0.0000 0.0036 0.0034 0.9202 0.0139 0.0000

23. H 0.0015 0.0068 0.0003 0.0036 0.0000 0.0002 0.0015 0.0002 0.0000

24. H 0.0003 0.9178 0.0015 0.0034 0.0002 0.0000 0.0015 0.0037 0.0000

25. H 0.0002 0.0035 0.0001 0.9202 0.0015 0.0015 0.0000 0.0068 0.0000

26. C 0.0069 1.4429 0.8935 0.0139 0.0002 0.0037 0.0068 0.0000 0.0001

27. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

28. C 0.9172 0.1082 0.0063 0.0130 0.0035 0.0002 0.0067 0.0173 0.0000

29. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0021

30. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0075

31. C 0.0000 0.0001 0.0015 0.0002 0.0000 0.0000 0.0000 0.0015 0.0038

32. O 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009

33. O 0.0000 0.0001 0.0093 0.0003 0.0000 0.0001 0.0000 0.0055 0.0013

34. O 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002

35. O 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0003 0.0060

36. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

40. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

42. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

43. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002

Atom 28 29 30 31 32 33 34 35 36

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0019 0.0001 0.0002 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000

2. H 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3. H 0.0007 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Page 284: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

134

4. H 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5. N 0.0130 0.0007 0.0013 0.0032 0.0006 0.0021 0.0006 0.0005 0.0002

6. N 0.0034 0.0034 0.0077 0.0115 0.0023 0.0087 0.0057 0.0015 0.0008

7. C 0.0006 0.0008 0.0005 0.0003 0.0003 0.0003 0.0002 0.0001 0.0000

8. O 0.0005 0.0004 0.0003 0.0008 0.0001 0.0006 0.0002 0.0001 0.0000

9. C 0.0000 0.0002 0.0021 0.0001 0.0015 0.0000 0.0004 0.0000 0.0000

10. H 0.0000 0.0000 0.0005 0.0000 0.0023 0.0000 0.0003 0.0000 0.0000

11. H 0.0000 0.0000 0.0002 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000

12. H 0.0000 0.0003 0.0005 0.0000 0.0003 0.0000 0.0001 0.0000 0.0000

13. C 0.0138 0.0033 0.0011 0.0102 0.0003 0.0096 0.0004 0.0032 0.0001

14. H 0.0067 0.0000 0.0002 0.0005 0.0005 0.0003 0.0001 0.0025 0.0000

15. C 1.3789 0.0000 0.0000 0.0003 0.0000 0.0001 0.0000 0.0001 0.0000

16. C 0.0001 0.8928 0.9607 0.0274 0.0417 0.0279 0.0135 0.0052 0.0141

17. C 0.0051 0.0066 0.0143 1.1365 0.0084 0.0654 0.0050 0.0185 0.0010

18. C 1.4477 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19. H 0.9172 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.1082 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000

21. H 0.0063 0.0000 0.0000 0.0015 0.0000 0.0093 0.0000 0.0006 0.0000

22. C 0.0130 0.0000 0.0000 0.0002 0.0000 0.0003 0.0000 0.0000 0.0000

23. H 0.0035 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

25. H 0.0067 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0173 0.0001 0.0000 0.0015 0.0000 0.0055 0.0000 0.0003 0.0000

27. H 0.0000 0.0021 0.0075 0.0038 0.0009 0.0013 0.0002 0.0060 0.0002

28. C 0.0000 0.0001 0.0000 0.0003 0.0000 0.0006 0.0000 0.0001 0.0000

29. H 0.0001 0.0000 0.0036 0.0058 0.0087 0.0008 0.0008 0.0008 0.0001

30. C 0.0000 0.0036 0.0000 0.0015 1.7214 0.0014 0.9854 0.0095 0.0102

31. C 0.0003 0.0058 0.0015 0.0000 0.0010 1.5903 0.0004 0.9430 0.0001

32. O 0.0000 0.0087 1.7214 0.0010 0.0000 0.0008 0.1135 0.0033 0.0081

33. O 0.0006 0.0008 0.0014 1.5903 0.0008 0.0000 0.0004 0.0946 0.0001

34. O 0.0000 0.0008 0.9854 0.0004 0.1135 0.0004 0.0000 0.0010 0.8543

35. O 0.0001 0.0008 0.0095 0.9430 0.0033 0.0946 0.0010 0.0000 0.0001

36. C 0.0000 0.0001 0.0102 0.0001 0.0081 0.0001 0.8543 0.0001 0.0000

37. H 0.0000 0.0000 0.0019 0.0000 0.0020 0.0000 0.0126 0.0002 0.9413

38. H 0.0000 0.0000 0.0018 0.0000 0.0023 0.0000 0.0128 0.0000 0.9424

39. H 0.0000 0.0000 0.0062 0.0000 0.0013 0.0000 0.0048 0.0000 0.9438

40. C 0.0000 0.0001 0.0004 0.0099 0.0005 0.0092 0.0001 0.8605 0.0000

41. H 0.0000 0.0000 0.0000 0.0015 0.0000 0.0017 0.0000 0.0135 0.0000

42. H 0.0000 0.0000 0.0002 0.0015 0.0001 0.0019 0.0000 0.0136 0.0000

43. H 0.0000 0.0000 0.0001 0.0065 0.0001 0.0016 0.0000 0.0048 0.0000

Atom 37 38 39 40 41 42 43

---- ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5. N 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6. N 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

7. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8. O 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000

14. H 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000

15. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16. C 0.0003 0.0002 0.0001 0.0002 0.0001 0.0001 0.0000

17. C 0.0000 0.0001 0.0001 0.0130 0.0004 0.0004 0.0001

18. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

27. H 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0002

28. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

29. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

30. C 0.0019 0.0018 0.0062 0.0004 0.0000 0.0002 0.0001

31. C 0.0000 0.0000 0.0000 0.0099 0.0015 0.0015 0.0065

32. O 0.0020 0.0023 0.0013 0.0005 0.0000 0.0001 0.0001

33. O 0.0000 0.0000 0.0000 0.0092 0.0017 0.0019 0.0016

34. O 0.0126 0.0128 0.0048 0.0001 0.0000 0.0000 0.0000

35. O 0.0002 0.0000 0.0000 0.8605 0.0135 0.0136 0.0048

36. C 0.9413 0.9424 0.9438 0.0000 0.0000 0.0000 0.0000

37. H 0.0000 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000

38. H 0.0002 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

Page 285: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

135

39. H 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

40. C 0.0000 0.0000 0.0000 0.0000 0.9418 0.9434 0.9446

41. H 0.0000 0.0000 0.0000 0.9418 0.0000 0.0002 0.0002

42. H 0.0000 0.0000 0.0000 0.9434 0.0002 0.0000 0.0002

43. H 0.0000 0.0000 0.0000 0.9446 0.0002 0.0002 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.7533

2. H 0.9481

3. H 0.9512

4. H 0.9311

5. N 3.5993

6. N 3.0525

7. C 3.8183

8. O 1.8416

9. C 3.8400

10. H 0.9315

11. H 0.9398

12. H 0.9535

13. C 3.8155

14. H 0.9263

15. C 3.9937

16. C 3.8976

17. C 3.8387

18. C 3.9522

19. H 0.9422

20. C 3.9517

21. H 0.9297

22. C 3.9513

23. H 0.9434

24. H 0.9423

25. H 0.9444

26. C 3.9275

27. H 0.9389

28. C 3.9486

29. H 0.9318

30. C 3.7409

31. C 3.7599

32. O 1.9230

33. O 1.8353

34. O 2.0129

35. O 1.9838

36. C 3.7170

37. H 0.9588

38. H 0.9602

39. H 0.9570

40. C 3.7245

41. H 0.9599

42. H 0.9618

43. H 0.9585

-------------------------------o----------------------------------------------o---------------------------------------------

3 tsn nbo: Wiberg bond index matrix in the NAO basis:

Atom 1 2 3 4 5 6 7 8 9

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.9047 0.8973 0.9239 0.9179 0.0321 0.0043 0.0137 0.0007

2. H 0.9047 0.0000 0.0007 0.0004 0.0027 0.0024 0.0002 0.0006 0.0001

3. H 0.8973 0.0007 0.0000 0.0011 0.0017 0.0028 0.0009 0.0128 0.0008

4. H 0.9239 0.0004 0.0011 0.0000 0.0018 0.0086 0.0008 0.0004 0.0002

5. N 0.9179 0.0027 0.0017 0.0018 0.0000 1.1236 0.0096 0.0079 0.0134

6. N 0.0321 0.0024 0.0028 0.0086 1.1236 0.0000 1.1736 0.1526 0.0122

7. C 0.0043 0.0002 0.0009 0.0008 0.0096 1.1736 0.0000 1.6637 0.9945

8. O 0.0137 0.0006 0.0128 0.0004 0.0079 0.1526 1.6637 0.0000 0.0554

9. C 0.0007 0.0001 0.0008 0.0002 0.0134 0.0122 0.9945 0.0554 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0006 0.0073 0.0030 0.0035 0.9172

11. H 0.0002 0.0000 0.0000 0.0001 0.0002 0.0063 0.0045 0.0129 0.9088

12. H 0.0001 0.0000 0.0000 0.0000 0.0003 0.0008 0.0037 0.0144 0.9221

13. C 0.0187 0.0111 0.0072 0.0014 1.4007 0.1150 0.0202 0.0174 0.0006

14. H 0.0137 0.0001 0.0002 0.0002 0.0026 0.0035 0.0003 0.0001 0.0002

15. C 0.0013 0.0003 0.0004 0.0008 0.0125 0.0114 0.0006 0.0004 0.0004

16. C 0.0022 0.0010 0.0007 0.0032 0.0186 0.0108 0.0010 0.0022 0.0000

17. C 0.0006 0.0007 0.0003 0.0001 0.0235 0.0102 0.0012 0.0019 0.0001

18. C 0.0012 0.0000 0.0001 0.0001 0.0007 0.0003 0.0000 0.0001 0.0000

19. H 0.0009 0.0004 0.0001 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000

Page 286: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

136

20. C 0.0007 0.0000 0.0001 0.0001 0.0005 0.0003 0.0001 0.0000 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000 0.0000 0.0000

22. C 0.0003 0.0006 0.0003 0.0002 0.0127 0.0083 0.0009 0.0018 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0011 0.0019 0.0004 0.0005 0.0401 0.4171 0.0040 0.0188 0.0017

27. H 0.0001 0.0000 0.0000 0.0000 0.0006 0.0025 0.0002 0.0002 0.0003

28. C 0.0006 0.0015 0.0006 0.0000 0.0357 0.0506 0.0022 0.0032 0.0003

29. H 0.0000 0.0000 0.0000 0.0000 0.0003 0.0012 0.0000 0.0001 0.0000

30. C 0.0003 0.0004 0.0000 0.0000 0.0031 0.0123 0.0002 0.0015 0.0001

31. C 0.0003 0.0001 0.0000 0.0000 0.0016 0.0064 0.0011 0.0014 0.0008

32. O 0.0021 0.0030 0.0003 0.0000 0.0050 0.0086 0.0002 0.0009 0.0000

33. O 0.0004 0.0002 0.0001 0.0001 0.0022 0.0129 0.0016 0.0024 0.0004

34. O 0.0002 0.0008 0.0000 0.0000 0.0016 0.0048 0.0001 0.0005 0.0000

35. O 0.0027 0.0029 0.0001 0.0009 0.0007 0.0016 0.0012 0.0002 0.0012

36. C 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0000 0.0000 0.0000

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

40. C 0.0002 0.0002 0.0000 0.0000 0.0001 0.0007 0.0001 0.0000 0.0001

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

42. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

43. H 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

Atom 10 11 12 13 14 15 16 17 18

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.0002 0.0001 0.0187 0.0137 0.0013 0.0022 0.0006 0.0012

2. H 0.0000 0.0000 0.0000 0.0111 0.0001 0.0003 0.0010 0.0007 0.0000

3. H 0.0000 0.0000 0.0000 0.0072 0.0002 0.0004 0.0007 0.0003 0.0001

4. H 0.0000 0.0001 0.0000 0.0014 0.0002 0.0008 0.0032 0.0001 0.0001

5. N 0.0006 0.0002 0.0003 1.4007 0.0026 0.0125 0.0186 0.0235 0.0007

6. N 0.0073 0.0063 0.0008 0.1150 0.0035 0.0114 0.0108 0.0102 0.0003

7. C 0.0030 0.0045 0.0037 0.0202 0.0003 0.0006 0.0010 0.0012 0.0000

8. O 0.0035 0.0129 0.0144 0.0174 0.0001 0.0004 0.0022 0.0019 0.0001

9. C 0.9172 0.9088 0.9221 0.0006 0.0002 0.0004 0.0000 0.0001 0.0000

10. H 0.0000 0.0009 0.0007 0.0003 0.0000 0.0001 0.0000 0.0000 0.0000

11. H 0.0009 0.0000 0.0008 0.0007 0.0000 0.0000 0.0001 0.0001 0.0000

12. H 0.0007 0.0008 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0003 0.0007 0.0001 0.0000 0.8968 1.1100 0.0107 0.0141 0.0094

14. H 0.0000 0.0000 0.0000 0.8968 0.0000 0.0030 0.0073 0.0017 0.0001

15. C 0.0001 0.0000 0.0000 1.1100 0.0030 0.0000 1.3511 1.3558 0.0112

16. C 0.0000 0.0001 0.0000 0.0107 0.0073 1.3511 0.0000 0.0136 1.4535

17. C 0.0000 0.0001 0.0000 0.0141 0.0017 1.3558 0.0136 0.0000 0.1037

18. C 0.0000 0.0000 0.0000 0.0094 0.0001 0.0112 1.4535 0.1037 0.0000

19. H 0.0000 0.0000 0.0000 0.0013 0.0001 0.0031 0.9021 0.0080 0.0041

20. C 0.0000 0.0000 0.0000 0.0094 0.0003 0.0111 0.1036 1.4551 0.0109

21. H 0.0000 0.0000 0.0000 0.0017 0.0005 0.0029 0.0086 0.9139 0.0003

22. C 0.0000 0.0001 0.0000 0.0025 0.0007 0.0963 0.0118 0.0117 1.4239

23. H 0.0000 0.0000 0.0000 0.0002 0.0003 0.0082 0.0034 0.0003 0.9125

24. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0082 0.0003 0.0034 0.0083

25. H 0.0000 0.0000 0.0000 0.0004 0.0000 0.0002 0.0083 0.0083 0.0033

26. C 0.0004 0.0002 0.0003 0.0027 0.0009 0.0004 0.0001 0.0001 0.0000

27. H 0.0000 0.0001 0.0007 0.0022 0.0000 0.0000 0.0003 0.0003 0.0000

28. C 0.0000 0.0001 0.0001 0.1983 0.0009 0.0008 0.0132 0.0129 0.0001

29. H 0.0000 0.0000 0.0000 0.0005 0.0001 0.0001 0.0000 0.0000 0.0000

30. C 0.0000 0.0000 0.0000 0.0124 0.0004 0.0009 0.0010 0.0012 0.0001

31. C 0.0001 0.0007 0.0001 0.0029 0.0001 0.0000 0.0003 0.0003 0.0000

32. O 0.0000 0.0001 0.0000 0.0174 0.0005 0.0008 0.0041 0.0016 0.0004

33. O 0.0000 0.0002 0.0000 0.0011 0.0001 0.0001 0.0002 0.0002 0.0000

34. O 0.0000 0.0000 0.0000 0.0086 0.0001 0.0004 0.0010 0.0002 0.0002

35. O 0.0002 0.0010 0.0000 0.0004 0.0000 0.0000 0.0001 0.0000 0.0000

36. C 0.0000 0.0000 0.0000 0.0002 0.0000 0.0002 0.0004 0.0001 0.0002

37. H 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0001 0.0000 0.0000

38. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0006 0.0001 0.0006

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

40. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

41. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

42. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

43. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Atom 19 20 21 22 23 24 25 26 27

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0009 0.0007 0.0000 0.0003 0.0000 0.0000 0.0000 0.0011 0.0001

2. H 0.0004 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0019 0.0000

3. H 0.0001 0.0001 0.0000 0.0003 0.0000 0.0000 0.0000 0.0004 0.0000

4. H 0.0002 0.0001 0.0000 0.0002 0.0000 0.0000 0.0000 0.0005 0.0000

5. N 0.0001 0.0005 0.0003 0.0127 0.0000 0.0002 0.0000 0.0401 0.0006

6. N 0.0001 0.0003 0.0001 0.0083 0.0000 0.0001 0.0000 0.4171 0.0025

7. C 0.0000 0.0001 0.0000 0.0009 0.0000 0.0000 0.0000 0.0040 0.0002

8. O 0.0000 0.0000 0.0000 0.0018 0.0000 0.0000 0.0000 0.0188 0.0002

Page 287: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

137

9. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017 0.0003

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000

11. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0002 0.0001

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0007

13. C 0.0013 0.0094 0.0017 0.0025 0.0002 0.0002 0.0004 0.0027 0.0022

14. H 0.0001 0.0003 0.0005 0.0007 0.0003 0.0000 0.0000 0.0009 0.0000

15. C 0.0031 0.0111 0.0029 0.0963 0.0082 0.0082 0.0002 0.0004 0.0000

16. C 0.9021 0.1036 0.0086 0.0118 0.0034 0.0003 0.0083 0.0001 0.0003

17. C 0.0080 1.4551 0.9139 0.0117 0.0003 0.0034 0.0083 0.0001 0.0003

18. C 0.0041 0.0109 0.0003 1.4239 0.9125 0.0083 0.0033 0.0000 0.0000

19. H 0.0000 0.0003 0.0004 0.0080 0.0020 0.0004 0.0003 0.0000 0.0000

20. C 0.0003 0.0000 0.0038 1.4239 0.0084 0.9126 0.0033 0.0000 0.0000

21. H 0.0004 0.0038 0.0000 0.0085 0.0004 0.0022 0.0004 0.0000 0.0000

22. C 0.0080 1.4239 0.0085 0.0000 0.0034 0.0034 0.9141 0.0001 0.0002

23. H 0.0020 0.0084 0.0004 0.0034 0.0000 0.0004 0.0020 0.0000 0.0000

24. H 0.0004 0.9126 0.0022 0.0034 0.0004 0.0000 0.0020 0.0000 0.0000

25. H 0.0003 0.0033 0.0004 0.9141 0.0020 0.0020 0.0000 0.0000 0.0000

26. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.8850

27. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.8850 0.0000

28. C 0.0002 0.0002 0.0000 0.0097 0.0000 0.0000 0.0000 1.4217 0.0052

29. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0058 0.0027

30. C 0.0006 0.0001 0.0000 0.0005 0.0000 0.0000 0.0000 0.0235 0.0079

31. C 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.9692 0.0037

32. O 0.0035 0.0004 0.0000 0.0014 0.0001 0.0000 0.0000 0.0280 0.0009

33. O 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0596 0.0058

34. O 0.0005 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0186 0.0001

35. O 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0130 0.0064

36. C 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0010 0.0003

37. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000

38. H 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000

39. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

40. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0187 0.0005

41. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001

42. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001

43. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

Atom 28 29 30 31 32 33 34 35 36

---- ------ ------ ------ ------ ------ ------ ------ ------ ------

1. C 0.0006 0.0000 0.0003 0.0003 0.0021 0.0004 0.0002 0.0027 0.0000

2. H 0.0015 0.0000 0.0004 0.0001 0.0030 0.0002 0.0008 0.0029 0.0000

3. H 0.0006 0.0000 0.0000 0.0000 0.0003 0.0001 0.0000 0.0001 0.0000

4. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0009 0.0000

5. N 0.0357 0.0003 0.0031 0.0016 0.0050 0.0022 0.0016 0.0007 0.0001

6. N 0.0506 0.0012 0.0123 0.0064 0.0086 0.0129 0.0048 0.0016 0.0003

7. C 0.0022 0.0000 0.0002 0.0011 0.0002 0.0016 0.0001 0.0012 0.0000

8. O 0.0032 0.0001 0.0015 0.0014 0.0009 0.0024 0.0005 0.0002 0.0000

9. C 0.0003 0.0000 0.0001 0.0008 0.0000 0.0004 0.0000 0.0012 0.0000

10. H 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000

11. H 0.0001 0.0000 0.0000 0.0007 0.0001 0.0002 0.0000 0.0010 0.0000

12. H 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.1983 0.0005 0.0124 0.0029 0.0174 0.0011 0.0086 0.0004 0.0002

14. H 0.0009 0.0001 0.0004 0.0001 0.0005 0.0001 0.0001 0.0000 0.0000

15. C 0.0008 0.0001 0.0009 0.0000 0.0008 0.0001 0.0004 0.0000 0.0002

16. C 0.0132 0.0000 0.0010 0.0003 0.0041 0.0002 0.0010 0.0001 0.0004

17. C 0.0129 0.0000 0.0012 0.0003 0.0016 0.0002 0.0002 0.0000 0.0001

18. C 0.0001 0.0000 0.0001 0.0000 0.0004 0.0000 0.0002 0.0000 0.0002

19. H 0.0002 0.0000 0.0006 0.0000 0.0035 0.0000 0.0005 0.0000 0.0000

20. C 0.0002 0.0000 0.0001 0.0000 0.0004 0.0000 0.0001 0.0000 0.0001

21. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0097 0.0000 0.0005 0.0002 0.0014 0.0002 0.0001 0.0000 0.0001

23. H 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 1.4217 0.0058 0.0235 0.9692 0.0280 0.0596 0.0186 0.0130 0.0010

27. H 0.0052 0.0027 0.0079 0.0037 0.0009 0.0058 0.0001 0.0064 0.0003

28. C 0.0000 0.9003 1.1168 0.0163 0.0669 0.0228 0.0165 0.0059 0.0157

29. H 0.9003 0.0000 0.0037 0.0087 0.0102 0.0013 0.0007 0.0005 0.0003

30. C 1.1168 0.0037 0.0000 0.0023 1.6298 0.0018 1.0040 0.0008 0.0098

31. C 0.0163 0.0087 0.0023 0.0000 0.0111 1.7451 0.0025 1.0379 0.0001

32. O 0.0669 0.0102 1.6298 0.0111 0.0000 0.0042 0.1447 0.0025 0.0130

33. O 0.0228 0.0013 0.0018 1.7451 0.0042 0.0000 0.0016 0.1657 0.0001

34. O 0.0165 0.0007 1.0040 0.0025 0.1447 0.0016 0.0000 0.0005 0.8905

35. O 0.0059 0.0005 0.0008 1.0379 0.0025 0.1657 0.0005 0.0000 0.0001

36. C 0.0157 0.0003 0.0098 0.0001 0.0130 0.0001 0.8905 0.0001 0.0000

37. H 0.0005 0.0000 0.0020 0.0000 0.0044 0.0000 0.0164 0.0000 0.9305

38. H 0.0003 0.0000 0.0024 0.0000 0.0037 0.0001 0.0168 0.0000 0.9326

39. H 0.0000 0.0001 0.0080 0.0000 0.0022 0.0000 0.0060 0.0000 0.9361

40. C 0.0008 0.0005 0.0002 0.0107 0.0011 0.0123 0.0001 0.8736 0.0000

41. H 0.0001 0.0000 0.0000 0.0028 0.0010 0.0039 0.0001 0.0139 0.0000

42. H 0.0001 0.0000 0.0000 0.0022 0.0000 0.0051 0.0000 0.0149 0.0000

43. H 0.0001 0.0000 0.0000 0.0074 0.0000 0.0021 0.0000 0.0055 0.0000

Page 288: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

138

Atom 37 38 39 40 41 42 43

---- ------ ------ ------ ------ ------ ------ ------

1. C 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000

2. H 0.0000 0.0000 0.0000 0.0002 0.0000 0.0001 0.0001

3. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5. N 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000

6. N 0.0001 0.0002 0.0000 0.0007 0.0001 0.0000 0.0001

7. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

8. O 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9. C 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

10. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

12. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13. C 0.0003 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000

14. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16. C 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000

17. C 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

18. C 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000

19. H 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

20. C 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

21. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22. C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25. H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26. C 0.0004 0.0005 0.0001 0.0187 0.0002 0.0003 0.0001

27. H 0.0000 0.0000 0.0000 0.0005 0.0001 0.0001 0.0001

28. C 0.0005 0.0003 0.0000 0.0008 0.0001 0.0001 0.0001

29. H 0.0000 0.0000 0.0001 0.0005 0.0000 0.0000 0.0000

30. C 0.0020 0.0024 0.0080 0.0002 0.0000 0.0000 0.0000

31. C 0.0000 0.0000 0.0000 0.0107 0.0028 0.0022 0.0074

32. O 0.0044 0.0037 0.0022 0.0011 0.0010 0.0000 0.0000

33. O 0.0000 0.0001 0.0000 0.0123 0.0039 0.0051 0.0021

34. O 0.0164 0.0168 0.0060 0.0001 0.0001 0.0000 0.0000

35. O 0.0000 0.0000 0.0000 0.8736 0.0139 0.0149 0.0055

36. C 0.9305 0.9326 0.9361 0.0000 0.0000 0.0000 0.0000

37. H 0.0000 0.0002 0.0003 0.0000 0.0000 0.0000 0.0000

38. H 0.0002 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000

39. H 0.0003 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

40. C 0.0000 0.0000 0.0000 0.0000 0.9280 0.9309 0.9358

41. H 0.0000 0.0000 0.0000 0.9280 0.0000 0.0002 0.0003

42. H 0.0000 0.0000 0.0000 0.9309 0.0002 0.0000 0.0003

43. H 0.0000 0.0000 0.0000 0.9358 0.0003 0.0003 0.0000

Wiberg bond index, Totals by atom:

Atom 1

---- ------

1. C 3.7426

2. H 0.9372

3. H 0.9292

4. H 0.9451

5. N 3.6433

6. N 3.2022

7. C 3.8943

8. O 1.9914

9. C 3.8319

10. H 0.9346

11. H 0.9380

12. H 0.9442

13. C 3.8974

14. H 0.9346

15. C 3.9932

16. C 3.9354

17. C 3.9455

18. C 3.9457

19. H 0.9369

20. C 3.9454

21. H 0.9439

22. C 3.9459

23. H 0.9417

24. H 0.9419

25. H 0.9427

26. C 3.9366

27. H 0.9266

28. C 3.9214

29. H 0.9371

30. C 3.8480

Page 289: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

139

31. C 3.8365

32. O 1.9741

33. O 2.0537

34. O 2.1384

35. O 2.1544

36. C 3.7318

37. H 0.9553

38. H 0.9590

39. H 0.9532

40. C 3.7150

41. H 0.9511

42. H 0.9545

43. H 0.9521

---------------------o---------------------------------------------o---------------------------------------

Optimized Molecule =AI:

-------------------------------------- --------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -572.961695591

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.936895 1.532190 0.269932

2 1 0 0.015338 1.699221 0.824434

3 1 0 1.806944 1.697290 0.902747

4 1 0 0.976335 2.173203 -0.615163

5 7 0 1.007310 0.117240 -0.168518

6 7 0 2.195745 -0.404962 -0.598303

7 6 0 3.315392 -0.114903 0.137302

8 8 0 3.387864 0.472771 1.225441

9 6 0 4.572485 -0.659370 -0.526024

10 1 0 4.355193 -1.168043 -1.467522

11 1 0 5.267823 0.168120 -0.705878

12 1 0 5.068694 -1.353116 0.161341

13 6 0 -0.053126 -0.647121 -0.272035

14 1 0 0.200148 -1.676512 -0.506191

15 6 0 -1.465076 -0.309655 -0.140481

16 6 0 -2.044994 0.930941 -0.477974

17 6 0 -2.318257 -1.346644 0.293663

18 6 0 -3.417277 1.129708 -0.346318

19 1 0 -1.433292 1.729221 -0.881916

20 6 0 -3.686295 -1.139513 0.432875

21 1 0 -1.890890 -2.316661 0.534044

22 6 0 -4.241988 0.103133 0.118243

23 1 0 -3.845506 2.090026 -0.619679

24 1 0 -4.320571 -1.949264 0.782165

25 1 0 -5.311076 0.265804 0.220740

------------------------------------------------------------------------

Rotational constants (GHZ): 2.6347339 0.3340530 0.3147293

Thermochemical data:

Zero-point correction= 0.205706 (Hartree/Particle)

Thermal correction to Energy= 0.218058

Thermal correction to Enthalpy= 0.219002

Thermal correction to Gibbs Free Energy= 0.165757

Sum of electronic and zero-point Energies= -572.755989

Sum of electronic and thermal Energies= -572.743637

Sum of electronic and thermal Enthalpies= -572.742693

Sum of electronic and thermal Free Energies= -572.795938

Optimized Molecule = E1:

---------------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

-----------------------------------------------

E(RB+HF-LYP) = -170.834988653

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 1.323585 0.979223 0.000000

Page 290: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

140

2 1 0 2.030954 0.155981 0.000000

3 1 0 1.727485 1.986348 0.000000

4 6 0 0.000000 0.776857 0.000000

5 1 0 -0.701211 1.607517 0.000000

6 6 0 -0.581105 -0.531073 0.000000

7 7 0 -1.073159 -1.585698 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 50.2368037 4.9394672 4.4972783

Thermochemical data:

Zero-point correction= 0.051021 (Hartree/Particle)

Thermal correction to Energy= 0.055156

Thermal correction to Enthalpy= 0.056100

Thermal correction to Gibbs Free Energy= 0.025143

Sum of electronic and zero-point Energies= -170.783967

Sum of electronic and thermal Energies= -170.779833

Sum of electronic and thermal Enthalpies= -170.778889

Sum of electronic and thermal Free Energies= -170.809845

Optimized Molecule = E2: ------------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -306.466612335

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 2.174514 -0.764248 -0.000122

2 1 0 1.671026 -1.725656 -0.000375

3 1 0 3.260892 -0.771163 -0.000212

4 6 0 1.490291 0.382451 0.000116

5 1 0 1.988501 1.347531 0.000254

6 6 0 0.010336 0.485109 0.000079

7 8 0 -0.588403 1.542773 -0.000121

8 8 0 -0.605434 -0.720382 0.000252

9 6 0 -2.039590 -0.671968 -0.000106

10 1 0 -2.367601 -1.711992 -0.001373

11 1 0 -2.407989 -0.154031 0.889677

12 1 0 -2.407437 -0.151881 -0.888829

---------------------------------------------------------------------

Rotational constants (GHZ): 6.8994605 2.7891059 2.0113890

Themochemical data Of molecule E3 : From frequency analysis:

Zero-point correction= 0.095853 (Hartree/Particle)

Thermal correction to Energy= 0.102488

Thermal correction to Enthalpy= 0.103432

Thermal correction to Gibbs Free Energy= 0.065386

Sum of electronic and zero-point Energies= -306.370759

Sum of electronic and thermal Energies= -306.364125

Sum of electronic and thermal Enthalpies= -306.363180

Sum of electronic and thermal Free Energies= -306.401226

Optimized Molecule = E3: --------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -534.333723675

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.667238 -1.681062 -0.056931

2 1 0 -1.190410 -2.630291 -0.139420

3 6 0 0.666764 -1.681209 0.056599

4 1 0 1.189730 -2.630574 0.138869

5 6 0 1.579167 -0.505473 0.143225

6 6 0 -1.579453 -0.505167 -0.143102

7 8 0 2.548386 -0.480180 0.872887

8 8 0 -2.549482 -0.480015 -0.871699

9 8 0 1.246926 0.484078 -0.708668

10 8 0 -1.246091 0.484770 0.707933

11 6 0 2.086867 1.648858 -0.646966

Page 291: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

141

12 1 0 2.012478 2.120892 0.336471

13 1 0 3.129378 1.379922 -0.834866

14 1 0 1.715061 2.317436 -1.423656

15 6 0 -2.086050 1.649558 0.646727

16 1 0 -2.012878 2.121143 -0.337018

17 1 0 -3.128340 1.380749 0.836039

18 1 0 -1.713259 2.318476 1.422651

---------------------------------------------------------------------

Rotational constants (GHZ): 2.0369030 0.9608030 0.7646490

------------------------------------------------------------------------------

Thermochemical data : From frequency analysis:

Zero-point correction= 0.139188 (Hartree/Particle)

Thermal correction to Energy= 0.150210

Thermal correction to Enthalpy= 0.151154

Thermal correction to Gibbs Free Energy= 0.100484

Sum of electronic and zero-point Energies= -534.194536

Sum of electronic and thermal Energies= -534.183513

Sum of electronic and thermal Enthalpies= -534.182569

Sum of electronic and thermal Free Energies= -534.233240

Optimized Molecule = 1PRX: --------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -743.850821509

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.420939 -1.276465 1.733252

2 1 0 -0.540452 -1.790650 1.678349

3 1 0 1.176994 -1.979888 2.089243

4 1 0 0.343254 -0.455386 2.462963

5 7 0 0.810537 -0.845295 0.379723

6 7 0 2.075779 -0.196433 0.413581

7 6 0 3.156326 -0.706519 -0.288996

8 8 0 4.145661 -0.013442 -0.479146

9 6 0 3.047636 -2.149335 -0.741814

10 1 0 2.211709 -2.280637 -1.435588

11 1 0 3.984740 -2.418432 -1.231197

12 1 0 2.869731 -2.820235 0.105035

13 6 0 -0.065660 0.185227 -0.232468

14 1 0 0.239113 0.233979 -1.286314

15 6 0 -1.543003 -0.145166 -0.175930

16 6 0 -2.497036 0.710780 0.384251

17 6 0 -1.973540 -1.355270 -0.743913

18 6 0 -3.850825 0.363206 0.384301

19 1 0 -2.201657 1.665556 0.807710

20 6 0 -3.321316 -1.705646 -0.737416

21 1 0 -1.239349 -2.024123 -1.185280

22 6 0 -4.266195 -0.845245 -0.171396

23 1 0 -4.578006 1.043899 0.818124

24 1 0 -3.635974 -2.647338 -1.178953

25 1 0 -5.318833 -1.114327 -0.170446

26 6 0 1.948716 1.262408 0.594269

27 1 0 2.547068 1.766906 -0.167661

28 1 0 2.307397 1.584822 1.576271

29 6 0 0.422708 1.512197 0.436415

30 1 0 -0.040682 1.615066 1.423730

31 6 0 0.109375 2.713647 -0.333634

32 7 0 -0.146185 3.662498 -0.952496

---------------------------------------------------------------------

Rotational constants (GHZ): 0.7696638 0.3293365 0.2583469

Thermochemical data:

Zero-point correction= 0.263537 (Hartree/Particle)

Thermal correction to Energy= 0.279375

Thermal correction to Enthalpy= 0.280319

Thermal correction to Gibbs Free Energy= 0.219268

Sum of electronic and zero-point Energies= -743.587284

Sum of electronic and thermal Energies= -743.571447

Sum of electronic and thermal Enthalpies= -743.570503

Sum of electronic and thermal Free Energies= -743.631554

Page 292: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

142

Optimized Molecule = 1PRN:

--------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -743.847859882

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.533718 -0.232825 1.902559

2 1 0 -0.443557 -0.661694 2.131785

3 1 0 1.285063 -0.713201 2.533944

4 1 0 0.513041 0.839857 2.135784

5 7 0 0.868740 -0.536131 0.498097

6 7 0 2.121168 0.038894 0.150935

7 6 0 3.179871 -0.756412 -0.256606

8 8 0 4.141363 -0.256561 -0.824756

9 6 0 3.088769 -2.230475 0.086400

10 1 0 2.233109 -2.697151 -0.411235

11 1 0 4.014389 -2.707953 -0.238271

12 1 0 2.955044 -2.381215 1.162491

13 6 0 -0.033384 0.042076 -0.523976

14 1 0 0.290010 -0.426918 -1.464390

15 6 0 -1.503183 -0.281268 -0.342141

16 6 0 -2.521782 0.643735 -0.596818

17 6 0 -1.859560 -1.596208 -0.000052

18 6 0 -3.864081 0.269309 -0.494794

19 1 0 -2.284355 1.665593 -0.872222

20 6 0 -3.197845 -1.967652 0.107254

21 1 0 -1.076327 -2.326433 0.182746

22 6 0 -4.207084 -1.033603 -0.138984

23 1 0 -4.639315 1.004605 -0.691423

24 1 0 -3.452627 -2.988495 0.379003

25 1 0 -5.251471 -1.321575 -0.056471

26 6 0 1.973429 1.395678 -0.414685

27 1 0 2.339004 2.162204 0.273950

28 1 0 2.559922 1.455890 -1.333964

29 6 0 0.442342 1.532649 -0.674652

30 1 0 0.252492 1.883414 -1.694367

31 6 0 -0.176147 2.498881 0.240281

32 7 0 -0.640724 3.291844 0.950678

--------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.8185380 0.3300061 0.2640480

Thermochemical data :

Zero-point correction= 0.263807 (Hartree/Particle)

Thermal correction to Energy= 0.279475

Thermal correction to Enthalpy= 0.280419

Thermal correction to Gibbs Free Energy= 0.220176

Sum of electronic and zero-point Energies= -743.584053

Sum of electronic and thermal Energies= -743.568385

Sum of electronic and thermal Enthalpies= -743.567440

Sum of electronic and thermal Free Energies= -743.627684

Optimized Molecule = 1PSX:

-----------------------------------

# opt b3lyp/6-31g(d)

------------------------------

E(RB+HF-LYP) = -743.850821576

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.948637 1.262436 0.594049

2 1 0 -2.547198 1.767070 -0.167633

3 1 0 -2.307158 1.584624 1.576190

4 6 0 -0.422637 1.512267 0.436057

5 1 0 0.040710 1.615140 1.423398

6 6 0 -0.109270 2.713737 -0.333882

7 7 0 0.145861 3.663025 -0.952247

8 6 0 -0.420764 -1.276309 1.732961

9 1 0 0.540096 -1.791478 1.677887

10 1 0 -0.341941 -0.455037 2.462324

11 1 0 -1.177446 -1.978794 2.089413

12 7 0 -0.810441 -0.845212 0.379373

Page 293: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

143

13 7 0 -2.075619 -0.196334 0.413052

14 6 0 -3.156471 -0.706680 -0.288683

15 8 0 -4.146116 -0.013834 -0.478244

16 6 0 -3.047793 -2.149471 -0.741601

17 1 0 -2.212645 -2.280423 -1.436390

18 1 0 -2.868615 -2.820399 0.104953

19 1 0 -3.985367 -2.418841 -1.229923

20 6 0 0.065756 0.185270 -0.232772

21 1 0 -0.238871 0.233970 -1.286663

22 6 0 1.543090 -0.145137 -0.176022

23 6 0 1.973620 -1.355215 -0.744008

24 6 0 2.497094 0.710713 0.384374

25 6 0 3.321389 -1.705696 -0.737368

26 1 0 1.239459 -2.024000 -1.185533

27 6 0 3.850845 0.363045 0.384580

28 1 0 2.201728 1.665476 0.807882

29 6 0 4.266227 -0.845413 -0.171145

30 1 0 3.636001 -2.647387 -1.178935

31 1 0 4.578018 1.043651 0.818548

32 1 0 5.318856 -1.114526 -0.170055

--------------------------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.7696456 0.3293286 0.2583264

Thermochemical data:

Zero-point correction= 0.263537 (Hartree/Particle)

Thermal correction to Energy= 0.279374

Thermal correction to Enthalpy= 0.280318

Thermal correction to Gibbs Free Energy= 0.219270

Sum of electronic and zero-point Energies= -743.587284

Sum of electronic and thermal Energies= -743.571447

Sum of electronic and thermal Enthalpies= -743.570503

Sum of electronic and thermal Free Energies= -743.631552

Optimized Molecule = 1PSN:

--------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -743.847144860

----------------------------------------------------------------------

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.533995 0.105914 1.962768

2 1 0 -0.464514 1.203500 1.993837

3 1 0 -1.310549 -0.210859 2.662860

4 1 0 0.418355 -0.321042 2.283460

5 7 0 -0.874878 -0.441474 0.641216

6 7 0 -2.131860 0.051043 0.200422

7 6 0 -3.176051 -0.824276 -0.060917

8 8 0 -4.144984 -0.453398 -0.709312

9 6 0 -3.059871 -2.209837 0.543308

10 1 0 -2.170795 -2.728659 0.173009

11 1 0 -2.967980 -2.158940 1.633289

12 1 0 -3.959459 -2.767507 0.278822

13 6 0 0.020109 -0.081146 -0.485569

14 1 0 -0.302307 -0.741852 -1.298254

15 6 0 1.500078 -0.338862 -0.281917

16 6 0 2.052890 -1.461241 -0.917791

17 6 0 2.343058 0.458946 0.507770

18 6 0 3.402198 -1.781900 -0.776180

19 1 0 1.415366 -2.093228 -1.531803

20 6 0 3.694316 0.139703 0.649298

21 1 0 1.959570 1.339677 1.008199

22 6 0 4.229137 -0.979162 0.009955

23 1 0 3.804932 -2.655756 -1.280925

24 1 0 4.329626 0.774154 1.261075

25 1 0 5.282280 -1.221975 0.122074

26 6 0 -1.998869 1.281873 -0.602866

27 1 0 -2.314429 2.164374 -0.039415

28 1 0 -2.638236 1.191625 -1.483046

29 6 0 -0.482530 1.340803 -0.962908

30 1 0 -0.339561 1.417961 -2.045774

31 6 0 0.165724 2.508971 -0.363239

32 7 0 0.646797 3.458573 0.102192

--------------------------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.8062442 0.3239702 0.2663277

Page 294: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

144

Thermochemical data:

Zero-point correction= 0.263898 (Hartree/Particle)

Thermal correction to Energy= 0.279583

Thermal correction to Enthalpy= 0.280527

Thermal correction to Gibbs Free Energy= 0.220045

Sum of electronic and zero-point Energies= -743.583247

Sum of electronic and thermal Energies= -743.567562

Sum of electronic and thermal Enthalpies= -743.566618

Sum of electronic and thermal Free Energies= -743.627100

Optimized Molecule = 1TSX:

---------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -743.783076397 A.U. after 1 cycles

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.859959 1.452710 1.002810

2 1 0 -2.512893 2.091820 0.419934

3 1 0 -2.331550 0.982276 1.860385

4 6 0 -0.503236 1.777232 1.096153

5 1 0 0.094171 1.416622 1.927592

6 6 0 0.078163 2.788227 0.287836

7 7 0 0.569293 3.587375 -0.408227

8 6 0 -0.793299 -1.990511 0.753394

9 1 0 -0.768050 -1.692923 1.808609

10 1 0 -1.681687 -2.582327 0.544701

11 1 0 0.097655 -2.566345 0.504666

12 7 0 -0.853437 -0.799800 -0.109242

13 7 0 -2.023265 -0.110600 -0.203197

14 6 0 -3.193754 -0.794203 -0.458770

15 8 0 -3.257386 -1.968747 -0.815918

16 6 0 -4.438329 0.066742 -0.308518

17 1 0 -4.643973 0.276486 0.748294

18 1 0 -4.329368 1.026348 -0.823552

19 1 0 -5.284206 -0.480530 -0.727297

20 6 0 0.206957 -0.067263 -0.450159

21 1 0 -0.028355 0.687199 -1.189798

22 6 0 1.625543 -0.347222 -0.241818

23 6 0 2.183623 -1.018825 0.865936

24 6 0 2.503290 0.170324 -1.217199

25 6 0 3.560480 -1.199042 0.963680

26 1 0 1.552476 -1.370584 1.672886

27 6 0 3.878469 -0.015962 -1.116651

28 1 0 2.094053 0.723802 -2.057177

29 6 0 4.412525 -0.708793 -0.029024

30 1 0 3.971141 -1.714930 1.827066

31 1 0 4.532708 0.386734 -1.884288

32 1 0 5.485993 -0.852978 0.053972

------------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.7563549 0.3012513 0.2436734

Thermochemical data:

Zero-point correction= 0.259404 (Hartree/Particle)

Thermal correction to Energy= 0.275876

Thermal correction to Enthalpy= 0.276821

Thermal correction to Gibbs Free Energy= 0.214196

Sum of electronic and zero-point Energies= -743.523672

Sum of electronic and thermal Energies= -743.507200

Sum of electronic and thermal Enthalpies= -743.506256

Sum of electronic and thermal Free Energies= -743.568880

Optimized Molecule = 1TRN:

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------

E(RB+HF-LYP) = -743.778109626 A.U. after 1 cycles

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

Page 295: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

145

1 6 0 0.758569 -0.508089 1.665942

2 1 0 -0.133535 -1.045080 1.988081

3 1 0 1.642730 -0.978232 2.093026

4 1 0 0.709220 0.535837 1.988093

5 7 0 0.868134 -0.566033 0.194744

6 7 0 2.045817 -0.230316 -0.378811

7 6 0 3.243107 -0.818483 -0.029373

8 8 0 4.297175 -0.237011 -0.254950

9 6 0 3.248563 -2.247631 0.517219

10 1 0 2.271028 -2.736750 0.501746

11 1 0 3.949093 -2.827754 -0.090326

12 1 0 3.640103 -2.247767 1.540730

13 6 0 -0.186098 -0.484525 -0.614177

14 1 0 0.088957 -0.601599 -1.655466

15 6 0 -1.606385 -0.513499 -0.290920

16 6 0 -2.204551 0.066054 0.847817

17 6 0 -2.441972 -1.139667 -1.242352

18 6 0 -3.582539 -0.019056 1.035397

19 1 0 -1.614988 0.642332 1.548270

20 6 0 -3.814151 -1.230007 -1.041909

21 1 0 -1.998043 -1.567319 -2.137921

22 6 0 -4.389709 -0.674643 0.104358

23 1 0 -4.027696 0.447109 1.909550

24 1 0 -4.435690 -1.728024 -1.780607

25 1 0 -5.462758 -0.738354 0.261457

26 6 0 2.001851 1.727974 -0.910723

27 1 0 2.569622 2.030455 -0.037742

28 1 0 2.599972 1.557046 -1.797401

29 6 0 0.673965 2.105330 -1.045902

30 1 0 0.183016 2.100356 -2.013795

31 6 0 -0.057564 2.634075 0.046027

32 7 0 -0.659228 3.034469 0.965993

-------------------------------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.7905690 0.2967699 0.2534073

Thermochemical data:

Zero-point correction= 0.258798 (Hartree/Particle)

Thermal correction to Energy= 0.275408

Thermal correction to Enthalpy= 0.276352

Thermal correction to Gibbs Free Energy= 0.213964

Sum of electronic and zero-point Energies= -743.519312

Sum of electronic and thermal Energies= -743.502702

Sum of electronic and thermal Enthalpies= -743.501758

Sum of electronic and thermal Free Energies= -743.564146

Optimized Molecule = 1TRX:

-----------------------------------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------------------------------

E(RB+HF-LYP) = -743.774818215 A.U. after 1 cycles

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.904862 -1.865909 0.952541

2 1 0 0.158130 -2.600536 0.649547

3 1 0 1.888473 -2.330904 0.956423

4 1 0 0.684346 -1.493373 1.959031

5 7 0 0.922699 -0.747954 -0.005927

6 7 0 2.051454 -0.009030 -0.109284

7 6 0 3.286862 -0.557051 -0.372187

8 8 0 4.304362 0.054987 -0.070202

9 6 0 3.374564 -1.871953 -1.150571

10 1 0 2.415689 -2.227366 -1.537067

11 1 0 4.060720 -1.711600 -1.987034

12 1 0 3.821631 -2.646566 -0.516995

13 6 0 -0.179838 -0.127788 -0.427090

14 1 0 0.038759 0.633970 -1.163479

15 6 0 -1.587255 -0.427792 -0.216493

16 6 0 -2.153399 -1.239058 0.792941

17 6 0 -2.469232 0.221799 -1.111720

18 6 0 -3.531803 -1.413898 0.871123

19 1 0 -1.534815 -1.714504 1.542317

20 6 0 -3.845094 0.042252 -1.026695

21 1 0 -2.059427 0.885966 -1.866274

22 6 0 -4.383983 -0.784412 -0.039341

Page 296: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

146

23 1 0 -3.943758 -2.040101 1.657582

24 1 0 -4.496483 0.554837 -1.728354

25 1 0 -5.458540 -0.927220 0.029904

26 6 0 1.858493 1.705474 0.999643

27 1 0 2.481709 2.254380 0.304611

28 1 0 2.386150 1.293786 1.852940

29 6 0 0.505968 1.986159 1.107733

30 1 0 -0.066537 1.652130 1.968288

31 6 0 -0.173501 2.824137 0.185955

32 7 0 -0.752839 3.474907 -0.592626

------------------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.7395686 0.3009429 0.2426497

Thermochemical data:

Zero-point correction= 0.258757 (Hartree/Particle)

Thermal correction to Energy= 0.275505

Thermal correction to Enthalpy= 0.276449

Thermal correction to Gibbs Free Energy= 0.212811

Sum of electronic and zero-point Energies= -743.516061

Sum of electronic and thermal Energies= -743.499313

Sum of electronic and thermal Enthalpies= -743.498369

Sum of electronic and thermal Free Energies= -743.562008

Optimized Molecule = 1TSN:

---------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -743.778108189 A.U. after 1 cycles

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.761168 -0.499789 1.664819

2 1 0 -0.713567 0.546048 1.981010

3 1 0 -1.645709 -0.968564 2.092956

4 1 0 0.130883 -1.034021 1.991651

5 7 0 -0.868058 -0.565950 0.193786

6 7 0 -2.045364 -0.233213 -0.382581

7 6 0 -3.242351 -0.819216 -0.027029

8 8 0 -4.296786 -0.236975 -0.248288

9 6 0 -3.246353 -2.249170 0.517499

10 1 0 -3.659228 -2.253346 1.532490

11 1 0 -3.929129 -2.834687 -0.105156

12 1 0 -2.265006 -2.730605 0.520937

13 6 0 0.187066 -0.487417 -0.614240

14 1 0 -0.087260 -0.609426 -1.655231

15 6 0 1.607112 -0.514440 -0.290064

16 6 0 2.443573 -1.142367 -1.239617

17 6 0 2.204473 0.067980 0.847670

18 6 0 3.815694 -1.231500 -1.038329

19 1 0 1.614426 0.645542 1.546642

20 6 0 3.582409 -0.016019 1.036107

21 1 0 2.000344 -1.572344 -2.134415

22 6 0 4.390413 -0.673255 0.106959

23 1 0 4.026868 0.452321 1.909451

24 1 0 4.437841 -1.730845 -1.775617

25 1 0 5.463416 -0.736040 0.264735

26 6 0 -2.002452 1.723959 -0.912626

27 1 0 -2.569103 2.026515 -0.038941

28 1 0 -2.601585 1.553199 -1.798655

29 6 0 -0.675095 2.103123 -1.049227 30 1 0 -0.184890 2.098516 -2.017492

31 6 0 0.055872 2.634338 0.041854

32 7 0 0.656400 3.037188 0.961549

-------------------------------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.7907142 0.2968029 0.2533837

Thermochemical data:

--------------------------------------------------------------------------------------------

Zero-point correction= 0.258814 (Hartree/Particle)

Thermal correction to Energy= 0.275415

Thermal correction to Enthalpy= 0.276359

Thermal correction to Gibbs Free Energy= 0.214004

Sum of electronic and zero-point Energies= -743.519295

Page 297: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

147

Sum of electronic and thermal Energies= -743.502693

Sum of electronic and thermal Enthalpies= -743.501749

Sum of electronic and thermal Free Energies= -743.564104

Optimized Molecule = 2PRX:

--------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -879.485349749

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.707770 1.293682 0.145989

2 1 0 -1.769684 1.815456 1.109458

3 1 0 -2.224621 1.886721 -0.610057

4 6 0 -0.232722 1.030294 -0.208651

5 1 0 -0.127636 0.807823 -1.273318

6 6 0 0.678569 2.175958 0.176825

7 8 0 0.814313 2.592004 1.309370

8 8 0 1.316939 2.686699 -0.892761

9 6 0 2.215911 3.775508 -0.613390

10 1 0 2.635996 4.060579 -1.577879

11 1 0 1.675750 4.612472 -0.163471

12 1 0 3.004450 3.451028 0.070206

13 6 0 -1.507703 -1.857389 1.634469

14 1 0 -1.652336 -1.272321 2.558280

15 1 0 -2.404657 -2.439053 1.418991

16 1 0 -0.665866 -2.542154 1.773908

17 7 0 -1.208025 -1.016571 0.475247

18 7 0 -2.259317 -0.056327 0.228753

19 6 0 -3.395456 -0.513382 -0.403626

20 8 0 -3.620891 -1.706969 -0.554770

21 6 0 -4.394235 0.555752 -0.833135

22 1 0 -4.538282 1.332359 -0.074981

23 1 0 -4.071626 1.044617 -1.761220

24 1 0 -5.344873 0.055873 -1.024184

25 6 0 0.036036 -0.243545 0.630218

26 1 0 0.168748 0.088238 1.674041

27 6 0 1.263466 -1.026580 0.204732

28 6 0 1.205705 -1.953476 -0.843767

29 6 0 2.488419 -0.793335 0.842138

30 6 0 2.357142 -2.627656 -1.250711

31 1 0 0.247986 -2.152483 -1.314975

32 6 0 3.641209 -1.464351 0.430985

33 1 0 2.537416 -0.083480 1.665152

34 6 0 3.578091 -2.383456 -0.617554

35 1 0 2.299645 -3.349412 -2.061409

36 1 0 4.584992 -1.275588 0.935976

37 1 0 4.473110 -2.912414 -0.934357

---------------------------------------------------------------------

Rotational constants (GHZ): 0.4523391 0.3038184 0.2087712

Thremochemical data:

Zero-point correction= 0.308748 (Hartree/Particle)

Thermal correction to Energy= 0.326987

Thermal correction to Enthalpy= 0.327931

Thermal correction to Gibbs Free Energy= 0.261092

Sum of electronic and zero-point Energies= -879.167365

Sum of electronic and thermal Energies= -879.149126

Sum of electronic and thermal Enthalpies= -879.148182

Sum of electronic and thermal Free Energies= -879.215021

Optimized Molecule = 2PRN:

--------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -879.480483836 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 1.805232 0.086120 -1.578645

Page 298: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

148

2 1 0 2.486359 0.935548 -1.526697

3 1 0 2.002201 -0.455025 -2.513989

4 6 0 0.321645 0.496213 -1.524720

5 1 0 -0.082631 0.703287 -2.517137

6 6 0 0.042934 1.744727 -0.701846

7 8 0 -0.712952 2.625260 -1.048008

8 8 0 0.739041 1.765492 0.454441

9 6 0 0.483469 2.894531 1.309706

10 1 0 1.106604 2.737852 2.190058

11 1 0 0.750783 3.826346 0.804405

12 1 0 -0.573469 2.926736 1.584578

13 6 0 0.737767 -2.813767 -0.018497

14 1 0 -0.252315 -3.171751 0.280095

15 1 0 0.998301 -3.254752 -0.996562

16 1 0 1.464100 -3.127205 0.732895

17 7 0 0.698212 -1.354208 -0.044604

18 7 0 1.967491 -0.793317 -0.424057

19 6 0 2.893706 -0.635280 0.589141

20 8 0 2.762522 -1.181292 1.675197

21 6 0 4.130490 0.184031 0.242250

22 1 0 4.536158 -0.056460 -0.745932

23 1 0 3.900460 1.256434 0.264074

24 1 0 4.885396 -0.022572 1.002243

25 6 0 -0.316918 -0.808922 -0.956725

26 1 0 -0.447005 -1.475466 -1.828986

27 6 0 -1.670206 -0.640800 -0.285912

28 6 0 -1.775841 -0.439821 1.096006

29 6 0 -2.834548 -0.660880 -1.063091

30 6 0 -3.027957 -0.253357 1.684308

31 1 0 -0.870325 -0.451787 1.694007

32 6 0 -4.084550 -0.468536 -0.475568

33 1 0 -2.763013 -0.829020 -2.136051

34 6 0 -4.184084 -0.263327 0.901988

35 1 0 -3.099856 -0.105876 2.758902

36 1 0 -4.979655 -0.485288 -1.091679

37 1 0 -5.157715 -0.119588 1.362989

---------------------------------------------------------------------

Rotational constants (GHZ): 0.6003963 0.3006283 0.2603712

Thermochemical data:

Zero-point correction= 0.308080 (Hartree/Particle)

Thermal correction to Energy= 0.326524

Thermal correction to Enthalpy= 0.327468

Thermal correction to Gibbs Free Energy= 0.260171

Sum of electronic and zero-point Energies= -879.172404

Sum of electronic and thermal Energies= -879.153960

Sum of electronic and thermal Enthalpies= -879.153016

Sum of electronic and thermal Free Energies= -879.220313

Optimized Molecule = 2PSX:

--------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -879.476113184 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.734065 -0.309717 -1.290027

2 1 0 1.668252 -0.237606 -1.843085

3 1 0 -0.055812 -0.643338 -1.972896

4 6 0 0.335961 1.020916 -0.641150

5 1 0 -0.244808 1.651126 -1.321401

6 6 0 1.494541 1.869618 -0.117068

7 8 0 1.342769 2.812347 0.628544

8 8 0 2.695304 1.480496 -0.591025

9 6 0 3.819751 2.243311 -0.113886

10 1 0 4.695341 1.799474 -0.587801

11 1 0 3.715592 3.293445 -0.397775

12 1 0 3.890456 2.170276 0.973831

13 6 0 -0.392226 -1.529669 1.935326

14 1 0 -1.184946 -2.122454 1.457090

15 1 0 0.360575 -2.196247 2.354733

16 1 0 -0.837878 -0.938874 2.741932

17 7 0 0.275516 -0.591521 1.035127

18 7 0 0.857764 -1.223648 -0.142642

19 6 0 1.962416 -2.030359 0.059797

Page 299: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

149

20 8 0 2.307786 -2.416844 1.168430

21 6 0 2.683855 -2.484206 -1.204287

22 1 0 3.417345 -1.729592 -1.514923

23 1 0 3.222552 -3.402316 -0.963815

24 1 0 2.007150 -2.666719 -2.044713

25 6 0 -0.529762 0.542640 0.549473

26 1 0 -0.516953 1.307122 1.331670

27 6 0 -1.985427 0.294824 0.156630

28 6 0 -2.936945 1.268489 0.490915

29 6 0 -2.416241 -0.842599 -0.543882

30 6 0 -4.275179 1.125363 0.123965

31 1 0 -2.622407 2.151518 1.043442

32 6 0 -3.756551 -0.992802 -0.904338

33 1 0 -1.707754 -1.626367 -0.793053

34 6 0 -4.689804 -0.008368 -0.576555

35 1 0 -4.993771 1.895608 0.391574

36 1 0 -4.071031 -1.884394 -1.440600

37 1 0 -5.732450 -0.127123 -0.858670

---------------------------------------------------------------------

Rotational constants (GHZ): 0.5748833 0.2759851 0.2188551

Thermochemical data:

Zero-point correction= 0.308253 (Hartree/Particle)

Thermal correction to Energy= 0.326824

Thermal correction to Enthalpy= 0.327768

Thermal correction to Gibbs Free Energy= 0.259451

Sum of electronic and zero-point Energies= -879.177097

Sum of electronic and thermal Energies= -879.158526

Sum of electronic and thermal Enthalpies= -879.157582

Sum of electronic and thermal Free Energies= -879.225899

Optimized Molecule = 2PSN:

--------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -879.480483868 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.805582 0.085536 -1.578771

2 1 0 -2.486706 0.934972 -1.527043

3 1 0 -2.002717 -0.456007 -2.513849

4 6 0 -0.321950 0.495565 -1.525322

5 1 0 0.082071 0.702396 -2.517892

6 6 0 -0.042827 1.744213 -0.702790

7 8 0 0.713214 2.624479 -1.049286

8 8 0 -0.738684 1.765382 0.453642

9 6 0 -0.482529 2.894437 1.308717

10 1 0 -1.106075 2.738450 2.188904

11 1 0 0.574341 2.925836 1.583953

12 1 0 -0.748924 3.826340 0.803102

13 6 0 -0.738671 -2.814744 -0.020377

14 1 0 0.251304 -3.173422 0.277750

15 1 0 -1.464955 -3.128421 0.730978

16 1 0 -0.999635 -3.254965 -0.998678

17 7 0 -0.698483 -1.355213 -0.045412

18 7 0 -1.967606 -0.793468 -0.423846

19 6 0 -2.892665 -0.634261 0.590286

20 8 0 -2.760828 -1.180093 1.676333

21 6 0 -4.129096 0.186009 0.244425

22 1 0 -4.536095 -0.054607 -0.743181

23 1 0 -4.883326 -0.019564 1.005369

24 1 0 -3.898072 1.258212 0.265459

25 6 0 0.316782 -0.809476 -0.957167

26 1 0 0.447412 -1.475942 -1.829390

27 6 0 1.669780 -0.640965 -0.285829

28 6 0 1.774826 -0.440403 1.096189

29 6 0 2.834413 -0.660298 -1.062599

30 6 0 3.026653 -0.253591 1.685002

31 1 0 0.869088 -0.452994 1.693846

32 6 0 4.084119 -0.467621 -0.474564

33 1 0 2.763338 -0.828103 -2.135643

34 6 0 4.183067 -0.262818 0.903098

35 1 0 3.098100 -0.106452 2.759674

36 1 0 4.979454 -0.483788 -1.090357

37 1 0 5.156470 -0.118827 1.364503

Page 300: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

150

---------------------------------------------------------------------

Rotational constants (GHZ): 0.6002948 0.3007219 0.2604694

Thermochemical data:

Zero-point correction= 0.308079 (Hartree/Particle)

Thermal correction to Energy= 0.326523

Thermal correction to Enthalpy= 0.327467

Thermal correction to Gibbs Free Energy= 0.260168

Sum of electronic and zero-point Energies= -879.172405

Sum of electronic and thermal Energies= -879.153961

Sum of electronic and thermal Enthalpies= -879.153017

Sum of electronic and thermal Free Energies= -879.220316

Optimized Molecule = 2TRX:

---------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

SCF Done: E(RB+HF-LYP) = -879.417189331 A.U. after 1 cycles

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 1.840552 1.020903 1.156414

2 1 0 2.387916 1.756449 0.580323

3 1 0 2.408588 0.528606 1.939990

4 6 0 0.468474 1.186079 1.326347

5 1 0 -0.048618 0.693083 2.142923

6 6 0 -0.307979 2.249548 0.696829

7 8 0 -1.432652 2.590202 1.021226

8 8 0 0.355290 2.835787 -0.353112

9 6 0 -0.340318 3.922213 -0.973295

10 1 0 0.305511 4.261301 -1.785197

11 1 0 -1.308054 3.595654 -1.364849

12 1 0 -0.511382 4.733894 -0.259856

13 6 0 0.925013 -2.453860 0.610518

14 1 0 0.033369 -3.017687 0.337813

15 1 0 1.816653 -3.015429 0.340080

16 1 0 0.918786 -2.236543 1.685259

17 7 0 0.955499 -1.197140 -0.155193

18 7 0 2.102263 -0.467455 -0.182585

19 6 0 3.295102 -1.093142 -0.465913

20 8 0 3.408806 -2.235062 -0.910311

21 6 0 4.508101 -0.210119 -0.215857

22 1 0 4.341253 0.818582 -0.548211

23 1 0 4.746286 -0.181889 0.854841

24 1 0 5.359846 -0.638349 -0.747188

25 6 0 -0.127237 -0.469279 -0.429897

26 1 0 0.088923 0.357300 -1.095963

27 6 0 -1.533353 -0.845207 -0.273810

28 6 0 -2.069518 -1.549871 0.821753

29 6 0 -2.416581 -0.402981 -1.278074

30 6 0 -3.431377 -1.832027 0.883868

31 1 0 -1.431964 -1.842934 1.647549

32 6 0 -3.776548 -0.691927 -1.215920

33 1 0 -2.023027 0.163973 -2.117442

34 6 0 -4.288501 -1.413525 -0.136461

35 1 0 -3.827361 -2.369109 1.741135

36 1 0 -4.437046 -0.347904 -2.006647

37 1 0 -5.350564 -1.635091 -0.081545

-------------------------------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.4620143 0.2882331 0.2042163

Thermochemical data:

Zero-point correction= 0.303825 (Hartree/Particle)

Thermal correction to Energy= 0.323076

Thermal correction to Enthalpy= 0.324020

Thermal correction to Gibbs Free Energy= 0.254443

Sum of electronic and zero-point Energies= -879.113364

Sum of electronic and thermal Energies= -879.094114

Sum of electronic and thermal Enthalpies= -879.093169

Sum of electronic and thermal Free Energies= -879.162746

Optimized Molecule = 2TRN:

---------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

Page 301: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

151

---------------------------------------------------------

SCF Done: E(RB+HF-LYP) = -879.418232803 A.U. after 1 cycles

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 1.923375 1.062116 -1.232339

2 1 0 2.385909 1.649825 -0.446602

3 1 0 2.578167 0.803375 -2.056937

4 6 0 0.567249 1.254661 -1.497074

5 1 0 0.157077 0.999794 -2.468110

6 6 0 -0.304465 2.102091 -0.699314

7 8 0 -1.410235 2.495669 -1.030217

8 8 0 0.240903 2.440824 0.524269

9 6 0 -0.523976 3.388525 1.276552

10 1 0 0.040094 3.562389 2.194938

11 1 0 -0.640699 4.323651 0.720926

12 1 0 -1.519941 2.999200 1.507621

13 6 0 0.847675 -0.718804 1.747679

14 1 0 -0.056918 -1.198712 2.119970

15 1 0 1.721454 -1.168924 2.213690

16 1 0 0.814169 0.359034 1.928414

17 7 0 0.958663 -0.964592 0.297883

18 7 0 2.134190 -0.694546 -0.328784

19 6 0 3.309637 -1.177499 0.203230

20 8 0 3.385886 -2.026245 1.089771

21 6 0 4.552597 -0.594583 -0.452093

22 1 0 4.474499 -0.593760 -1.543776

23 1 0 4.711507 0.441473 -0.129204

24 1 0 5.412400 -1.192426 -0.145560

25 6 0 -0.079801 -1.003601 -0.534803

26 1 0 0.201249 -1.316495 -1.532163

27 6 0 -1.504864 -1.050305 -0.210664

28 6 0 -2.131126 -0.315700 0.814970

29 6 0 -2.308144 -1.863187 -1.036041

30 6 0 -3.502937 -0.427571 1.027103

31 1 0 -1.555365 0.370942 1.422763

32 6 0 -3.677241 -1.975434 -0.817843

33 1 0 -1.843954 -2.418079 -1.847299

34 6 0 -4.279336 -1.261350 0.220496

35 1 0 -3.969812 0.153218 1.817453

36 1 0 -4.274837 -2.616277 -1.459846

37 1 0 -5.349259 -1.342396 0.390294

---------------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.5157548 0.2783919 0.2194104

Thermochemical data:

Zero-point correction= 0.304100 (Hartree/Particle)

Thermal correction to Energy= 0.323175

Thermal correction to Enthalpy= 0.324119

Thermal correction to Gibbs Free Energy= 0.255901

Sum of electronic and zero-point Energies= -879.114133

Sum of electronic and thermal Energies= -879.095058

Sum of electronic and thermal Enthalpies= -879.094114

Sum of electronic and thermal Free Energies= -879.162332

Optimized Molecule = 2TSX:

---------------------------------------------------------

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -879.417722914 A.U. after 1 cycles

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -2.045887 0.736895 1.039249

2 1 0 -2.758046 1.270087 0.421551

3 1 0 -2.485827 0.193086 1.871178

4 6 0 -0.778221 1.300335 1.224328

5 1 0 -0.178313 1.040056 2.089496

6 6 0 -0.317534 2.476443 0.507170

7 8 0 0.678465 3.135106 0.782034

8 8 0 -1.104208 2.783699 -0.573057

9 6 0 -0.711478 3.954454 -1.297680

Page 302: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

152

10 1 0 -1.422478 4.043011 -2.120882

11 1 0 -0.756237 4.841792 -0.659458

12 1 0 0.307417 3.853734 -1.682404

13 6 0 -0.397710 -2.336669 1.008176

14 1 0 0.666085 -2.438695 1.207220

15 1 0 -0.915610 -2.033608 1.923975

16 1 0 -0.827466 -3.265945 0.639169

17 7 0 -0.624823 -1.282322 -0.003251

18 7 0 -1.891127 -0.806205 -0.150460

19 6 0 -2.910434 -1.718374 -0.338526

20 8 0 -2.746844 -2.910555 -0.586100

21 6 0 -4.296232 -1.096741 -0.267932

22 1 0 -4.339510 -0.139625 -0.796049

23 1 0 -5.008233 -1.796452 -0.708611

24 1 0 -4.585493 -0.916888 0.774896

25 6 0 0.311572 -0.410190 -0.358015

26 1 0 -0.049899 0.358573 -1.029314

27 6 0 1.765081 -0.616063 -0.223247

28 6 0 2.361787 -1.851224 -0.540813

29 6 0 2.588441 0.468493 0.129226

30 6 0 3.745770 -2.004108 -0.479061

31 1 0 1.744282 -2.681780 -0.870578

32 6 0 3.970685 0.303399 0.195721

33 1 0 2.144946 1.429719 0.373079

34 6 0 4.553995 -0.929530 -0.104299

35 1 0 4.191380 -2.961562 -0.734388

36 1 0 4.593570 1.145524 0.484103

37 1 0 5.632763 -1.050048 -0.055783

---------------------------------------------------------------------

Rotational constants (GHZ): 0.4245758 0.3021655 0.1933336

Thermochemical data:

Zero-point correction= 0.303699 (Hartree/Particle)

Thermal correction to Energy= 0.323015

Thermal correction to Enthalpy= 0.323959

Thermal correction to Gibbs Free Energy= 0.254709

Sum of electronic and zero-point Energies= -879.114024

Sum of electronic and thermal Energies= -879.094708

Sum of electronic and thermal Enthalpies= -879.093764

Sum of electronic and thermal Free Energies= -879.163014

Optimized Molecule = 2TSN:

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -879.417861122 A.U. after 1 cycles

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -2.045596 1.198985 -0.975936

2 1 0 -2.511204 1.572827 -0.069543

3 1 0 -2.721688 1.090720 -1.817106

4 6 0 -0.726342 1.587111 -1.241722

5 1 0 -0.360397 1.594462 -2.262926

6 6 0 0.120178 2.306125 -0.309064

7 8 0 1.200526 2.813378 -0.581240

8 8 0 -0.401800 2.370168 0.961538

9 6 0 0.395209 3.095887 1.903340

10 1 0 -0.158325 3.066150 2.843780

11 1 0 1.378280 2.631361 2.024406

12 1 0 0.537404 4.130796 1.579402

13 6 0 -0.744626 -0.912010 1.530153

14 1 0 0.305859 -0.925838 1.809879

15 1 0 -1.193579 0.030619 1.851361

16 1 0 -1.283053 -1.754801 1.959042

17 7 0 -0.869933 -0.982715 0.056650

18 7 0 -2.075208 -0.684144 -0.498612

19 6 0 -3.196815 -1.319289 -0.002025

20 8 0 -3.173615 -2.290126 0.749543

21 6 0 -4.503323 -0.741940 -0.523647

22 1 0 -4.469355 -0.570654 -1.604015

23 1 0 -5.304568 -1.443710 -0.287076

24 1 0 -4.723648 0.217773 -0.040606

25 6 0 0.152487 -0.786864 -0.767270

26 1 0 -0.129609 -0.783142 -1.811165

27 6 0 1.576660 -0.945016 -0.429876

28 6 0 2.031268 -2.032963 0.340364

Page 303: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

153

29 6 0 2.519690 -0.058276 -0.979389

30 6 0 3.393213 -2.214723 0.570629

31 1 0 1.319354 -2.756628 0.726492

32 6 0 3.879765 -0.244182 -0.738207

33 1 0 2.184500 0.801477 -1.548459

34 6 0 4.321262 -1.318740 0.035744

35 1 0 3.728846 -3.064062 1.159210

36 1 0 4.595088 0.459898 -1.153554

37 1 0 5.383016 -1.461219 0.217308

---------------------------------------------------------------------

Rotational constants (GHZ): 0.4973750 0.2861943 0.2151843

Thermochemical data:

Zero-point correction= 0.303878 (Hartree/Particle)

Thermal correction to Energy= 0.323113

Thermal correction to Enthalpy= 0.324057

Thermal correction to Gibbs Free Energy= 0.255111

Sum of electronic and zero-point Energies= -879.113983

Sum of electronic and thermal Energies= -879.094748

Sum of electronic and thermal Enthalpies= -879.093804

Sum of electronic and thermal Free Energies= -879.162750

Optimized Molecule = 2PRX-r:

E(RB+HF-LYP) = -879.485548768 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.017275 -1.076486 -1.012095

2 1 0 0.060749 -2.131332 -0.728742

3 1 0 -0.476320 -1.012293 -1.986429

4 6 0 1.423967 -0.427661 -1.087867

5 1 0 1.793570 -0.361420 -2.114148

6 6 0 2.466623 -1.253572 -0.331593

7 8 0 3.289368 -1.950846 -0.877617

8 8 0 2.275685 -1.207552 1.004462

9 6 0 3.240964 -1.936310 1.781031

10 1 0 2.943414 -1.800136 2.821215

11 1 0 3.232496 -2.995752 1.511881

12 1 0 4.240359 -1.528655 1.610107

13 6 0 -0.821986 1.852998 -1.355447

14 1 0 -1.861963 2.063539 -1.097654

15 1 0 -0.303999 2.801592 -1.515279

16 1 0 -0.796810 1.282253 -2.296175

17 7 0 -0.180773 1.168135 -0.216966

18 7 0 1.189397 0.909681 -0.510792

19 6 0 2.217110 1.655485 0.013239

20 8 0 3.379794 1.312160 -0.176037

21 6 0 1.833369 2.902078 0.784362

22 1 0 1.077711 2.678746 1.542282

23 1 0 2.736994 3.301357 1.247503

24 1 0 1.410341 3.662411 0.117869

25 6 0 -0.697688 -0.206606 0.045017

26 1 0 -0.278140 -0.477942 1.021514

27 6 0 -2.207566 -0.283527 0.141210

28 6 0 -2.972156 -1.153237 -0.643585

29 6 0 -2.865166 0.520175 1.086680

30 6 0 -4.360399 -1.216988 -0.493021

31 1 0 -2.490499 -1.796660 -1.373673

32 6 0 -4.249284 0.464498 1.232468

33 1 0 -2.278904 1.197261 1.702639

34 6 0 -5.003202 -0.407150 0.441381

35 1 0 -4.936242 -1.901850 -1.109777

36 1 0 -4.740497 1.097220 1.967000

37 1 0 -6.082574 -0.455324 0.557017

---------------------------------------------------------------------

Rotational constants (GHZ): 0.6886476 0.2325717 0.2044275

Thermochemical data:

Zero-point correction= 0.308202 (Hartree/Particle)

Thermal correction to Energy= 0.326668

Thermal correction to Enthalpy= 0.327613

Thermal correction to Gibbs Free Energy= 0.260576

Sum of electronic and zero-point Energies= -879.177347

Sum of electronic and thermal Energies= -879.158880

Sum of electronic and thermal Enthalpies= -879.157936

Sum of electronic and thermal Free Energies= -879.224973

Page 304: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

154

Optimized Molecule = 2PRN-r:

E(RB+HF-LYP) = -879.478423586 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.010428 -0.948739 -1.026156

2 1 0 0.070217 -1.695359 -0.230714

3 1 0 0.176073 -1.440828 -1.984120

4 6 0 -1.401916 -0.275104 -0.987546

5 1 0 -1.735230 -0.020325 -1.998631

6 6 0 -2.473892 -1.209244 -0.426307

7 8 0 -3.322907 -1.740257 -1.108747

8 8 0 -2.346709 -1.397385 0.901979

9 6 0 -3.303705 -2.295303 1.492779

10 1 0 -3.060706 -2.321860 2.554916

11 1 0 -4.320098 -1.924245 1.338825

12 1 0 -3.217756 -3.291291 1.050505

13 6 0 0.321904 0.637237 1.652711

14 1 0 1.361522 0.765921 1.961017

15 1 0 -0.301723 1.311925 2.242520

16 1 0 0.009401 -0.399977 1.841291

17 7 0 0.196242 1.059573 0.248313

18 7 0 -1.152548 0.945827 -0.199067

19 6 0 -2.013131 2.008701 -0.016138

20 8 0 -1.700985 2.991786 0.638397

21 6 0 -3.394284 1.855538 -0.641089

22 1 0 -3.353013 1.572804 -1.698558

23 1 0 -3.987408 1.094501 -0.120747

24 1 0 -3.901680 2.816178 -0.543612

25 6 0 0.923809 0.249043 -0.755000

26 1 0 0.930550 0.865696 -1.666049

27 6 0 2.365042 -0.035522 -0.384161

28 6 0 2.883013 -1.330876 -0.286922

29 6 0 3.226244 1.052106 -0.167062

30 6 0 4.230099 -1.538215 0.023812

31 1 0 2.242852 -2.190789 -0.460323

32 6 0 4.566737 0.847179 0.150718

33 1 0 2.829349 2.061375 -0.239454

34 6 0 5.074226 -0.451826 0.246151

35 1 0 4.615737 -2.552037 0.091439

36 1 0 5.217556 1.700851 0.320127

37 1 0 6.121005 -0.613350 0.489074

---------------------------------------------------------------------

Rotational constants (GHZ): 0.6730467 0.2309691 0.1957762

Thermochemical data:

Zero-point correction= 0.307984 (Hartree/Particle)

Thermal correction to Energy= 0.326621

Thermal correction to Enthalpy= 0.327565

Thermal correction to Gibbs Free Energy= 0.259185

Sum of electronic and zero-point Energies= -879.170439

Sum of electronic and thermal Energies= -879.151803

Sum of electronic and thermal Enthalpies= -879.150859

Sum of electronic and thermal Free Energies= -879.219239

Optimized Molecule = 2PSX-r:

E(RB+HF-LYP) = -879.470597430 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.233108 -1.506847 -0.231048

2 1 0 -0.752434 -2.350993 0.224745

3 1 0 0.286717 -1.877143 -1.116470

4 6 0 -1.236305 -0.381986 -0.600028

5 1 0 -1.327711 -0.283197 -1.685264

6 6 0 -2.651950 -0.649991 -0.060153

7 8 0 -3.317593 0.116334 0.595383

8 8 0 -3.085693 -1.858234 -0.479957

9 6 0 -4.427696 -2.202764 -0.088741

10 1 0 -4.612945 -3.187830 -0.517386

11 1 0 -4.511706 -2.233334 1.000435

12 1 0 -5.138810 -1.470831 -0.480396

Page 305: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

155

13 6 0 0.848918 1.369831 1.866258

14 1 0 1.592248 1.836895 1.205418

15 1 0 0.222562 2.142890 2.300943

16 1 0 1.379902 0.831365 2.658441

17 7 0 0.008200 0.375051 1.193838

18 7 0 -0.641468 0.822653 -0.034650

19 6 0 -1.219997 2.076624 -0.163113

20 8 0 -1.054997 2.988274 0.633861

21 6 0 -2.022522 2.292824 -1.442957

22 1 0 -3.034731 1.891619 -1.328807

23 1 0 -2.095075 3.371250 -1.592700

24 1 0 -1.561257 1.837856 -2.325830

25 6 0 0.750864 -0.841028 0.761198

26 1 0 0.858046 -1.455550 1.661211

27 6 0 2.145900 -0.630231 0.180132

28 6 0 2.367594 0.094997 -1.001994

29 6 0 3.254226 -1.172084 0.842490

30 6 0 3.658287 0.269140 -1.500397

31 1 0 1.525315 0.537214 -1.525120

32 6 0 4.547208 -1.008639 0.341264

33 1 0 3.103011 -1.734252 1.761989

34 6 0 4.753253 -0.285249 -0.832981

35 1 0 3.809458 0.838920 -2.413641

36 1 0 5.390823 -1.444437 0.870224

37 1 0 5.757701 -0.152935 -1.225992

---------------------------------------------------------------------

Rotational constants (GHZ): 0.6618743 0.2403891 0.2079820

Thermochemical data:

--------------------------------------------------------------------------------------

Zero-point correction= 0.308253 (Hartree/Particle)

Thermal correction to Energy= 0.326672

Thermal correction to Enthalpy= 0.327616

Thermal correction to Gibbs Free Energy= 0.259624

Sum of electronic and zero-point Energies= -879.162344

Sum of electronic and thermal Energies= -879.143925

Sum of electronic and thermal Enthalpies= -879.142981

Sum of electronic and thermal Free Energies= -879.210974

Optimized Molecule = 2PSN-r:

E(RB+HF-LYP) = -879.464367442 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.055065 -1.148466 -0.878219

2 1 0 -0.242726 -1.721008 0.034773

3 1 0 -0.305167 -1.783487 -1.730262

4 6 0 1.407960 -0.655261 -0.942893

5 1 0 1.759695 -0.651813 -1.977948

6 6 0 2.348741 -1.652633 -0.236510

7 8 0 2.970990 -2.439912 -0.911613

8 8 0 2.443432 -1.727135 1.106680

9 6 0 1.780570 -0.862176 2.049849

10 1 0 1.654768 -1.466909 2.950125

11 1 0 2.414535 -0.000833 2.276139

12 1 0 0.811954 -0.504238 1.699941

13 6 0 -0.361855 2.449884 -0.228582

14 1 0 -1.427575 2.559930 -0.012787

15 1 0 0.220413 3.074773 0.443674

16 1 0 -0.172275 2.754874 -1.271075

17 7 0 -0.025781 1.036331 -0.005111

18 7 0 1.330748 0.723805 -0.437265

19 6 0 2.406751 1.448017 0.027115

20 8 0 2.294218 2.400277 0.792205

21 6 0 3.770496 1.014924 -0.497802

22 1 0 4.397063 1.908538 -0.531217

23 1 0 4.239154 0.305746 0.194589

24 1 0 3.741605 0.551947 -1.487786

25 6 0 -0.859741 0.156980 -0.852659

26 1 0 -0.900975 0.558135 -1.881602

27 6 0 -2.274672 0.002769 -0.332866

28 6 0 -2.543477 -0.115298 1.037586

29 6 0 -3.339013 -0.073088 -1.238973

30 6 0 -3.849086 -0.310107 1.487744

31 1 0 -1.726897 -0.033261 1.748270

32 6 0 -4.645029 -0.275971 -0.790388

33 1 0 -3.143830 0.027873 -2.304517

Page 306: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

156

34 6 0 -4.903377 -0.395125 0.575595

35 1 0 -4.043729 -0.393207 2.553737

36 1 0 -5.459278 -0.333157 -1.507737

37 1 0 -5.919861 -0.547378 0.928150

---------------------------------------------------------------------

Rotational constants (GHZ): 0.7005564 0.2367675 0.2144106

--------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------------------------

Thermochemical data:

----------------------------------------------------------------------------------------------------------------------------------

Zero-point correction= 0.308392 (Hartree/Particle)

Thermal correction to Energy= 0.326642

Thermal correction to Enthalpy= 0.327587

Thermal correction to Gibbs Free Energy= 0.261551

Sum of electronic and zero-point Energies= -879.155976

Sum of electronic and thermal Energies= -879.137725

Sum of electronic and thermal Enthalpies= -879.136781

Sum of electronic and thermal Free Energies= -879.202816

Optimized Molecule = 2TRX-r:

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -879.399377589 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.156303 -1.142620 -1.414367

2 1 0 -0.130748 -2.072813 -0.937619

3 1 0 -0.498849 -0.793867 -2.207968

4 6 0 1.466692 -0.719183 -1.371199

5 1 0 1.873007 -0.027428 -2.098674

6 6 0 2.506094 -1.450250 -0.607841

7 8 0 3.683118 -1.479483 -0.895311

8 8 0 1.981998 -2.130964 0.449268

9 6 0 2.937859 -2.877439 1.213754

10 1 0 2.367865 -3.357910 2.010585

11 1 0 3.432247 -3.628235 0.590766

12 1 0 3.698160 -2.212711 1.632861

13 6 0 -0.579941 2.269883 -0.724997

14 1 0 -1.630588 2.440118 -0.490878

15 1 0 -0.010635 3.171590 -0.508152

16 1 0 -0.464104 2.025661 -1.787412

17 7 0 -0.056154 1.166559 0.099161

18 7 0 1.269721 0.977157 0.158847

19 6 0 2.149527 2.022238 0.374916

20 8 0 3.287370 1.984766 -0.070112

21 6 0 1.735658 3.152239 1.326778

22 1 0 0.736929 3.035527 1.755662

23 1 0 2.468909 3.176490 2.138858

24 1 0 1.805496 4.114791 0.808003

25 6 0 -0.764753 0.031123 0.286358

26 1 0 -0.265848 -0.631031 0.984249

27 6 0 -2.227309 -0.119467 0.178670

28 6 0 -3.003625 0.284493 -0.924259

29 6 0 -2.878480 -0.783306 1.236172

30 6 0 -4.380190 0.067943 -0.945450

31 1 0 -2.530379 0.743391 -1.785550

32 6 0 -4.254083 -1.000340 1.213032

33 1 0 -2.293885 -1.122557 2.087463

34 6 0 -5.013079 -0.569030 0.123706

35 1 0 -4.957981 0.386601 -1.808744

36 1 0 -4.732606 -1.507438 2.046304

37 1 0 -6.085879 -0.738459 0.101805

---------------------------------------------------------------------

Rotational constants (GHZ): 0.5499596 0.2337741 0.1911104

Thermochemical data:

Zero-point correction= 0.303009 (Hartree/Particle)

Thermal correction to Energy= 0.322360

Thermal correction to Enthalpy= 0.323304

Thermal correction to Gibbs Free Energy= 0.253639

Sum of electronic and zero-point Energies= -879.096369

Sum of electronic and thermal Energies= -879.077017

Sum of electronic and thermal Enthalpies= -879.076073

Sum of electronic and thermal Free Energies= -879.145739

Page 307: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

157

Optimized Molecule = 2TRN-r:

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -879.415641940 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.024965 0.973908 -1.559923

2 1 0 -0.386689 1.767581 -0.914964

3 1 0 -0.587246 0.835752 -2.478958

4 6 0 1.332396 0.680613 -1.560494

5 1 0 1.788812 0.150174 -2.386356

6 6 0 2.311110 1.337948 -0.680513

7 8 0 3.518314 1.312826 -0.850624

8 8 0 1.736986 2.024786 0.350031

9 6 0 2.660790 2.716299 1.202973

10 1 0 2.047613 3.227685 1.946417

11 1 0 3.342996 2.012544 1.688170

12 1 0 3.249182 3.438029 0.630248

13 6 0 -0.017113 -0.587023 1.699732

14 1 0 -1.041849 -0.663754 2.061495

15 1 0 0.630007 -1.261884 2.254625

16 1 0 0.339141 0.443789 1.779729

17 7 0 0.021997 -1.015545 0.286577

18 7 0 1.179957 -1.300944 -0.320707

19 6 0 2.181641 -1.987813 0.354007

20 8 0 2.035878 -2.598452 1.411633

21 6 0 3.490014 -1.997662 -0.412158

22 1 0 3.333735 -2.364148 -1.432478

23 1 0 3.905829 -0.986940 -0.491155

24 1 0 4.194405 -2.648912 0.108434

25 6 0 -0.943105 -0.667124 -0.604842

26 1 0 -0.865552 -1.268544 -1.504056

27 6 0 -2.320934 -0.260652 -0.241690

28 6 0 -2.626826 0.811436 0.615785

29 6 0 -3.384356 -0.949145 -0.851365

30 6 0 -3.951487 1.156338 0.878478

31 1 0 -1.827513 1.391730 1.064857

32 6 0 -4.708564 -0.602734 -0.589384

33 1 0 -3.166333 -1.770420 -1.529511

34 6 0 -4.997074 0.449516 0.281050

35 1 0 -4.166480 1.987746 1.544162

36 1 0 -5.513966 -1.154967 -1.065590

37 1 0 -6.028347 0.723257 0.485577

---------------------------------------------------------------------

Rotational constants (GHZ): 0.6187190 0.2326103 0.2019620

Thermochemical data:

Zero-point correction= 0.303905 (Hartree/Particle)

Thermal correction to Energy= 0.322960

Thermal correction to Enthalpy= 0.323904

Thermal correction to Gibbs Free Energy= 0.255719

Sum of electronic and zero-point Energies= -879.111737

Sum of electronic and thermal Energies= -879.092682

Sum of electronic and thermal Enthalpies= -879.091738

Sum of electronic and thermal Free Energies= -879.159923

Optimized Molecule = 2TSX-r:

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -879.413033843 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.205359 -1.136447 1.342170

2 1 0 -0.042035 -2.106215 0.924329

3 1 0 -0.404826 -0.819783 2.184300

4 6 0 1.528410 -0.721532 1.276389

5 1 0 1.943466 -0.022338 1.991991

6 6 0 2.534008 -1.392433 0.439371

7 8 0 3.737301 -1.219276 0.524439

8 8 0 1.976739 -2.247451 -0.459747

Page 308: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

158

9 6 0 2.909245 -2.919635 -1.317271

10 1 0 2.305746 -3.555165 -1.966778

11 1 0 3.477576 -2.196701 -1.908620

12 1 0 3.607695 -3.523520 -0.731494

13 6 0 -0.633696 2.091837 0.974654

14 1 0 -1.635803 1.797992 1.279723

15 1 0 0.041026 2.062453 1.836884

16 1 0 -0.617861 3.095141 0.556641

17 7 0 -0.125000 1.131859 -0.033121

18 7 0 1.189233 1.058164 -0.287649

19 6 0 1.927625 2.237272 -0.301835

20 8 0 1.449676 3.369676 -0.336943

21 6 0 3.421395 2.001058 -0.410214

22 1 0 3.692779 1.934361 -1.471434

23 1 0 3.942504 2.862993 0.013248

24 1 0 3.744971 1.077000 0.073860

25 6 0 -0.744552 -0.064870 -0.196688

26 1 0 -0.230689 -0.674906 -0.934333

27 6 0 -2.227639 -0.198458 -0.152322

28 6 0 -3.058165 0.827578 -0.639524

29 6 0 -2.829969 -1.394144 0.271905

30 6 0 -4.443304 0.672293 -0.672082

31 1 0 -2.612229 1.742737 -1.017463

32 6 0 -4.214856 -1.549694 0.233534

33 1 0 -2.215488 -2.209279 0.638898

34 6 0 -5.028381 -0.515754 -0.232353

35 1 0 -5.063323 1.479185 -1.053042

36 1 0 -4.658221 -2.482109 0.572172

37 1 0 -6.107524 -0.638031 -0.259882

---------------------------------------------------------------------

Rotational constants (GHZ): 0.5540963 0.2435619 0.1855666

Thermochemical data:

Zero-point correction= 0.303625 (Hartree/Particle)

Thermal correction to Energy= 0.322798

Thermal correction to Enthalpy= 0.323742

Thermal correction to Gibbs Free Energy= 0.254607

Sum of electronic and zero-point Energies= -879.109409

Sum of electronic and thermal Energies= -879.090236

Sum of electronic and thermal Enthalpies= -879.089292

Sum of electronic and thermal Free Energies= -879.158427

Optimized Molecule = 2TSN-r:

# opt=(calcfc,qst3) freq b3lyp/6-31g(d) geom=connectivity

---------------------------------------------------------

E(RB+HF-LYP) = -879.415641766 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.024823 0.974875 -1.559086

2 1 0 0.386128 1.768246 -0.913518

3 1 0 0.587399 0.837484 -2.478057

4 6 0 -1.332416 0.681043 -1.560210

5 1 0 -1.788374 0.150849 -2.386486

6 6 0 -2.311749 1.337774 -0.680423

7 8 0 -3.518799 1.313021 -0.851658

8 8 0 -1.738408 2.023619 0.351189

9 6 0 -2.662739 2.715447 1.203307

10 1 0 -2.050062 3.226612 1.947312

11 1 0 -3.250362 3.437380 0.630045

12 1 0 -3.345674 2.011974 1.687852

13 6 0 0.017599 -0.587242 1.699843

14 1 0 1.042224 -0.665019 2.061720

15 1 0 -0.337769 0.443848 1.780164

16 1 0 -0.630137 -1.261764 2.254439

17 7 0 -0.021689 -1.015302 0.286565

18 7 0 -1.179723 -1.300551 -0.320661

19 6 0 -2.181040 -1.988247 0.353683

20 8 0 -2.034924 -2.599515 1.410916

21 6 0 -3.489485 -1.998112 -0.412385

22 1 0 -3.333253 -2.365211 -1.432496

23 1 0 -4.194019 -2.648937 0.108538

24 1 0 -3.905075 -0.987364 -0.491911

25 6 0 0.943322 -0.666612 -0.604796

26 1 0 0.865736 -1.267707 -1.504227

27 6 0 2.321190 -0.260229 -0.241700

Page 309: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

159

28 6 0 3.384520 -0.948407 -0.851901

29 6 0 2.627214 0.811462 0.616218

30 6 0 4.708765 -0.602071 -0.590026

31 1 0 3.166388 -1.769381 -1.530376

32 6 0 3.951916 1.156297 0.878796

33 1 0 1.827981 1.391515 1.065735

34 6 0 4.997409 0.449794 0.280831

35 1 0 5.514092 -1.154058 -1.066646

36 1 0 4.167011 1.987400 1.544828

37 1 0 6.028713 0.723480 0.485277

---------------------------------------------------------------------

Rotational constants (GHZ): 0.6187303 0.2325717 0.2019369

Thermochemical data:

Zero-point correction= 0.303905 (Hartree/Particle)

Thermal correction to Energy= 0.322961

Thermal correction to Enthalpy= 0.323905

Thermal correction to Gibbs Free Energy= 0.255718

Sum of electronic and zero-point Energies= -879.111737

Sum of electronic and thermal Energies= -879.092681

Sum of electronic and thermal Enthalpies= -879.091737

Sum of electronic and thermal Free Energies= -879.159924

Optimized Molecule = 3PRX:

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -1107.35493670

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.690627 -2.252835 -1.584633

2 1 0 1.706328 -2.563624 -1.332299

3 1 0 0.131457 -3.131335 -1.914041

4 1 0 0.731065 -1.536417 -2.419053

5 7 0 0.041163 -1.726586 -0.368164

6 7 0 -1.297490 -1.329386 -0.659658

7 6 0 -2.393451 -2.130575 -0.442808

8 8 0 -3.517821 -1.688631 -0.654167

9 6 0 -2.127511 -3.547307 0.022371

10 1 0 -1.352949 -3.574799 0.792886

11 1 0 -3.065885 -3.957301 0.399402

12 1 0 -1.787276 -4.172053 -0.812143

13 6 0 0.634811 -0.465333 0.151880

14 1 0 0.208988 -0.323789 1.151470

15 6 0 2.144137 -0.515207 0.274042

16 6 0 2.997650 0.342446 -0.428716

17 6 0 2.707815 -1.454094 1.152700

18 6 0 4.383058 0.262116 -0.260034

19 1 0 2.592150 1.090458 -1.103459

20 6 0 4.088291 -1.541015 1.314925

21 1 0 2.051260 -2.121485 1.704914

22 6 0 4.932257 -0.680552 0.607106

23 1 0 5.030241 0.939833 -0.810290

24 1 0 4.506476 -2.275241 1.998325

25 1 0 6.009350 -0.743019 0.736293

26 6 0 -1.456772 0.112723 -0.893639

27 1 0 -1.853151 0.321708 -1.889911

28 6 0 0.009066 0.630207 -0.750438

29 1 0 0.470339 0.629750 -1.740366

30 6 0 0.127461 2.028696 -0.169327

31 6 0 -2.422129 0.801369 0.081661

32 8 0 -0.055731 2.315073 0.993870

33 8 0 -3.067151 1.775245 -0.235387

34 8 0 0.479390 2.919849 -1.117618

35 8 0 -2.387088 0.270494 1.312438

36 6 0 0.578888 4.285786 -0.670653

37 1 0 -0.385606 4.627156 -0.287376

38 1 0 1.331934 4.375421 0.116273

39 1 0 0.869128 4.858816 -1.551253

40 6 0 -3.200252 0.943474 2.288857

41 1 0 -2.855193 1.972317 2.415851

42 1 0 -4.246578 0.942106 1.974546

43 1 0 -3.074253 0.377660 3.212129

-------------------------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.3473467 0.2250194 0.1624149

Page 310: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

160

Thermochemical data:

Zero-point correction= 0.351190 (Hartree/Particle)

Thermal correction to Energy= 0.374287

Thermal correction to Enthalpy= 0.375231

Thermal correction to Gibbs Free Energy= 0.297356

Sum of electronic and zero-point Energies= -1107.003747

Sum of electronic and thermal Energies= -1106.980650

Sum of electronic and thermal Enthalpies= -1106.979705

Sum of electronic and thermal Free Energies= -1107.057580

Optimized Molecule = 3PRN:

--------------------------------------

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -1107.34887790 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.401005 2.950561 -1.012724

2 1 0 1.465643 3.171003 -1.138331

3 1 0 -0.083300 2.952434 -2.003287

4 1 0 -0.043661 3.741131 -0.403440

5 7 0 0.285207 1.663820 -0.320668

6 7 0 -1.090352 1.291944 -0.149373

7 6 0 -1.676627 1.409941 1.102104

8 8 0 -2.765678 0.901923 1.333892

9 6 0 -0.943626 2.258127 2.120266

10 1 0 0.036989 1.826148 2.336972

11 1 0 -0.780785 3.279688 1.762373

12 1 0 -1.551980 2.286576 3.025436

13 6 0 0.947523 0.572540 -1.088511

14 1 0 1.010050 0.879509 -2.145291

15 6 0 2.361208 0.268385 -0.622921

16 6 0 2.783828 0.514238 0.688052

17 6 0 3.268772 -0.289975 -1.532808

18 6 0 4.085863 0.200513 1.081050

19 1 0 2.089044 0.963618 1.388127

20 6 0 4.567587 -0.610241 -1.139705

21 1 0 2.955943 -0.476607 -2.558328

22 6 0 4.980380 -0.364759 0.171234

23 1 0 4.402221 0.401516 2.101389

24 1 0 5.257427 -1.044930 -1.858015

25 1 0 5.993790 -0.607612 0.479297

26 6 0 -0.061411 -0.615570 -1.070777

27 1 0 0.038677 -1.201239 -1.986507

28 6 0 -1.391789 0.168268 -1.050712

29 1 0 -1.564245 0.577624 -2.054007

30 6 0 -2.634844 -0.652091 -0.696573

31 6 0 0.145815 -1.610744 0.066246

32 8 0 -2.613590 -1.732495 -0.151125

33 8 0 0.488572 -2.756776 -0.108787

34 8 0 -3.732111 -0.070921 -1.209080

35 8 0 -0.040090 -1.054039 1.280480

36 6 0 -4.975014 -0.685059 -0.830686

37 1 0 -4.998501 -1.732633 -1.141259

38 1 0 -5.097455 -0.620373 0.253379

39 1 0 -5.750714 -0.113299 -1.340829

40 6 0 0.040788 -1.969288 2.386910

41 1 0 -0.714437 -2.750650 2.275869

42 1 0 1.033708 -2.423031 2.435044

43 1 0 -0.155967 -1.369841 3.275975

---------------------------------------------------------------------

Rotational constants (GHZ): 0.4727611 0.1946195 0.1803116

Thermochemical data:

Zero-point correction= 0.350940 (Hartree/Particle)

Thermal correction to Energy= 0.373755

Thermal correction to Enthalpy= 0.374699

Thermal correction to Gibbs Free Energy= 0.298260

Sum of electronic and zero-point Energies= -1106.997938

Sum of electronic and thermal Energies= -1106.975123

Sum of electronic and thermal Enthalpies= -1106.974179

Sum of electronic and thermal Free Energies= -1107.050618

Page 311: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

161

Optimized Molecule = 3PSX:

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -1107.34950816 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.224772 0.794644 2.475172

2 1 0 0.334526 0.258289 3.247967

3 1 0 -0.311645 1.839501 2.780458

4 1 0 -1.225909 0.357315 2.373545

5 7 0 0.568766 0.760806 1.239823

6 7 0 -0.051398 1.454789 0.177665

7 6 0 0.203505 2.801652 0.011608

8 8 0 0.903532 3.425338 0.795059

9 6 0 -0.469954 3.461485 -1.182907

10 1 0 -1.559729 3.375788 -1.120245

11 1 0 -0.192080 4.515968 -1.172643

12 1 0 -0.144178 3.020498 -2.132807

13 6 0 0.898810 -0.552036 0.693168

14 1 0 0.786744 -1.291832 1.492674

15 6 0 2.328309 -0.626138 0.158263

16 6 0 3.197858 0.464927 0.247656

17 6 0 2.786692 -1.822670 -0.411727

18 6 0 4.504173 0.360674 -0.237600

19 1 0 2.842452 1.385746 0.699536

20 6 0 4.092798 -1.926320 -0.887993

21 1 0 2.118210 -2.679084 -0.484057

22 6 0 4.956385 -0.831209 -0.803990

23 1 0 5.170014 1.217040 -0.167759

24 1 0 4.435713 -2.861346 -1.323414

25 1 0 5.974571 -0.909414 -1.176114

26 6 0 -0.163913 -0.836239 -0.451365

27 1 0 0.349020 -1.168636 -1.352692

28 6 0 -0.798379 0.569320 -0.707612

29 1 0 -0.615925 0.840743 -1.752088

30 6 0 -2.320210 0.669248 -0.518111

31 6 0 -1.087018 -1.982821 -0.081344

32 8 0 -2.890760 1.388588 0.266741

33 8 0 -1.039713 -3.079809 -0.592553

34 8 0 -2.939137 -0.113179 -1.426724

35 8 0 -1.910613 -1.675017 0.945776

36 6 0 -4.377791 -0.090926 -1.387314

37 1 0 -4.736067 -0.427955 -0.411352

38 1 0 -4.747948 0.920388 -1.573546

39 1 0 -4.701974 -0.771627 -2.174420

40 6 0 -2.767187 -2.740169 1.396520

41 1 0 -3.404073 -3.088552 0.579683

42 1 0 -2.169606 -3.578232 1.763846

43 1 0 -3.365994 -2.311654 2.200072

--------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.3673058 0.2176085 0.1651214

Thermochemical data:

Zero-point correction= 0.350859 (Hartree/Particle)

Thermal correction to Energy= 0.374012

Thermal correction to Enthalpy= 0.374956

Thermal correction to Gibbs Free Energy= 0.296635

Sum of electronic and zero-point Energies= -1106.998649

Sum of electronic and thermal Energies= -1106.975496

Sum of electronic and thermal Enthalpies= -1106.974552

Sum of electronic and thermal Free Energies= -1107.052873

Optimized Molecule = 3PSN:

# opt b3lyp/6-31g(d) geom=connectivity

--------------------------------------

E(RB+HF-LYP) = -1107.33814817 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.736292 -3.022167 0.169727

Page 312: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

162

2 1 0 -1.816337 -3.060488 0.005594

3 1 0 -0.238813 -3.674687 -0.545846

4 1 0 -0.516778 -3.357698 1.198273

5 7 0 -0.309721 -1.638319 -0.064838

6 7 0 1.098519 -1.462486 0.244265

7 6 0 2.025365 -2.171205 -0.489581

8 8 0 1.699513 -2.926847 -1.395933

9 6 0 3.481199 -2.078526 -0.048624

10 1 0 3.647330 -1.605782 0.922557

11 1 0 3.862613 -3.102366 -0.006643

12 1 0 4.058373 -1.544429 -0.809301

13 6 0 -1.015631 -0.705735 0.823869

14 1 0 -1.094928 -1.138853 1.840134

15 6 0 -2.424859 -0.378697 0.362401

16 6 0 -2.794246 -0.416630 -0.987942

17 6 0 -3.382588 -0.023547 1.320991

18 6 0 -4.099199 -0.098546 -1.365945

19 1 0 -2.050031 -0.689569 -1.726629

20 6 0 -4.683586 0.306674 0.940908

21 1 0 -3.110095 -0.010674 2.374893

22 6 0 -5.045469 0.267913 -0.406667

23 1 0 -4.375752 -0.134869 -2.416379

24 1 0 -5.414448 0.581800 1.696782

25 1 0 -6.060391 0.515836 -0.706302

26 6 0 1.311517 -0.288341 1.092654

27 1 0 1.436943 -0.578844 2.142047

28 6 0 -0.040545 0.483070 0.972189

29 1 0 -0.226517 1.031908 1.896762

30 6 0 -0.076480 1.484855 -0.179039

31 6 0 2.513637 0.609772 0.792192

32 8 0 -0.296947 1.251144 -1.342426

33 8 0 3.187295 1.099254 1.671296

34 8 0 0.185541 2.725823 0.300421

35 8 0 2.694326 0.828768 -0.518836

36 6 0 0.181663 3.773542 -0.684082

37 1 0 0.923406 3.573250 -1.461705

38 1 0 -0.804273 3.854631 -1.149063

39 1 0 0.426987 4.686247 -0.140498

40 6 0 3.778431 1.715784 -0.854226

41 1 0 3.618883 2.696855 -0.400418

42 1 0 4.727040 1.306503 -0.497656

43 1 0 3.769867 1.782438 -1.941701

--------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.4058668 0.2121265 0.1647509

Thermochemical data:

Zero-point correction= 0.350964 (Hartree/Particle)

Thermal correction to Energy= 0.373877

Thermal correction to Enthalpy= 0.374821

Thermal correction to Gibbs Free Energy= 0.297427

Sum of electronic and zero-point Energies= -1106.987184

Sum of electronic and thermal Energies= -1106.964272

Sum of electronic and thermal Enthalpies= -1106.963327

Sum of electronic and thermal Free Energies= -1107.040721

Optimized Molecule = 3TRX:

------------------------------------------------

# opt=qst3 freq b3lyp/6-31g(d) geom=connectivity

------------------------------------------------

SCF Done: E(RB+HF-LYP) = -1107.27563783 A.U. after 1 cycles

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z ---------------------------------------------------------------------

1 6 0 0.070740 -2.806274 -1.068847

2 1 0 0.998873 -3.252403 -0.711266

3 1 0 -0.720244 -3.554047 -1.064062

4 1 0 0.197259 -2.429386 -2.089026

5 7 0 -0.330634 -1.703410 -0.177678

6 7 0 -1.595236 -1.245772 -0.259458

7 6 0 -2.714813 -2.015203 -0.075738

8 8 0 -3.804610 -1.611160 -0.466767

9 6 0 -2.610557 -3.327337 0.705947

10 1 0 -1.659382 -3.459778 1.229210

11 1 0 -3.426401 -3.339200 1.433650

12 1 0 -2.773116 -4.175566 0.030609

Page 313: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

163

13 6 0 0.534010 -0.854158 0.372390

14 1 0 0.054592 -0.146139 1.038706

15 6 0 1.992518 -0.898944 0.380092

16 6 0 2.814116 -1.362555 -0.667783

17 6 0 2.617229 -0.368158 1.528801

18 6 0 4.200707 -1.334458 -0.546332

19 1 0 2.378472 -1.703771 -1.599128

20 6 0 4.003495 -0.347525 1.647723

21 1 0 1.999488 0.023891 2.331845

22 6 0 4.802042 -0.838323 0.612588

23 1 0 4.815271 -1.688756 -1.369133

24 1 0 4.460165 0.055578 2.547147

25 1 0 5.884579 -0.820255 0.700879

26 6 0 -1.623505 0.639963 -1.159670

27 1 0 -2.193699 0.227718 -1.983889

28 6 0 -0.301512 0.982356 -1.385371

29 1 0 0.176881 0.638330 -2.297397

30 6 0 0.448068 1.972621 -0.616869

31 6 0 -2.505100 1.405486 -0.204169

32 8 0 0.113396 2.520696 0.422850

33 8 0 -3.283241 2.239537 -0.613517

34 8 0 1.643274 2.234901 -1.224694

35 8 0 -2.346935 1.089472 1.090106

36 6 0 2.455595 3.213101 -0.568205

37 1 0 1.924245 4.164878 -0.478627

38 1 0 2.741565 2.874888 0.432151

39 1 0 3.340954 3.328836 -1.195627

40 6 0 -3.096124 1.907657 2.001394

41 1 0 -2.757879 2.945138 1.937082

42 1 0 -4.163811 1.856984 1.774634

43 1 0 -2.893244 1.500271 2.992661

---------------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.3554698 0.2081792 0.1559693

Thermochemical data:

Zero-point correction= 0.346039 (Hartree/Particle)

Thermal correction to Energy= 0.370162

Thermal correction to Enthalpy= 0.371107

Thermal correction to Gibbs Free Energy= 0.288940

Sum of electronic and zero-point Energies= -1106.929599

Sum of electronic and thermal Energies= -1106.905475

Sum of electronic and thermal Enthalpies= -1106.904531

Sum of electronic and thermal Free Energies= -1106.986697

Optimized Molecule = 3TRN:

-------------------------------------------

# opt=qst3 b3lyp/6-31g(d) geom=connectivity

-------------------------------------------

E(RB+HF-LYP) = -1107.27897788 A.U

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 0.011898 1.309059 1.655712

2 1 0 1.000205 1.539610 2.052501

3 1 0 -0.723253 1.986780 2.085602

4 1 0 -0.291340 0.283600 1.873035

5 7 0 0.016488 1.505510 0.190529

6 7 0 -1.158832 1.569475 -0.465496

7 6 0 -2.191493 2.404213 -0.095355

8 8 0 -3.340785 2.132170 -0.421241

9 6 0 -1.874727 3.733025 0.591301

10 1 0 -0.807589 3.964642 0.641116 11 1 0 -2.388935 4.521620 0.034505

12 1 0 -2.294226 3.730612 1.603616

13 6 0 1.054607 1.189792 -0.584458

14 1 0 0.905714 1.486645 -1.614592

15 6 0 2.402287 0.786713 -0.197328

16 6 0 2.730492 -0.025384 0.907421

17 6 0 3.447147 1.212761 -1.043785

18 6 0 4.057208 -0.355267 1.172230

19 1 0 1.948634 -0.436535 1.533453

20 6 0 4.770781 0.883238 -0.772970

21 1 0 3.209627 1.815922 -1.916288

22 6 0 5.082375 0.102818 0.342499

23 1 0 4.289463 -0.987460 2.024663

Page 314: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

164

24 1 0 5.558740 1.231203 -1.434768

25 1 0 6.114843 -0.160138 0.554309

26 6 0 -0.354678 -0.890675 -1.493092

27 1 0 0.024893 -0.724414 -2.495892

28 6 0 -1.580427 -0.318990 -1.174961

29 1 0 -2.139483 0.107541 -1.999795

30 6 0 -2.496721 -0.779472 -0.068102

31 6 0 0.410338 -1.919806 -0.792592

32 8 0 -2.362510 -0.626467 1.127208

33 8 0 1.357316 -2.512129 -1.283209

34 8 0 -3.558905 -1.400615 -0.619903

35 8 0 -0.023452 -2.179198 0.478567

36 6 0 -4.566010 -1.832181 0.308609

37 1 0 -4.153898 -2.558010 1.014937

38 1 0 -4.960127 -0.975981 0.861974

39 1 0 -5.346532 -2.289501 -0.300227

40 6 0 0.622318 -3.282751 1.123566

41 1 0 0.477762 -4.204705 0.552752

42 1 0 1.696490 -3.104270 1.226536

43 1 0 0.149732 -3.364704 2.103785

-------------------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.3943503 0.1989845 0.1538646

Thermochemical data:

Zero-point correction= 0.346571 (Hartree/Particle)

Thermal correction to Energy= 0.370310

Thermal correction to Enthalpy= 0.371255

Thermal correction to Gibbs Free Energy= 0.291883

Sum of electronic and zero-point Energies= -1106.932407

Sum of electronic and thermal Energies= -1106.908667

Sum of electronic and thermal Enthalpies= -1106.907723

Sum of electronic and thermal Free Energies= -1106.987094

Optimized Molecule = 3TSX:

-------------------------------------------

# opt=qst3 b3lyp/6-31g(d) geom=connectivity

-------------------------------------------

E(RB+HF-LYP) = -1107.27991082 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -1.207663 2.404934 1.137585

2 1 0 -2.184560 2.001103 1.392735

3 1 0 -0.554546 2.378431 2.014437

4 1 0 -1.277603 3.427695 0.773578

5 7 0 -0.578718 1.566096 0.090790

6 7 0 0.767054 1.643546 -0.077175

7 6 0 1.316321 2.908829 -0.202675

8 8 0 0.649171 3.924239 -0.385969

9 6 0 2.833007 2.952146 -0.181443

10 1 0 3.235878 2.432301 -1.055071

11 1 0 3.137870 3.999418 -0.200367

12 1 0 3.251034 2.471424 0.710358

13 6 0 -1.119451 0.432427 -0.330531

14 1 0 -0.497401 -0.121133 -1.023999

15 6 0 -2.555326 0.106187 -0.226495

16 6 0 1.570900 0.141099 0.861640

17 6 0 0.565059 -0.777247 1.212205

18 6 0 -4.880890 0.736762 -0.560280

19 1 0 -3.216744 2.058565 -0.884427

20 6 0 -4.328533 -1.508227 0.135890

21 1 0 -2.239688 -1.942222 0.399446

22 6 0 -5.286330 -0.549928 -0.201070

23 1 0 -5.617138 1.485556 -0.838892

24 1 0 -4.636415 -2.510958 0.418748

25 1 0 -6.342373 -0.805366 -0.190145

26 6 0 -2.970851 -1.192049 0.116195

27 1 0 0.055020 -0.639238 2.159702

28 6 0 -3.526824 1.064957 -0.573647

29 1 0 1.943089 0.744158 1.686580

30 6 0 2.687684 -0.255109 -0.088733

31 6 0 0.350152 -2.096339 0.642838

32 8 0 2.768984 -0.036048 -1.273682

33 8 0 -0.355819 -2.965073 1.140492

34 8 0 3.651252 -0.878449 0.627481

35 8 0 0.994852 -2.290867 -0.546620

36 6 0 4.776554 -1.340872 -0.136950

Page 315: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

165

37 1 0 4.451761 -2.057739 -0.895496

38 1 0 5.278753 -0.504270 -0.630480

39 1 0 5.442293 -1.817791 0.582987

40 6 0 0.837479 -3.589448 -1.129740

41 1 0 1.210653 -4.366126 -0.456282

42 1 0 -0.214398 -3.793176 -1.349742

43 1 0 1.420908 -3.567283 -2.051311

---------------------------------------------------------------------

Rotational constants (GHZ): 0.3553515 0.2021413 0.1403536

Thermochemical data:

Zero-point correction= 0.346570 (Hartree/Particle)

Thermal correction to Energy= 0.370353

Thermal correction to Enthalpy= 0.371297

Thermal correction to Gibbs Free Energy= 0.290988

Sum of electronic and zero-point Energies= -1106.933341

Sum of electronic and thermal Energies= -1106.909558

Sum of electronic and thermal Enthalpies= -1106.908614

Sum of electronic and thermal Free Energies= -1106.988923

Optimized Molecule = 3TSN:

-------------------------------------------

# opt=qst3 b3lyp/6-31g(d) geom=connectivity

-------------------------------------------

E(RB+HF-LYP) = -1107.28800331 A.U.

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 6 0 -0.334911 -1.417000 1.583618

2 1 0 -0.475726 -0.384164 1.905948

3 1 0 -1.163984 -2.042472 1.904228

4 1 0 0.602023 -1.823119 1.964570

5 7 0 -0.303346 -1.469345 0.106675

6 7 0 -1.457406 -1.359154 -0.600323

7 6 0 -2.529387 -2.161980 -0.261637

8 8 0 -2.465722 -3.123742 0.499381

9 6 0 -3.820818 -1.791834 -0.971062

10 1 0 -4.471359 -2.668402 -0.973524

11 1 0 -4.329962 -0.987141 -0.428301

12 1 0 -3.652305 -1.455900 -1.998233

13 6 0 0.782073 -1.224432 -0.620467

14 1 0 0.646798 -1.456992 -1.668807

15 6 0 2.156725 -1.042278 -0.153596

16 6 0 2.530425 -0.339989 1.009688

17 6 0 3.172722 -1.584013 -0.966016

18 6 0 3.874200 -0.223761 1.358911

19 1 0 1.779714 0.158436 1.609916

20 6 0 4.512688 -1.470087 -0.608914

21 1 0 2.900010 -2.108960 -1.877988

22 6 0 4.867983 -0.794328 0.560492

23 1 0 4.145939 0.323723 2.257202

24 1 0 5.278995 -1.905985 -1.243515

25 1 0 5.913368 -0.702473 0.841655

26 6 0 -1.561298 0.528878 -1.238216

27 1 0 -2.093265 0.272156 -2.148380

28 6 0 -0.242994 0.965787 -1.418867

29 1 0 0.204392 0.879673 -2.402592

30 6 0 0.436238 1.836355 -0.474205

31 6 0 -2.479642 1.248449 -0.273906

32 8 0 0.098904 2.075624 0.681366

33 8 0 -3.128815 2.206109 -0.635949

34 8 0 1.553570 2.382629 -1.030071

35 8 0 -2.544267 0.729247 0.965416

36 6 0 2.278641 3.289410 -0.193019

37 1 0 1.632298 4.099745 0.155370

38 1 0 2.696336 2.771923 0.675445

39 1 0 3.082415 3.683951 -0.816690

40 6 0 -3.310458 1.503508 1.905132

41 1 0 -2.836154 2.476512 2.054743

42 1 0 -4.332049 1.647582 1.545577

43 1 0 -3.304698 0.926343 2.830158

---------------------------------------------------------------------------------------------

Rotational constants (GHZ): 0.3926247 0.2050931 0.1608645

Page 316: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

166

Thermochemical data:

Zero-point correction= 0.347055 (Hartree/Particle)

Thermal correction to Energy= 0.370685

Thermal correction to Enthalpy= 0.371629

Thermal correction to Gibbs Free Energy= 0.292566

Sum of electronic and zero-point Energies= -1106.940948

Sum of electronic and thermal Energies= -1106.917319

Sum of electronic and thermal Enthalpies= -1106.916374

Sum of electronic and thermal Free Energies= -1106.995437

IRC polt

--------------------------------------------------------------------------------------------------------------------------------------------------------------------

1TRX - IRC 1TRN - IRC

1TSX - IRC 1TSN - IRC

2TRX –IRC 2TRN –IRC

2TSX –IRC 2TSN –IRC

Page 317: A QUANTUM THEORETICAL STUDY OF THE 1,3-DIPOLAR CYCLOADDITION REACTIONSshodhganga.inflibnet.ac.in/bitstream/10603/21933/1/ph.d. thesis... · a quantum theoretical study of the 1,3-dipolar

Annexure 4

167

2TRX-r –IRC 2TRN-r –IRC

2TSX-r –IRC 2TSN-r –IRC

3TRX –IRC 3TRN –IRC

3TSX –IRC 3TSN –IRC


Top Related