doc 8168 approach

18
FLIGHT PROCEDURES (DOC 8168) - ARRIVAL AND APPROACH PROCEDURES 1 GENERAL CRITERIA FOR ARRIVAL AND APPROACH PROCEDURES 1.2 INSTRUMENT APPROACH PROCEDURE 1.2.1 External factors influencing the approach procedure The design of an instrument approach procedure is, in general, dictated by the terrain surrounding the aerodrome, the type of operations contemplated and the aircraft to be accommodated. These factors in turn influence the type and siting of navigation aids in relation to the runway or aerodrome. Airspace restrictions may also affect the siting of navigation aids. 1.2.2 Segments of the approach procedure An instrument approach procedure may have five separate segments. They are the arrival, initial, intermediate, 1.2.2.1 final and missed approach segments. See Figure I-4-1-1. In addition, an area for circling the aerodrome under visual conditions is also considered. The approach segments begin and end at designated fixes. However, under some circumstances certain of the 1.2.2.2 segments may begin at specified points where no fixes are available. For example, the final approach segment of a precision approach may start where the intermediate flight altitude intersects the nominal glide path (the final approach point). 1.2.3 Types of approach There are two types of approach: straight-in and circling. 1.2.3.1 1.2.3.2 Straight-in approach Whenever possible, a straight-in approach will be specified which is aligned with the runway centre line. In the case of non-precision approaches, a straight-in approach is considered acceptable if the angle between the final approach track and the runway centre line is 30 or less. 1.2.3.3 Circling approach A circling approach will be specified in those cases where terrain or other constraints cause the final approach track alignment or descent gradient to fall outside the criteria for a straight-in approach. The final approach track of a circling approach procedure is in most cases aligned to pass over some portion of the usable landing surface of the aerodrome. 1.3 CATEGORIES OF AIRCRAFT Aircraft performance has a direct effect on the airspace and visibility required for the various manoeuvres 1.3.1 associated with the conduct of instrument approach procedures. The most significant performance factor is aircraft speed. These categories provides a standardized basis for relating aircraft manoeuvrability to specific instrument 1.3.2 approach procedures. For precision approach procedures, the dimensions of the aircraft are also a factor for the calculation of the obstacle clearance height (OCH). For Category D aircraft, an additional obstacle clearance L altitude/height (OCA/H) is provided, when necessary, to take into account the specific dimensions of these aircraft. The criterion taken into consideration for the classification of aeroplanes by categories is the indicated airspeed at 1.3.3 threshold (V ), which is equal to the stall speed V multiplied by 1.3, or stall speed V multiplied by 1.23 in the at so slg landing configuration at the maximum certificated landing mass. If both V and V are available, the higher resulting so slg V shall be applied. at The landing configuration that is to be taken into consideration shall be defined by the operator or by the 1.3.4 aeroplane manufacturer. Aircraft categories will be referred. to. throughout this document by their letter designations. 1.3.5 1.3.6 Permanent change of category (maximum landing mass). An operator may impose a permanent lower landing mass, and use of this mass for determining V if approved by the at State of the Operator. The category defined for a given aeroplane shall be a permanent value and thus independent of changing day-to-day operations. As indicated in Tables I-4-1-1 and I-4-1-2, a specified range of handling speeds for each category of aircraft has 1.3.7 been assumed for use in calculating airspace and obstacle clearance requirements for each procedure. The instrument approach chart (IAC) will specify the individual categories of aircraft for which the procedure is 1.3.8 approved. Normally, procedures will be designed to provide protected airspace and obstacle clearance for aircraft up to and including Category D. However, where airspace requirements are critical, procedures may be restricted to lower speed categories. Alternatively, the procedure may specify a maximum IAS for a particular segment without reference to aircraft 1.3.9 category. In any case, it is essential that pilots comply with the procedures and information depicted on instrument flight charts and the appropriate flight parameters shown in Tables I-4-1-1 and I-4-1-2 if the aircraft is to remain in the areas developed for obstacle clearance purposes. 1.5 OBSTACLE CLEARANCE ALTITUDE/HEIGHT (OCA/H) For each individual approach procedure an obstacle clearance altitude/height (OCA/H) is calculated in the development of the procedure and published on the instrument approach chart. In the case of precision approach and circling approach procedures, an OCA/H is specified for each category of aircraft listed in 1.3.

Upload: haytham-zaki

Post on 14-Oct-2014

578 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: DOC 8168 APPROACH

FL

IGH

T P

RO

CE

DU

RE

S (D

OC

8168) - AR

RIV

AL

AN

D A

PP

RO

AC

H P

RO

CE

DU

RE

S

F

LIGH

T P

RO

CE

DU

RE

S (D

OC

8168) - AR

RIV

AL A

ND

AP

PR

OA

CH

PR

OC

ED

UR

ES

1

1 GE

NE

RA

L C

RIT

ER

IA F

OR

AR

RIV

AL

AN

D A

PP

RO

AC

H P

RO

CE

DU

RE

S

1.2

1.2 INS

TR

UM

EN

T A

PP

RO

AC

H P

RO

CE

DU

RE

1.2.1

1.2.1  Extern

al factors in

fluen

cing

the ap

pro

ach p

roced

ure

The design of an instrum

ent approach procedure is, in general, dictated by the terrain surrounding the aerodrome, the

type of operations contemplated and the aircraft to be accom

modated. T

hese factors in turn influence the type and

siting of navigation aids in relation to the runway or aerodrom

e. Airspace restrictions m

ay also affect the siting of

navigation aids.

1.2.2

1.2.2  Seg

men

ts of th

e app

roach

pro

cedu

re

1.2.2.1

An instrum

ent approach procedure may have five separate segm

ents. They are the arrival, initial, interm

ediate,1.2.2.1 

final and missed approach segm

ents. See F

igure I-4-1-1. In addition, an area for circling the aerodrome under visual

conditions is also considered.

1.2.2.2

The approach segm

ents begin and end at designated fixes. How

ever, under some circum

stances certain of the1.2.2.2 

segments m

ay begin at specified points where no fixes are available. F

or example, the final approach segm

ent of a

precision approach may start w

here the intermediate flight altitude intersects the nom

inal glide path (the final approach

point).

1.2.3

1.2.3  Typ

es of ap

pro

ach

1.2.3.1

There are tw

o types of approach: straight-in and circling.1.2.3.1 

1.2.3.2

1.2.3.2 Straight-in approach

Whenever possible, a straight-in approach w

ill be specified which is aligned w

ith the runway centre line. In the case of

non-precision approaches, a straight-in approach is considered acceptable if the angle between the final approach

track and the runway centre line is 30 or less.

1.2.3.3

1.2.3.3 Circling approach

A circling approach w

ill be specified in those cases where terrain or other constraints cause the final approach track

alignment or descent gradient to fall outside the criteria for a straight-in approach. T

he final approach track of a circling

approach procedure is in most cases aligned to pass over som

e portion of the usable landing surface of the

aerodrome.

1.3

1.3 CA

TE

GO

RIE

S O

F A

IRC

RA

FT

1.3.1

Aircraft perform

ance has a direct effect on the airspace and visibility required for the various manoeuvres

1.3.1 

associated with the conduct of instrum

ent approach procedures. The m

ost significant performance factor is aircraft

speed.

1.3.2

These categories provides a standardized basis for relating aircraft m

anoeuvrability to specific instrument

1.3.2 

approach procedures. For precision approach procedures, the dim

ensions of the aircraft are also a factor for the

calculation of the obstacle clearance height (OC

H). F

or Category D

aircraft, an additional obstacle clearanceL

altitude/height (OC

A/H

) is provided, when necessary, to take into account the specific dim

ensions of these aircraft.

1.3.3

The criterion taken into consideration for the classification of aeroplanes by categories is the indicated airspeed at

1.3.3 

threshold (V ), w

hich is equal to the stall speed V m

ultiplied by 1.3, or stall speed V m

ultiplied by 1.23 in theat

soslg

landing configuration at the maxim

um certificated landing m

ass. If both V and V

are available, the higher resultingso

slg

V shall be applied.

at

1.3.4

The landing configuration that is to be taken into consideration shall be defined by the operator or by the

1.3.4 

aeroplane manufacturer.

1.3.5

Aircraft categories w

ill be referred. to. throughout this document by their letter designations.

1.3.5 

1.3.6

1.3.6 Perm

anent change of category (maxim

um landing m

ass).

An operator m

ay impose a perm

anent lower landing m

ass, and use of this mass for determ

ining V if approved by the

at

State of the O

perator. The category defined for a given aeroplane shall be a perm

anent value and thus independent of

changing day-to-day operations.

1.3.7

As indicated in T

ables I-4-1-1 and I-4-1-2, a specified range of handling speeds for each category of aircraft has1.3.7 

been assumed for use in calculating airspace and obstacle clearance requirem

ents for each procedure.

1.3.8

The instrum

ent approach chart (IAC

) will specify the individual categories of aircraft for w

hich the procedure is1.3.8 

approved. Norm

ally, procedures will be designed to provide protected airspace and obstacle clearance for aircraft up to

and including Category D

. How

ever, where airspace requirem

ents are critical, procedures may be restricted to low

er

speed categories.

1.3.9

Alternatively, the procedure m

ay specify a maxim

um IA

S for a particular segm

ent without reference to aircraft

1.3.9 

category. In any case, it is essential that pilots comply w

ith the procedures and information depicted on instrum

ent

flight charts and the appropriate flight parameters show

n in Tables I-4-1-1 and I-4-1-2 if the aircraft is to rem

ain in the

areas developed for obstacle clearance purposes.

1.5

1.5 OB

ST

AC

LE

CL

EA

RA

NC

E A

LT

ITU

DE

/HE

IGH

T (O

CA

/H)

For each individual approach procedure an obstacle clearance altitude/height (O

CA

/H) is calculated in the

development of the procedure and published on the instrum

ent approach chart. In the case of precision approach and

circling approach procedures, an OC

A/H

is specified for each category of aircraft listed in 1.3.

Page 2: DOC 8168 APPROACH

Obs

tacl

e cl

eara

nce

altit

ude/

heig

ht (

OC

A/H

) is

:

1.in

a p

reci

sion

app

roac

h pr

oced

ure,

the

low

est a

ltitu

de (

OC

A)

or a

ltern

ativ

ely

the

low

est h

eigh

t abo

ve th

e

elev

atio

n of

the

rele

vant

run

way

thre

shol

d (O

CH

), a

t whi

ch a

mis

sed

appr

oach

mus

t be

initi

ated

to e

nsur

e

com

plia

nce

with

the

appr

opria

te o

bsta

cle

clea

ranc

e cr

iteria

; or

2.in

a n

on-p

reci

sion

app

roac

h pr

oced

ure,

the

low

est a

ltitu

de (

OC

A)

or a

ltern

ativ

ely

the

low

est h

eigh

t abo

ve

aero

drom

e el

evat

ion

or th

e el

evat

ion

of th

e re

leva

nt r

unw

ay th

resh

old,

if th

e th

resh

old

elev

atio

n is

mor

e

than

2 m

(7

ft) b

elow

the

aero

drom

e el

evat

ion

(OC

H),

bel

ow w

hich

an

airc

raft

cann

ot d

esce

nd w

ithou

t

infr

ingi

ng th

e ap

prop

riate

obs

tacl

e cl

eara

nce

crite

ria; o

r

3.in

a v

isua

l (ci

rclin

g) p

roce

dure

, the

low

est a

ltitu

de (

OC

A)

or a

ltern

ativ

ely

the

low

est h

eigh

t abo

ve th

e

aero

drom

e el

evat

ion

(OC

H)

belo

w w

hich

an

airc

raft

cann

ot d

esce

nd w

ithou

t inf

ringi

ng th

e ap

prop

riate

obst

acle

cle

aran

ce c

riter

ia.

1.6 1.

6 F

AC

TO

RS

AF

FE

CT

ING

OP

ER

AT

ION

AL

MIN

IMA

In g

ener

al, m

inim

a ar

e de

velo

ped

by a

ddin

g th

e ef

fect

of a

num

ber

of o

pera

tiona

l fac

tors

to O

CA

/H to

pro

duce

, in

the

case

of p

reci

sion

app

roac

hes,

dec

isio

n al

titud

e (D

A)

or d

ecis

ion

heig

ht (

DH

) an

d, in

the

case

of n

on-p

reci

sion

appr

oach

es, m

inim

um d

esce

nt a

ltitu

de (

MD

A)

or m

inim

um d

esce

nt h

eigh

t (M

DH

). T

he g

ener

al o

pera

tiona

l fac

tors

to b

e

cons

ider

ed a

re s

peci

fied

in A

nnex

6. T

he r

elat

ions

hip

of O

CA

/H to

ope

ratin

g m

inim

a (la

ndin

g) is

sho

wn

in F

igur

es

I-4-

1-2,

I-4-

1-3,

and

I-4-

1-4.

1.7 1.

7 V

ER

TIC

AL

PA

TH

CO

NT

RO

L O

N N

ON

-PR

EC

ISIO

N A

PP

RO

AC

H P

RO

CE

DU

RE

S

1.7.

1 1.7.

1  In

tro

du

ctio

n

Stu

dies

hav

e sh

own

that

the

risk

of c

ontr

olle

d fli

ght i

nto

terr

ain

(CF

IT)

is h

igh

on n

on-p

reci

sion

app

roac

hes.

Whi

le th

e

proc

edur

es th

emse

lves

are

not

inhe

rent

ly u

nsaf

e, th

e us

e of

the

trad

ition

al s

tepd

own

desc

ent t

echn

ique

for

flyin

g

non-

prec

isio

n ap

proa

ches

, is

pron

e to

err

or, a

nd is

ther

efor

e di

scou

rage

d. O

pera

tors

sho

uld

redu

ce th

is r

isk

by

emph

asiz

ing

trai

ning

and

sta

ndar

diza

tion

in v

ertic

al p

ath

cont

rol o

n no

n-pr

ecis

ion

appr

oach

pro

cedu

res.

Ope

rato

rs

typi

cally

em

ploy

one

of t

hree

tech

niqu

es fo

r ve

rtic

al p

ath

cont

rol o

n no

n-pr

ecis

ion

appr

oach

es. O

f the

se te

chni

ques

,

the

cont

inuo

us d

esce

nt fi

nal a

ppro

ach

(CD

FA

) te

chni

que

is p

refe

rred

. Ope

rato

rs s

houl

d us

e th

e C

DF

A te

chni

que

whe

neve

r po

ssib

le a

s it

adds

to th

e sa

fety

of t

he a

ppro

ach

oper

atio

n by

red

ucin

g pi

lot w

orkl

oad

and

by le

ssen

ing

the

poss

ibili

ty o

f err

or in

flyi

ng th

e ap

proa

ch.

1.7.

2 1.7.

2  C

on

tin

uo

us

des

cen

t fi

nal

ap

pro

ach

(C

DF

A)

1.7.

2.1

Man

y C

ontr

actin

g S

tate

d re

quire

the

use

of th

e C

DF

A te

chni

que

and

appl

y in

crea

sed

visi

bilit

y or

RV

R1.

7.2.

requ

irem

ents

whe

n th

e te

chni

que

is n

ot u

sed.

1.7.

2.2

Thi

s te

chni

que

requ

ires

a co

ntin

uous

des

cent

, flo

wn

eith

er w

ith V

NA

V g

uida

nce

calc

ulat

ed b

y on

-boa

rd1.

7.2.

equi

pmen

t or

base

d on

man

ual c

alcu

latio

n of

the

requ

ired

rate

of d

esce

nt, w

ithou

t lev

el-o

ffs. T

he r

ate

of d

esce

nt is

sele

cted

and

adj

uste

d to

ach

ieve

a c

ontin

uous

des

cent

to a

poi

nt a

ppro

xim

atel

y 15

m (

50 ft

) ab

ove

the

land

ing

runw

ay

thre

shol

d or

the

poin

t whe

re th

e fla

re m

anoe

uvre

sho

uld

begi

n fo

r th

e ty

pe o

f airc

raft

flow

n. T

he d

esce

nt s

hall

be

calc

ulat

ed a

nd fl

own

to p

ass

at o

r ab

ove

the

min

imum

alti

tude

at a

ny s

tepd

own

fix.

1.7.

2.3

If th

e vi

sual

ref

eren

ces

requ

ired

to la

nd h

ave

not b

een

acqu

ired

whe

n th

e ai

rcra

ft is

app

roac

hing

the

MD

A/H

,1.

7.2.

the

vert

ical

(cl

imbi

ng)

port

ion

of th

e m

isse

d ap

proa

ch is

initi

ated

at a

n al

titud

e ab

ove

the

MD

A/H

suf

ficie

nt to

pre

vent

the

airc

raft

from

des

cend

ing

thro

ugh

the

MD

A/H

. At n

o tim

e is

the

airc

raft

flow

n in

leve

l flig

ht a

t or

near

the

MD

A/H

. Any

turn

s on

the

mis

sed

appr

oach

sha

ll no

t beg

in u

ntil

the

airc

raft

reac

hes

the

MA

Pt.

Like

wis

e, if

the

airc

raft

reac

hes

the

MA

Pt b

efor

e de

scen

ding

to n

ear

the

MD

A/H

, the

mis

sed

appr

oach

sha

ll be

initi

ated

at t

he M

AP

t.

1.7.

2.4

Reg

ardl

ess

of th

e ty

pe o

f ver

tical

pat

h co

ntro

l tha

t is

used

on

a no

n-pr

ecis

ion

appr

oach

, the

late

ral “

turn

ing”

1.7.

2.4 

port

ion

of th

e m

isse

d ap

proa

ch s

hall

not b

e ex

ecut

ed p

rior

to th

e M

AP

t.

1.7.

2.5

An

incr

emen

t for

the

MD

A/H

may

be

pres

crib

ed b

y th

e op

erat

or to

det

erm

ine

the

altit

ude/

heig

ht a

t whi

ch th

e1.

7.2.

vert

ical

por

tion

of th

e m

isse

d ap

proa

ch s

hall

be in

itiat

ed in

ord

er to

pre

vent

des

cent

bel

ow th

e M

DA

/H. I

n su

ch c

ases

,

ther

e is

no

need

to in

crea

se th

e R

VR

or

visi

bilit

y re

quire

men

ts fo

r th

e ap

proa

ch. T

he R

VR

and

/or

visi

bilit

y pu

blis

hed

for

the

orig

inal

MD

A/H

sho

uld

be u

sed.

1.7.

2.6

It sh

ould

be

emph

asiz

ed th

at u

pon

appr

oach

ing

the

MD

A/H

onl

y tw

o op

tions

exi

st fo

r th

e cr

ew: c

ontin

ue th

e1.

7.2.

desc

ent b

elow

MD

A/H

to la

nd w

ith th

e re

quire

d vi

sual

ref

eren

ces

in s

ight

; or,

exe

cute

a m

isse

d ap

proa

ch. T

here

is n

o

leve

l flig

ht s

egm

ent a

fter

reac

hing

the

MD

A/H

.

1.7.

2.7

The

CD

FA

tech

niqu

e si

mpl

ifies

the

final

seg

men

t of t

he n

on-p

reci

sion

app

roac

h by

inco

rpor

atin

g te

chni

ques

1.7.

2.7 

sim

ilar

to th

ose

used

whe

n fly

ing

a pr

ecis

ion

appr

oach

pro

cedu

re o

r an

app

roac

h pr

oced

ure

with

ver

tical

gui

danc

e

(AP

V).

The

CD

FA

tech

niqu

e im

prov

es p

ilot s

ituat

iona

l aw

aren

ess

and

is e

ntire

ly c

onsi

sten

t with

all

“sta

biliz

ed

appr

oach

” cr

iteria

.

1.7.

3 1.7.

3  C

on

stan

t an

gle

des

cen

t

1.7.

3.1

The

sec

ond

tech

niqu

e in

volv

es a

chie

ving

a c

onst

ant,

unbr

oken

ang

le fr

om th

e fin

al a

ppro

ach

fix (

FA

F),

or

1.7.

3.1 

optim

um p

oint

on

proc

edur

es w

ithou

t an

FA

F. t

o a

refe

renc

e da

tum

abo

ve th

e ru

nway

thre

shol

d, e

.g. 1

5 m

(50

ft).

Whe

n th

e ai

rcra

ft ap

proa

ches

the

MD

A/H

, a d

ecis

ion

shal

l be

mad

e to

eith

er c

ontin

ue o

n th

e co

nsta

nt a

ngle

or

leve

l off

at o

r ab

ove

the

MD

A/H

. dep

endi

ng o

n vi

sual

con

ditio

ns.

1.7.

3.2

If th

e vi

sual

con

ditio

ns a

re a

dequ

ate,

the

airc

raft

cont

inue

s th

e de

scen

t to

the

runw

ay w

ithou

t any

inte

rmed

iate

1.7.

3.2 

leve

l-off.

1.7.

3.3

If vi

sual

con

ditio

ns a

re n

ot a

dequ

ate

to c

ontin

ue, t

he a

ircra

ft sh

all l

evel

off

at o

r ab

ove

the

MD

A/H

and

con

tinue

1.7.

3.3 

inbo

und

until

eith

er e

ncou

nter

ing

visu

al c

ondi

tions

suf

ficie

nt to

dec

ent b

elow

the

MD

A/H

to th

e ru

nway

or,

rea

chin

g th

e

publ

ishe

d m

isse

d ap

proa

ch p

oint

and

ther

eafte

r ex

ecut

ing

the

mis

sed

appr

oach

pro

cedu

re.

1.7.

4

Ste

pdow

n de

scen

t1.

7.4 

The

third

tech

niqu

e in

volv

es a

n ex

pedi

tious

des

cent

and

is d

escr

ibed

as

“des

cend

imm

edia

tely

to n

ot b

elow

the

min

imum

ste

pdow

n fix

alti

tude

/hei

ght o

r M

DA

/H, a

s ap

prop

riate

”. T

his

tech

niqu

e is

acc

epta

ble

as lo

ng a

s th

e ac

hiev

ed

desc

ent g

radi

ent r

emai

ns le

ss th

an 1

5 pe

r ce

nt a

nd th

e m

isse

d ap

proa

ch is

initi

ated

at o

r be

fore

the

MA

Pt.

Car

eful

atte

ntio

n to

alti

tude

con

trol

is r

equi

red

with

this

tech

niqu

e du

e to

the

high

rat

es o

f des

cent

bef

ore

reac

hing

the

MD

A/H

and,

ther

eafte

r, b

ecau

se o

f the

incr

ease

d tim

e of

exp

osur

e to

obs

tacl

es a

t the

min

imum

des

cent

alti

tude

.

Page 3: DOC 8168 APPROACH

1.7.5

Tem

perature correction1.7.5 

In all cases, regardless of the flight technique used, a temperature correction shall be applied to all m

inimum

altitudes.

1.7.6

Training

1.7.6 

Regardless of w

hich of the above described techniques an operator chooses to employ, specific and appropriate

training for that technique is required.

1.8

1.8 AP

PR

OA

CH

OP

ER

AT

ION

S U

TIL

IZIN

G B

AR

O-V

NA

V E

QU

IPM

EN

T

1.8.1

Baro-V

NA

V equipm

ent can be applied to two different approach and landing operations:

1.8.1 1.A

pproach and landing operations with the vertical guidance. In this case, the use of a V

NA

V system

such as

baro-VN

AV

is required. When baro-V

NA

V is used, the lateral navigation guidance is based on the R

NP

AP

CH

and RN

P A

R A

PC

H navigation specifications.

2.N

on-precision approach and landing operations. In this case, the use of a baro-VN

AV

system is not required

but auxiliary to facilitate the CD

FA

technique as described in 1.7.2. This m

eans that advisory VN

AV

guidance is being overlaid on a non-precision approach. The lateral navigation guidance is predicated on

the navigation system designated on the chart.

1.8.2

Approach and landing operations w

ith the vertical guidance provide significant benefits over advisory VN

AV

1.8.2 

guidance being overlaid on a non-precision approach, as they are based on specific procedure design criteria, avoiding

the requirement for cross-checking the non-precision approach procedure constraints such as stepdow

n fixes. These

criteria furthermore address:

1.height loss after initiating a m

issed approach allowing the use of a D

A instead of an M

DA

, thereby

standardizing flight techniques for vertically guided approach operations;

2.obstacles clearance throughout the approach and landing phase taking into account tem

perature

constraints down to the D

A, therefore resulting in better obstacle protection com

pared to a non-precision

approach procedure.

1.9

1.9 DE

SC

EN

T G

RA

DIE

NT

1.9.1

In instrument approach procedure design, adequate space is allow

ed for the descent from the facility crossing

1.9.1 

altitude/height to the runway threshold for straight-in approach or to O

CA

/H for circling approaches.

1.9.2

Adequate space for descent is provided by establishing a m

aximum

allowable descent gradient for each segm

ent1.9.2 

of the procedure. The m

inimum

/optimum

descent gradient/angle in the final approach of a procedure with F

AF

is 5.2

per cent/3.0° (52 m/km

(318 ft/NM

)). Where a steeper descent gradient is necessary, the m

aximum

permissible is 6.5

per cent/3.7° (65 m/km

(395 ft/NM

)) for Category A

and B aircraft, 6.1 per cent/3.5° (61 m

/km (370 ft/N

M)) for C

ategory

C, D

and E aircraft, and 10 per cent (5.70°) for C

ategory H. F

or procedures with V

OR

or ND

B on aerodrom

e and no

FA

F, rates of descent in the final approach phase are given in T

able I-4-1-3. In the case of a precision approach, the

operationally preferred glide path angle is 3.00°. An ILS

glide path/MLS

elevation angle in excess of 3.00° is used only

where alternate m

eans available to satisfy obstacle clearance requirements are im

practical.

1.9.3

In certain cases. the maxim

um descent gradient of 6.5 per cent (65 m

/km (395 ft/N

M)) results in descent rates

1.9.3 

which exceed the recom

mended rates of descent for som

e aircraft. For exam

ple, at 280 km/h (150 kt), such a gradient

result in a 5 m/s (1000 ft/m

in) rate of descent.

1.9.4

Pilot should consider carefully the descent rate required for non-precision final approach segm

ents before starting1.9.4 

the approach.

1.9.5

Any constant descent angle shall clear all stepdow

n fix minim

um crossing altitudes w

ithin any segment.

1.9.5 

1.9.6

1.9.6  Pro

cedu

re altitud

e/heig

ht

1.9.6.1

In addition to minim

um IF

R altitudes established for each segm

ent of the procedure, procedure1.9.6.1 

altitudes/heights will also be provided. P

rocedure altitudes/heights will, in all cases, be at or above m

inimum

crossing

altitude associated with the segm

ent. Procedure altitude/height w

ill be established taking into account the air traffic

control needs for that phase of flight.

1.9.6.2

Procedure altitudes/heights are developed to place the aircraft at altitudes/heights that w

ould normally be flow

n1.9.6.2 

to intercept and fly an optimum

5.2 per cent (3.00°) descent path angle in the final approach segment to a 15 m

(50 ft)

threshold crossing for non-precision approach procedures and procedures with vertical guidance. In no case w

ill a

procedure altitude/height be less than any OC

A/H

.

Tab

le I-4-1-1. Sp

eeds fo

r pro

cedu

re calculatio

ns in

kilom

eters per h

ou

r (km/h

)

Aircraft

Categ

ory

Vat

Initial

Ap

pro

ach

Sp

eed

Fin

al

Ap

pro

ach

Sp

eed

Maxim

um

Sp

eeds fo

r Visu

al

Man

oeu

vring

(Circlin

g)

Maxim

um

Sp

eeds fo

r

Missed

Ap

pro

ach

Interm

ediate

Fin

al

A<

169165/280 (205*)

130/185185

185205

B169/223

220/335 (260*)155/240

250240

280

C224/260

295/445215/295

335295

445

D261/306

345/465240/345

380345

490

E307/390

345/467285/425

445425

510

HN

A130/220**

110/165**N

A165

165

CA

T H

(PinS

)

NA

130/220110/165

NA

130 or 165130 or 165

Tab

le I-4-1-2. Sp

eeds fo

r pro

cedu

re calculatio

ns in

kno

ts (kt)

Aircraft

Categ

ory

Vat

Initial

Ap

pro

ach

Sp

eed

Fin

al

Ap

pro

ach

Sp

eed

Maxim

um

Sp

eeds fo

r Visu

al

Man

oeu

vring

(Circlin

g)

Maxim

um

Sp

eeds fo

r

Missed

Ap

pro

ach

Interm

ediate

Fin

al

A<

9190/150 (110*)

70/100100

100110

B91/120

120/180 (140*)85/130

135130

150

C120/140

160/240115/160

180160

240

D141/165

185/250130/185

205185

265

Page 4: DOC 8168 APPROACH

E16

6/21

018

5/25

015

5/23

024

023

027

5

HN

A70

/120

**60

/90*

*N

A90

90

CA

T H

(Pin

S)

NA

70/1

2060

/90

NA

70 o

r 90

70 o

r 90

V :

Spe

ed a

t thr

esho

ld b

ased

on

1.3

times

sta

ll sp

eed

V o

r 1.

23 ti

mes

sta

ll sp

eed

V in

the

land

ing

conf

igur

atio

nat

sosl

g

at m

axim

um c

ertif

icat

ed la

ndin

g m

ass.

(N

ot a

pplic

able

to h

elic

opte

rs.)

* M

axim

um s

peed

for

reve

rsal

and

rac

etra

ck p

roce

dure

s.

** M

axim

um s

peed

for

reve

rsal

and

rac

etra

ck p

roce

dure

s up

to a

nd in

clud

ing

6000

ft is

100

kt/1

85 k

m/h

, and

max

imum

spee

d fo

r re

vers

al a

nd r

acet

rack

pro

cedu

res

abov

e 60

00 ft

is 1

10 k

t/205

km

/h.

***

Hel

icop

ter

poin

t-in

-spa

ce p

roce

dure

s ba

sed

on b

asic

GN

SS

may

be

desi

gned

usi

ng m

axim

um s

peed

s of

120

kt/2

20

km/h

for

initi

al a

nd in

term

edia

te s

egm

ents

and

90

kt/1

65 k

m/h

on

final

and

mis

sed

appr

oach

seg

men

ts, o

r 90

kt/1

65

km/h

for

initi

al a

nd in

term

edia

te s

egm

ents

and

70

kt/1

30 k

m/h

on

final

and

mis

sed

appr

oach

seg

men

ts b

ased

on

oper

atio

nal n

eed.

Tab

le I-

4-1-

3. R

ate

of

des

cen

t in

th

e fi

nal

ap

pro

ach

seg

men

t o

f a

pro

ced

ure

wit

h n

o F

AF

Air

craf

t ca

teg

ori

esR

ate

of

des

cen

t

Min

imu

mM

axim

um

A, B

120

m/m

in

(394

ft/m

in)

200

m/m

in

(655

ft/m

in)

C, D

, E18

0 m

/min

(590

ft/m

in)

305

m/m

in

(100

0 ft/

min

)

Fig

ure

I-4-

1-1.

Seg

men

ts o

f in

stru

men

t ap

pro

ach

Fig

ure

I-4-

1-2.

Rel

atio

nsh

ip o

f o

bst

acle

cle

aran

ce a

ltit

ud

e/h

eig

ht

(OC

A/H

) to

dec

isio

n a

ltit

ud

e/h

eig

ht

(DA

/H)

for

pre

cisi

on

app

roac

hes

PR

EC

ISIO

N A

PP

RO

AC

H

Fig

ure

I-4-

1-3.

Rel

atio

nsh

ip o

f o

bst

acle

cle

aran

ce a

ltit

ud

e/h

eig

ht

(OC

A/H

) to

min

imu

m d

esce

nt

alti

tud

e/h

eig

ht

(MD

A/H

) fo

rn

on

-pre

cisi

on

ap

pro

ach

es (

exam

ple

wit

h a

co

ntr

olli

ng

ob

stac

le in

th

e fi

nal

ap

pro

ach

)

NO

N-P

RE

CIS

ION

AP

PR

OA

CH

Page 5: DOC 8168 APPROACH

Fig

ure I-4-1-4. R

elation

ship

of o

bstacle clearan

ce altitud

e/heig

ht (O

CA

/H) to

min

imu

m d

escent altitu

de/h

eigh

t (MD

A/H

) for

visual m

ano

euvrin

g (circlin

g)

VIS

UA

L M

AN

OE

UV

RIN

G (C

IRC

LIN

G)

2

2 AR

RIV

AL

SE

GM

EN

T

2.1

2.1 PU

RP

OS

E

2.1.1

A standard instrum

ent arrival (ST

AR

) route permits transition from

the en-route phase to the approach phase.2.1.1 

2.1.2

When necessary or w

here an operational advantage is obtained, arrival routes from the en-route phase to a fix or

2.1.2 

facility used in the procedure are published.

2.2

2.2 PR

OT

EC

TIO

N O

F T

HE

AR

RIV

AL

SE

GM

EN

T

Page 6: DOC 8168 APPROACH

2.2.

1

The

wid

th o

f the

pro

tect

ion

area

dec

reas

es fr

om th

e “e

n-ro

ute”

val

ue u

ntil

the

“initi

al-a

ppro

ach”

val

ue w

ith a

2.2.

max

imum

con

verg

ence

ang

le o

f 30°

eac

h si

de o

f the

axi

s.

2.2.

2

Thi

s co

nver

genc

e be

gins

at 4

6 km

(25

NM

) be

fore

the

initi

al a

ppro

ach

fix (

IAF

) if

the

leng

th o

f the

arr

ival

rou

te is

2.2.

grea

ter

than

or

equa

l to

46 k

m (

25 N

M).

It b

egin

s at

the

star

ting

poin

t of t

he a

rriv

al r

oute

if th

e le

ngth

of t

he a

rriv

al r

oute

is le

ss th

an 4

6 km

(25

NM

).

2.2.

3

The

arr

ival

rou

te n

orm

ally

end

s at

the

IAF

. Om

nidi

rect

iona

l or

sect

or a

rriv

als

can

be p

rovi

ded

taki

ng in

to a

ccou

nt2.

2.3 

min

imum

sec

tor

altit

udes

(M

SA

).

2.3 2.

3 M

INIM

UM

SE

CT

OR

AL

TIT

UD

ES

(M

SA

)/T

ER

MIN

AL

AR

RIV

AL

AL

TIT

UD

ES

(T

AA

)

Min

imum

sec

tor

altit

udes

or

term

inal

arr

ival

alti

tude

s ar

e es

tabl

ishe

d fo

r ea

ch a

erod

rom

e an

d pr

ovid

e at

leas

t 300

m

(100

0 ft)

obs

tacl

e cl

eara

nce

with

in 4

6 km

(25

NM

) of

the

navi

gatio

n ai

d, in

itial

app

roac

h fix

or

inte

rmed

iate

fix

asso

ciat

ed w

ith th

e ap

proa

ch p

roce

dure

for

that

aer

odro

me.

2.4 2.

4 T

ER

MIN

AL

AR

EA

RA

DA

R (

TA

R)

Whe

n te

rmin

al a

rea

rada

r is

em

ploy

ed, t

he a

ircra

ft is

vec

tore

d to

a fi

x, o

r on

to th

e in

term

edia

te o

r fin

al a

ppro

ach

trac

k,

at a

poi

nt w

here

the

appr

oach

may

be

cont

inue

d by

the

pilo

t by

refe

rrin

g to

the

inst

rum

ent a

ppro

ach

char

t.

3 3 IN

ITIA

L A

PP

RO

AC

H S

EG

ME

NT

3.1 3.

1 G

EN

ER

AL

3.1.

1 3.1.

1  P

urp

ose

3.1.

1.1

The

initi

al a

ppro

ach

segm

ent b

egin

s at

the

initi

al a

ppro

ach

fix (

IAF

) an

d en

ds a

t the

inte

rmed

iate

fix

(IF

). In

the

3.1.

1.1 

initi

al a

ppro

ach,

the

airc

raft

has

left

the

en-r

oute

str

uctu

re a

nd is

man

oeuv

ring

to e

nter

the

inte

rmed

iate

app

roac

h

segm

ent.

3.1.

1.2

Airc

raft

spee

d an

d co

nfig

urat

ion

will

dep

end

on th

e di

stan

ce fr

om th

e ae

rodr

ome,

and

the

desc

ent r

equi

red.

3.1.

1.2 

3.1.

2 3.1.

2  M

axim

um

an

gle

of

inte

rcep

tio

n o

f in

itia

l ap

pro

ach

seg

men

t

Nor

mal

ly tr

ack

guid

ance

is p

rovi

ded

alon

g th

e in

itial

app

roac

h se

gmen

t to

the

IF, w

ith a

max

imum

ang

le o

f int

erce

ptio

n

of:

1.90

° fo

r a

prec

isio

n ap

proa

ch; a

nd

2.12

0° fo

r a

non-

prec

isio

n ap

proa

ch.

3.1.

3 3.1.

3  M

inim

um

ob

stac

le c

lear

ance

The

initi

al a

ppro

ach

segm

ent p

rovi

des

at le

ast 3

00 m

(10

00 ft

) of

obs

tacl

e cl

eara

nce

in th

e pr

imar

y ar

ea, r

educ

ing

late

rally

to z

ero

at th

e ou

ter

edge

of t

he s

econ

dary

are

a.

3.2 3.

2 T

YP

ES

OF

MA

NO

EU

VR

ES

3.2.

1

Whe

re n

o su

itabl

e IA

F o

r IF

is a

vaila

ble

to c

onst

ruct

the

inst

rum

ent p

roce

dure

in th

e fo

rm s

how

n in

Fig

ure

I-4-

3-1,

3.2.

a re

vers

al p

roce

dure

, rac

etra

ck o

r ho

ldin

g pa

ttern

is r

equi

red.

3.2.

2 3.2.

2  R

ever

sal p

roce

du

re

3.2.

2.1

The

rev

ersa

l pro

cedu

re m

ay b

e in

the

form

of a

pro

cedu

re o

r ba

se tu

rn. E

ntry

is r

estr

icte

d to

a s

peci

fic d

irect

ion

3.2.

2.1 

or s

ecto

r. In

thes

e ca

ses,

a s

peci

fic p

atte

rn, n

orm

ally

a b

ase

turn

or

proc

edur

e tu

rn, i

s pr

escr

ibed

.

3.2.

2.2

The

dire

ctio

ns a

nd ti

min

g sp

ecifi

ed s

houl

d be

str

ictly

follo

wed

in o

rder

to r

emai

n w

ithin

the

airs

pace

pro

vide

d. It

3.2.

2.2 

shou

ld b

e no

ted

that

the

airs

pace

pro

vide

d fo

r th

ese

proc

edur

es d

oes

not p

erm

it a

race

trac

k or

hol

ding

man

oeuv

re to

be c

ondu

cted

unl

ess

so s

peci

fied.

3.2.

2.3

The

re a

re th

ree

gene

rally

rec

ogni

zed

man

oeuv

res

rela

ted

to th

e re

vers

al p

roce

dure

, eac

h w

ith it

s ow

n ai

rspa

ce3.

2.2.

char

acte

ristic

s:

1.45

°/18

0° p

roce

dure

turn

, sta

rts

at a

faci

lity

or fi

x an

d co

nsis

ts o

f:

a.a

stra

ight

leg

with

trac

k gu

idan

ce. T

his

stra

ight

leg

may

be

timed

or

may

be

limite

d by

a r

adia

l or

DM

E

dist

ance

;

b.a

45°

turn

;

c.a

stra

ight

leg

with

out t

rack

gui

danc

e. T

his

stra

ight

leg

is ti

med

. It i

s:

(1)

1 m

inut

e fo

rm th

e st

art o

f the

turn

for

Cat

egor

y A

and

B a

ircra

ft; a

nd

(2)

1 m

inut

e 15

sec

onds

from

the

star

t of t

he tu

rn fo

r C

ateg

ory

C, D

and

E a

ircra

ft; a

nd

d.a

180°

turn

in th

e op

posi

te d

irect

ion

to in

terc

ept t

he in

boun

d tr

ack.

The

45°

/180

° pr

oced

ure

turn

is a

n al

tern

ativ

e to

the

80°/

260°

pro

cedu

re tu

rn u

nles

s sp

ecifi

cally

exc

lude

d.

2.80

°/26

0° p

roce

dure

turn

, sta

rts

at a

faci

lity

or fi

x an

d co

nsis

ts o

f:

a.a

stra

ight

leg

with

trac

k gu

idan

ce. T

his

stra

ight

leg

may

be

timed

or

may

be

limite

d by

a r

adia

l or

DM

E

dist

ance

;

b.an

80°

turn

;

c.a

260°

turn

in th

e op

posi

te d

irect

ion

to in

terc

ept t

he in

boun

d tr

ack.

The

80°

/260

° pr

oced

ure

turn

is a

n al

tern

ativ

e to

the

45°/

180°

pro

cedu

re tu

rn u

nles

s sp

ecifi

cally

exc

lude

d.

NO

TE

: T

he

du

rati

on

of

the

init

ial o

utb

ou

nd

leg

of

a p

roce

du

re m

ay b

e va

ried

in a

cco

rdan

ce w

ith

airc

raft

sp

eed

cat

ego

ries

in o

rder

to

red

uce

th

e o

vera

ll le

ng

th o

f th

e p

rote

cted

are

a. In

th

is c

ase,

sep

arat

e p

roce

du

res

are

pu

blis

hed

.

3.B

ase

turn

, con

sist

ing

of:

a.a

spec

ified

out

boun

d tr

ack

and

timin

g or

DM

E d

ista

nce

from

a fa

cilit

y; fo

llow

ed b

y

Page 7: DOC 8168 APPROACH

b.a turn to intercept the inbound track.

The outbound track and/or the tim

ing may be different for the various categories of aircraft. W

here this is

done, separate procedures are published.

3.2.3

3.2.3  Racetrack p

roced

ure

3.2.3.1

A racetrack procedure consists of:

3.2.3.1 

1.a turn from

the inbound track through 180° from overhead the facility or fix on to the outbound track, for 1, 2

or 3 minutes; follow

ed by

2.a 180° turn in the sam

e direction to return to the inbound track.

As an alternative to tim

ing, the outbound leg may be lim

ited by a DM

E distance or intersecting radial/bearing.

3.2.3.2

Entry into a racetrack procedure

3.2.3.2 

Norm

ally a racetrack procedure is used when aircraft arrive overhead the fix from

the various directions. In these

cases, aircraft are expected to enter the procedure in a manner sim

ilar to that prescribed for a holding procedure entry

with the follow

ing considerations:

1.offset entry from

Sector 2 shall lim

it the time on the 30° offset track to 1 m

in 30 s, after which the pilot is

expected to turn to a heading parallel to the outbound track for the remainder of the outbound tim

e. If the

outbound time is only 1 m

in, the time on the 30° offset track shall be 1 m

in also;

2.parallel entry shall not return directly to the facility w

ithout first intercepting the inbound track when

proceeding to the final segment of the approach procedure; and

3.all m

anoeuvring shall be done in so far as possible on the manoeuvring side of the inbound track.

NO

TE

: Racetrack p

roced

ures are u

sed w

here su

fficient d

istance is n

ot availab

le in a straig

ht seg

men

t to

accom

mo

date th

e requ

ired lo

ss of altitu

de an

d w

hen

entry in

to a reversal p

roced

ure is n

ot p

ractical. Th

ey may

also b

e specified

as alternatives to

reversal pro

cedu

res to in

crease op

eration

al flexibility (in

this case, th

ey are

no

t necessarily p

ub

lished

separately).

3.3

3.3 FL

IGH

T P

RO

CE

DU

RE

S F

OR

RA

CE

TR

AC

K A

ND

RE

VE

RS

AL

PR

OC

ED

UR

ES

3.3.1

3.3.1  En

try

3.3.1.1

Unless the procedure specifies particular entry restrictions, reversal procedures shall be entered from

a track3.3.1.1 

within ±

30° of the outbound track of the reversal procedure. How

ever, for base turns, where the ±

30° direct entry

sector does not include the reciprocal of the inbound track, the entry sector is expanded to include it.

3.3.1.2

For racetrack procedures, entry shall be as specified in 3.2.3.2, “E

ntry into a racetrack procedure”, unless other3.3.1.2 

restrictions are specified.

3.3.2

3.3.2  Sp

eed restrictio

ns

These m

ay be specified in addition to, or instead of, aircraft category restrictions. The speeds m

ust not be exceeded to

ensure that the aircraft remains w

ithin the limits of the protected areas.

3.3.3

3.3.3  Ban

k ang

le

Procedures are based on average achieved bank angle of 25°, or the bank angle giving a rate of turn of 3°/second,

whichever is less.

3.3.4

3.3.4  Descen

t

The aircraft shall cross the fix or facility and fly outbound on the specified track, descending as necessary to the

procedure altitude/height but no lower than the m

inimum

crossing altitude/height associated with that segm

ent. If a

further descent is specified after the inbound turn, this descent shall not be started until the aircraft is established on

the inbound track. An aircraft is considered established w

hen it is:

1.w

ithin half full scale deflection for the ILS and V

OR

; or

2.w

ithin ±5° of the required bearing for the N

DB

.

3.3.5

3.3.5  Ou

tbo

un

d tim

ing

racetrack pro

cedu

re

3.3.5.1

When the procedure is based on a facility, the outbound tim

ing starts:3.3.5.1 

1.from

abeam the facility; or

2.on attaining the outbound heading w

hichever comes later.

3.3.5.2

When the procedure is based on fix, the outbound tim

ing starts from attaining the outbound heading.

3.3.5.2 

3.3.5.3

The turn on to the inbound track should be started:

3.3.5.3 

1.w

ithin the specified time (adjusted for w

ind); or

2.w

hen encountering any DM

E distance; or

3.w

hen the radial/bearing specifying a limiting distance has been reached, w

hichever occurs first.

3.3.6

3.3.6  Win

d effect

3.3.6.1

To achieve a stabilized approach, due allow

ance should be made in both heading and tim

ing to compensate for

3.3.6.1 

the effects of wind so that the aircraft regains the inbound track as accurately and expeditiously as possible. In m

aking

these corrections, full use should be made of the indications available from

the aid and from estim

ated or known w

inds.

This is particularly im

portant for slow aircraft in high w

ind conditions, when failure to com

pensate may render the

procedure unflyable (i.e. the aircraft may pass the fix before establishing on the inbound track) and it could depart

outside the protected area).

3.3.6.2

When a D

ME

distance or radial/bearing is specified, it shall not be exceeded when flying on the outbound track.

3.3.6.2 

3.3.7

Page 8: DOC 8168 APPROACH

3.3.

7  D

esce

nt

rate

s

The

spe

cifie

d tim

ings

and

pro

cedu

re a

ltitu

des

are

base

d on

rat

es o

f des

cent

that

do

not e

xcee

d th

e va

lues

sho

wn

in

Tab

le I-

4-3-

1.

3.3.

8 3.3.

8  S

hu

ttle

A s

huttl

e is

nor

mal

ly p

resc

ribed

whe

re th

e de

scen

t req

uire

d be

twee

n th

e en

d of

initi

al a

ppro

ach

and

the

begi

nnin

g of

final

app

roac

h ex

ceed

s th

e va

lues

sho

wn

in T

able

I-4-

3-1.

NO

TE

: A

sh

utt

le is

des

cen

t o

r cl

imb

co

nd

uct

ed in

a h

old

ing

pat

tern

.3.

3.9 3.

3.9 

Dea

d r

ecko

nin

g (

DR

) se

gm

ent

Whe

re a

n op

erat

iona

l adv

anta

ge c

an b

e ob

tain

ed, a

n IL

S p

roce

dure

may

incl

ude

a de

ad r

ecko

ning

(D

R)

segm

ent f

rom

a fix

to th

e lo

caliz

er. T

he D

R tr

ack

will

inte

rsec

t the

loca

lizer

at 4

5° a

nd w

ill n

ot b

e m

ore

than

19

km (

10 N

M)

in le

ngth

.

The

poi

nt o

f int

erce

ptio

n is

the

begi

nnin

g of

the

inte

rmed

iate

seg

men

t and

will

allo

w fo

r pr

oper

glid

e pa

th in

terc

eptio

n.

Tab

le I-

4-3-

1. M

axim

um

/min

imu

m d

esce

nt

rate

to

be

spec

ifie

d o

n a

rev

ersa

l or

race

trac

k p

roce

du

re

Ou

tbo

un

d t

rack

Max

imu

m*

Min

imu

m*

Cat

egor

y A

/B24

5 m

/min

(80

4 ft/

min

)N

/A

Cat

egor

y C

/D/E

/H36

5 m

/min

(11

97 ft

/min

)N

/A

Inb

ou

nd

tra

ckM

axim

um

*M

inim

um

*

Cat

egor

y A

/B20

0 m

/min

(65

5 ft/

min

)12

0 m

/min

(39

4 ft/

min

)

Cat

egor

y H

230

m/m

in (

755

ft/m

in)

N/A

Cat

egor

y C

/D/E

305

m/m

in (

1000

ft/m

in)

180

m/m

in (

590

ft/m

in)

* M

axim

um/m

inim

um d

esce

nt fo

r 1

min

ute

nom

inal

out

boun

d tim

e in

m (

ft)

Fig

ure

I-4-

3-1.

Typ

es o

f re

vers

al a

nd

rac

etra

ck p

roce

du

res

Fig

ure

I-4-

3-2.

Dir

ect

entr

y to

pro

ced

ure

tu

rn

Fig

ure

I-4-

3-3.

Dir

ect

entr

y to

bas

e tu

rn

Page 9: DOC 8168 APPROACH

Fig

ure I-4-3-4. E

xamp

le of o

mn

idirectio

nal arrival u

sing

a ho

ldin

g p

roced

ure in

associatio

n w

ith a reversal p

roced

ure

Fig

ure I-4-3-5. D

ead recko

nin

g seg

men

t

4

4 INT

ER

ME

DIA

TE

AP

PR

OA

CH

SE

GM

EN

T

4.1.1

4.1.1  Pu

rpo

se

This is the segm

ent during which the aircraft speed and configuration should be adjusted to prepare the aircraft for final

approach. For this reason, the descent gradient is kept as shallow

as possible.

4.1.2

4.1.2  Min

imu

m o

bstacle clearan

ce

During the interm

ediate approach, the obstacle clearance requirement reduces from

300 m (984 ft) to 150 m

(492 ft) in

the primary area, reducing laterally to zero at the outer edge of the secondary area.

4.1.3

4.1.3  Beg

inn

ing

and

end

of th

e segm

ent

Where a final approach fix (F

AF

) is available, the intermediate approach segm

ent begins when the aircraft is on the

inbound track of the procedure turn, base turn or final inbound leg of the racetrack procedure. It ends at the FA

F or

final approach point (FA

P), as applicable.

NO

TE

: Wh

ere no

FA

F is sp

ecified, th

e inb

ou

nd

track is the fin

al app

roach

segm

ent.

55 FIN

AL

AP

PR

OA

CH

SE

GM

EN

T

5.1.1

5.1.1  Pu

rpo

se

This is the segm

ent in which alignm

ent and descent for landing are made. F

inal approach may be m

ade to a runway

for a straight-in landing or to an aerodrome for a visual m

anoeuvre.

5.1.2

5.1.2  Typ

es of fin

al app

roach

The criteria for final approach vary according to the type. T

hese types are:

1.N

on-precision approach (NP

A) w

ith final approach fix (FA

F);

2.N

PA

without F

AF

;

3.A

pproach with vertical guidance (A

PV

); and

4.P

recision approach (PA

).

5.2

5.2 NP

A W

ITH

FA

F

5.2.1

5.2.1  FA

F lo

cation

This segm

ent begins at a facility or fix, called the final approach fix (FA

F) and ends at the m

issed approach point

(MA

Pt). T

he FA

F is sited on the final approach track at a distance that perm

its selection of final approach configuration,

and descent from interm

ediate approach altitude/height to the appropriate MD

A/H

either for a straight-in approach or

for a visual circling. The optim

um distance for locating the F

AF

relative to the threshold is 9.3 km (5.0 N

M). T

he

maxim

um length should not norm

ally be greater than 19 km (10 N

M). T

he minim

um length is equal to 5.6 km

(3.0 NM

)

and this value may be increased if required in case of a turn at the F

AF

for category D, D

and E aircraft.

L

5.2.2

Page 10: DOC 8168 APPROACH

––5.2.

2  O

pti

mu

m d

esce

nt

gra

die

nt/

Max

imu

m d

esce

nt

gra

die

nt

5.2.

2.1

Com

patib

le w

ith th

e pr

imar

y sa

fety

con

side

ratio

n of

obs

tacl

e cl

eara

nce,

a n

on-p

reci

sion

app

roac

h pr

ovid

es th

e5.

2.2.

optim

um fi

nal a

ppro

ach

desc

ent g

radi

ent o

f 5.2

per

cen

t, or

3°,

pro

vidi

ng a

rat

e of

des

cent

of 5

2 m

per

km

(31

8 ft

per

NM

).

5.2.

2.2

Info

rmat

ion

prov

ided

in a

ppro

ach

char

ts d

ispl

ays

the

optim

um c

onst

ant a

ppro

ach

slop

e.5.

2.2.

5.2.

2.3

The

max

imum

des

cent

gra

dien

t for

non

-pre

cisi

on p

roce

dure

s w

ith F

AF

is:

5.2.

2.3  6.

5 pe

r ce

nt fo

r C

at A

and

B a

ircra

ft (C

at H

: 10

per

cent

); a

nd

 

6.1

per

cent

for

Cat

C, D

and

E a

ircra

ft

 

Non

-sta

ndar

d pr

oced

ures

pub

lishe

d w

ith a

fina

l app

roac

h de

scen

t gra

dien

t/ang

le g

reat

er th

an th

ese

valu

es s

hall

be

subj

ect t

o an

aer

onau

tical

stu

dy a

nd r

equi

re a

spe

cial

app

rova

l by

the

natio

nal c

ompe

tent

aut

horit

y.

5.2.

3 5.2.

3  S

tan

dar

d o

per

atin

g p

roce

du

res

(SO

Ps)

Ope

rato

rs s

hall

incl

ude

in th

eir

SO

Ps

spec

ific

guid

ance

for

usin

g on

-boa

rd te

chno

logy

with

gro

und-

base

aid

s, s

uch

as

dist

ance

mea

surin

g eq

uipm

ent (

DM

E),

in o

rder

to fa

cilit

ate

the

exec

utio

n of

opt

imum

con

stan

t app

roac

h sl

ope

desc

ents

durin

g no

n-pr

ecis

ion

appr

oach

es.

5.2.

4 5.2.

4  F

AF

Cro

ssin

g

The

FA

F is

cro

ssed

at t

he p

roce

dure

alti

tude

/hei

ght i

n de

scen

t but

no

low

er th

an th

e m

inim

um c

ross

ing

altit

ude

asso

ciat

ed w

ith F

AF

und

er in

tern

atio

nal s

tand

ard

atm

osph

ere

(IS

A)

cond

ition

s. T

he d

esce

nt is

nor

mal

ly in

itiat

ed p

rior

to th

e F

AF

in o

rder

to a

chie

ve th

e pr

escr

ibed

des

cent

gra

dien

t/ang

le. D

elay

ing

the

desc

ent u

ntil

reac

hing

the

FA

F a

t

the

proc

edur

e al

titud

e/he

ight

will

cau

se a

des

cent

gra

dien

t/ang

le to

be

grea

ter

than

3. T

he d

esce

nt g

radi

ent/a

ngle

is

publ

ishe

d to

the

near

est o

ne-t

enth

of a

deg

ree

for

char

t pre

sent

atio

n an

to th

e ne

ares

t one

-hun

dred

th o

f a d

egre

e fo

r

data

base

cod

ing

purp

oses

. Whe

re r

ange

info

rmat

ion

is a

vaila

ble,

des

cent

pro

file

info

rmat

ion

is p

rovi

ded.

5.2.

5 5.2.

5  S

tep

do

wn

fix

es

5.2.

5.1

A s

tepd

own

fix m

ay b

e in

corp

orat

ed in

som

e no

n-pr

ecis

ion

appr

oach

pro

cedu

res.

In th

is c

ase,

two

OC

A/H

5.2.

5.1 

valu

es a

re p

ublis

hed:

1.a

high

er v

alue

app

licab

le to

the

prim

ary

proc

edur

e; a

nd

2.a

low

er v

alue

app

licab

le o

nly

if th

e st

epdo

wn

fix is

pos

itive

ly id

entif

ied

durin

g th

e ap

proa

ch.

5.2.

5.2

Nor

mal

ly o

nly

one

step

dow

n fix

is s

peci

fied.

How

ever

, in

the

case

of a

VO

R/D

ME

pro

cedu

re s

ever

al D

ME

fixe

s5.

2.5.

may

be

depi

cted

, eac

h w

ith it

s as

soci

ated

min

imum

cro

ssin

g al

titud

e.

5.2.

5.3

Pro

cedu

re d

esig

n ca

ters

to a

max

imum

fina

l app

roac

h fli

ght d

esce

nt p

ath

afte

r th

e fix

of 1

5 pe

r ce

nt (

Cat

egor

y5.

2.5.

H, 1

5 pe

r ce

nt o

r de

scen

t gra

dien

t of t

he n

omin

al tr

ack

mul

tiplie

d by

2.5

, whi

chev

er is

gre

ater

).

5.2.

5.5 5.

2.5.

5 S

tepd

own

fix w

ith D

ME

Whe

re a

ste

pdow

n pr

oced

ure

usin

g a

suita

bly

loca

ted

DM

E is

pub

lishe

d, th

e pi

lot s

hall

not b

egin

des

cent

unt

il

esta

blis

hed

on th

e sp

ecifi

ed tr

ack.

Onc

e es

tabl

ishe

d on

trac

k, th

e pi

lot s

hall

begi

n de

scen

t whi

le m

aint

aini

ng th

e

aero

plan

e on

or

abov

e th

e pu

blis

hed

DM

E d

ista

nce

/ hei

ght r

equi

rem

ents

.

NO

TE

: T

he

use

of

DM

E p

rovi

des

an

ad

dit

ion

al c

hec

k fo

r en

-ro

ute

rad

ar d

esce

nt

dis

tan

ces.

5.3 5.

3 N

PA

WIT

HO

UT

FA

F

5.3.

1

Som

etim

es a

n ae

rodr

ome

is s

erve

d by

a s

ingl

e fa

cilit

y lo

cate

d on

or

near

the

aero

drom

e, a

nd n

o ot

her

faci

lity

is5.

3.1 

suita

bly

situ

ated

to fo

rm a

FA

F. I

n th

is c

ase,

a p

roce

dure

may

be

desi

gned

whe

re th

e fa

cilit

y is

bot

h th

e IA

F a

nd th

e

MA

Pt.

5.3.

2

The

se p

roce

dure

s in

dica

te:

5.3.

1.a

min

imum

alti

tude

/hei

ght f

or a

rev

ersa

l pro

cedu

re o

r ra

cetr

ack;

and

2.an

OC

A/H

for

final

app

roac

h.

5.3.

3

In th

e ab

senc

e of

a F

AF

, des

cent

to M

DA

/H is

mad

e on

ce th

e ai

rcra

ft is

est

ablis

hed

inbo

und

on th

e fin

al5.

3.3 

appr

oach

trac

k. P

roce

dure

alti

tude

s/he

ight

s w

ill n

ot b

e de

velo

ped

for

non-

prec

isio

n ap

proa

ch p

roce

dure

s w

ithou

t a

FA

F.

5.3.

4

In p

roce

dure

s of

this

type

, the

fina

l app

roac

h tr

ack

cann

ot n

orm

ally

be

alig

ned

on th

e ru

nway

cen

tre

line.

Whe

ther

5.3.

OC

A/H

for

stra

ight

-in a

ppro

ach

limits

are

pub

lishe

d or

not

dep

ends

on

the

angu

lar

diffe

renc

e be

twee

n th

e tr

ack

and

the

runw

ay a

nd p

ositi

on o

f the

trac

k w

ith r

espe

ct to

the

runw

ay th

resh

old.

5.4 5.

4 P

RE

CIS

ION

AP

PR

OA

CH

5.4.

1 5.4.

1  F

inal

ap

pro

ach

po

int

(FA

P)

The

fina

l app

roac

h se

gmen

t beg

ins

at th

e fin

al a

ppro

ach

poin

t (F

AP

). T

his

is a

poi

nt in

spa

ce o

n th

e fin

al a

ppro

ach

trac

k w

here

the

inte

rmed

iate

app

roac

h al

titud

e/he

ight

inte

rcep

ts th

e no

min

al g

lide

path

/mic

row

ave

land

ing

syst

em

(MLS

) el

evat

ion

angl

e.

5.4.

2 5.4.

2  F

inal

ap

pro

ach

len

gth

5.4.

2.1

The

inte

rmed

iate

app

roac

h al

titud

e/he

ight

gen

eral

ly in

terc

epts

the

glid

e pa

th/M

LS e

leva

tion

angl

e at

hei

ghts

5.4.

2.1 

from

300

m (

1000

 ft)

to 9

00m

(30

00 ft

) ab

ove

runw

ay e

leva

tion.

In th

is c

ase,

for

a 3

glid

e pa

th, i

nter

cept

ion

occu

rs

betw

een

6 km

(3

NM

) an

d 19

km

(10

NM

) fr

om th

e th

resh

old.

5.4.

2.2

Page 11: DOC 8168 APPROACH

The interm

ediate approach track or radar vector is designed to place the aircraft on the localizer or the MLS

5.4.2.2 

azimuth specified for the final approach track at an altitude/height that is below

the nominal glide path/M

LS elevation

angle.

5.4.3

5.4.3  Ou

ter marker/D

ME

fix

5.4.3.1

The final approach area contains a fix or facility that perm

its verification of the glide path/MLS

elevation5.4.3.1 

angle/altimeter relationship. T

he outer marker or equivalent D

ME

fix is normally used for this purpose. P

rior to crossing

the fix, descent may be m

ade on the glide path/MLS

elevation angle to the altitude/height of the published fix crossing.

5.4.3.2

Descent below

the fix crossing altitude/height should not be made prior to crossing the fix.

5.4.3.2 

5.4.3.3

It is assumed that the aircraft altim

eter reading on crossing the fix is correlated with the published altitude,

5.4.3.3 

allowing for altitude error and altim

eter tolerances.

NO

TE

: Pressu

re altimeters are calib

rated to

ind

icate true altitu

de u

nd

er ISA

con

ditio

ns. A

ny d

eviation

from

ISA

will th

erefore resu

lt in an

erron

eou

s readin

g o

n th

e altimeter. If th

e temp

erature is h

igh

er than

ISA

, then

the

true altitu

de w

ill be h

igh

er than

the fig

ure in

dicated

by th

e altimeter. S

imilarly, th

e true altitu

de w

ill be lo

wer

wh

en th

e temp

erature is lo

wer th

an IS

A. T

he altim

eter error m

ay be sig

nifican

t in extrem

ely cold

temp

eratures.

5.4.3.4

In the event of loss of glide path/MLS

elevation angle guidance during the approach, the procedure becomes a

5.4.3.4 

non-precision approach. The O

CA

/H and associated procedure published for the glide path/M

LS elevation angle

inoperative case will then apply.

5.5

5.5 DE

TE

RM

INA

TIO

N O

F D

EC

ISIO

N A

LT

ITU

DE

(DA

) OR

DE

CIS

ION

HE

IGH

T (D

H)

5.5.1

In addition to the physical characteristics of the ILS/M

LS/G

BA

S installation, the procedures specialist considers

5.5.1 

obstacles both in the approach and in the missed approach areas in the calculation of the O

CA

/H for a procedure. T

he

calculated OC

A/H

is the height of the highest approach obstacle or equivalent missed approach obstacle, plus an

aircraft category related allowance.

5.5.2

In assessing these obstacles the operational variables of the aircraft category, approach coupling, category of5.5.2 

operation and missed approach clim

b performance are considered. T

he OC

A/H

values, as appropriate, are

promulgated on the instrum

ent approach chart for those categories of aircraft for which the procedure is designed.

OC

A/H

values are based on the standard conditions (among others) listed in the sub-paragraphs that follow

.

5.5.2.1

Aircraft dim

ensions: See T

able I-4-5-1.5.5.2.1 

5.5.2.2

ILS:

5.5.2.2 

a.C

ategory I flown w

ith pressure altimeter;

b.C

ategory II flown w

ith radio altimeter and flight director;

c.m

issed approach climb gradient is 2.5 per cent; and

d.glide path angle:

–  m

inimum

: 2.5

 –  optim

um: 3.0

 –  m

aximum

: 3.5 (3 for Category II/III operations).

 

5.5.5.2

The protection area assum

es that the pilot does not normally deviate from

the centre line more than halfscale

5.5.5.2 

deflection after being established on track. Thereafter the aircraft should adhere to the on-course, on-glide

path/elevation angle position since a more than half course sector deflection or a m

ore than half course fly-up

deflection combined w

ith other allowable system

tolerances could place the aircraft in the vicinity of the edge or bottom

of the protected airspace where loss of protection from

obstacles can occur.

5.5.6

Operators m

ust consider weight, altitude and tem

perature limitations and w

ind velocity when determ

ining the5.5.6 

DA

/H for a m

issed approach, since the OC

A/H

might be based on an obstacle in the m

issed approach area and since

advantage may be taken of variable m

issed approach climb perform

ances.

5.5.7

Unless otherw

ise noted on the instrument approach chart, the nom

inal missed approach clim

b gradient is 2.5 per5.5.7 

cent.

5.5.8

Table I-4-5-2 show

s the allowance used by the procedures specialist for vertical displacem

ent during initiation of5.5.8 

a missed approach. It takes into account type of altim

eter used and the height loss due to aircraft characteristics.

5.5.9

It should be recognized that no allowance has been included in the table for any abnorm

al meteorological

5.5.9 

conditions; for example, w

ind shear and turbulence.

Tab

le I-4-5-1. Aircraft d

imen

sion

s

Aircraft categ

ory

Win

g sp

an (m

)V

ertical distan

ce betw

een th

e fligh

t path

s of th

e

wh

eels and

the G

P an

tenn

a (m)

H30

3

A, B

606

C, D

657

DL

808

N

OT

E:O

CA

/H for D

aircraft is published when necessary

L

Tab

le I-4-5-2. Heig

ht lo

ss/altimeter m

argin

Aircraft categ

ory – V

atM

argin

usin

g rad

io altim

eterM

argin

usin

g p

ressure altim

eter

Metres

Feet

Metres

Feet

A – 90 kt (169 km

/h)13

4240

130

B – 120 kt (223 km

/h)18

5943

142

C – 140 kt (260 km

/h)22

7146

150

D – 165 kt (306 km

/h)26

8549

161

Page 12: DOC 8168 APPROACH

Fig

ure

I-4-

5-1.

Ste

pd

ow

n f

ix

5.6

5.6 

OB

ST

AC

LE

FR

EE

ZO

NE

5.6.

1

For

pre

cisi

on a

ppro

ache

s, a

n ob

stac

le fr

ee z

one

has

been

est

ablis

hed

for

Cat

egor

y II

and

III o

pera

tions

to5.

6.1 

prov

ide

prot

ectio

n in

the

even

t of a

bal

ked

land

ing.

5.6.

2

For

Cat

egor

y I o

pera

tions

, an

obst

acle

free

zon

e m

ay b

e pr

ovid

ed.

5.6.

5.6.

3

If an

obs

tacl

e fr

ee z

one

is n

ot p

rovi

ded,

then

it is

indi

cate

d.5.

6.3 

6 6 M

ISS

ED

AP

PR

OA

CH

SE

GM

EN

T

6.1.

1

Dur

ing

the

mis

sed

appr

oach

pha

se o

f the

inst

rum

ent a

ppro

ach

proc

edur

e, th

e pi

lot i

s fa

ced

with

the

dem

andi

ng6.

1.1 

task

of c

hang

ing

the

airc

raft

conf

igur

atio

n, a

ttitu

de a

nd a

ltitu

de. F

or th

is r

easo

n, th

e de

sign

of t

he m

isse

d ap

proa

ch h

as

been

kep

t as

sim

ple

as p

ossi

ble

and

cons

ists

of t

hree

pha

ses

(initi

al, i

nter

med

iate

and

fina

l).

6.1.

2

Pur

pose

. Onl

y on

e m

isse

d ap

proa

ch p

roce

dure

is e

stab

lishe

d fo

r ea

ch in

stru

men

t app

roac

h pr

oced

ure.

It is

6.1.

desi

gned

to p

rovi

de p

rote

ctio

n fr

om o

bsta

cle

thro

ugho

ut th

e m

isse

d ap

proa

ch m

anoe

uvre

. It s

peci

fies

a po

int w

here

the

mis

sed

appr

oach

beg

ins,

an

a po

int o

r an

alti

tude

/hei

ght w

here

it e

nds.

6.1.

3

The

mis

sed

appr

oach

sho

uld

be in

itiat

ed n

ot lo

wer

than

the

deci

sion

alti

tude

/hei

ght (

DA

/H)

in p

reci

sion

app

roac

h6.

1.3 

proc

edur

es, o

r at

a s

peci

fied

poin

t in

non-

prec

isio

n ap

proa

ch p

roce

dure

s no

t low

er th

an th

e m

inim

um d

esce

nt

altit

ude/

heig

ht (

MD

A/H

).

6.1.

4

It is

exp

ecte

d th

at th

e pi

lot w

ill fl

y th

e m

isse

d ap

proa

ch p

roce

dure

as

publ

ishe

d. If

a m

isse

d ap

proa

ch is

initi

ated

6.1.

befo

re a

rriv

ing

at th

e m

isse

d ap

proa

ch p

oint

(M

AP

t), t

he p

ilot w

ill n

orm

ally

pro

ceed

to th

e M

AP

t (or

to th

e m

iddl

e

mar

ker

fix o

r sp

ecifi

ed D

ME

dis

tanc

e fo

r pr

ecis

ion

appr

oach

pro

cedu

res)

and

then

follo

w th

e m

isse

d ap

proa

ch

proc

edur

e in

ord

er to

rem

ain

with

in th

e pr

otec

ted

airs

pace

.

NO

TE

 1: 

Th

is d

oes

no

t p

recl

ud

e fl

yin

g o

ver

the

MP

At

at a

n a

ltit

ud

e/h

eig

ht

gre

ater

th

an t

hat

req

uir

ed b

y th

e

pro

ced

ure

.

NO

TE

 2: 

In t

he

case

of

a m

isse

d a

pp

roac

h w

ith

a t

urn

at

an a

ltit

ud

e/h

eig

ht,

wh

en a

n o

per

atio

nal

nee

d e

xist

s, a

n

add

itio

nal

pro

tect

ion

is p

rovi

ded

fo

r th

e sa

feg

uar

din

g o

f ea

rly

turn

s. W

hen

it is

no

t p

oss

ible

, a n

ote

is

pu

blis

hed

on

th

e p

rofi

le v

iew

of

the

app

roac

h c

har

t to

sp

ecif

y th

at t

urn

s m

ust

no

t co

mm

ence

bef

ore

th

e M

AP

t

(or

bef

ore

an

eq

uiv

alen

t p

oin

t in

th

e ca

se o

f a

pre

cisi

on

ap

pro

ach

).6.

1.5

The

MA

Pt i

n a

proc

edur

e m

ay b

e de

fined

by:

6.1.

a.th

e po

int o

f int

erse

ctio

n of

an

elec

tron

ic g

lide

path

with

the

appl

icab

le D

A/H

in A

PV

or

prec

isio

n ap

proa

ches

;

or

b.a

navi

gatio

nal f

acili

ty, a

fix,

or

a sp

ecifi

ed d

ista

nce

from

the

final

app

roac

h fix

(F

AF

) in

non

-pre

cisi

on

appr

oach

es.

Whe

n th

e M

AP

t is

defin

ed b

y a

navi

gatio

nal f

acili

ty o

r a

fix, t

he d

ista

nce

from

the

FA

F to

the

MA

Pt i

s no

rmal

ly

publ

ishe

d as

wel

l, an

d m

ay b

e us

ed fo

r tim

ing

to th

e M

AP

t. In

all

case

s w

here

tim

ing

may

not

be

used

, the

pro

cedu

re is

anno

tate

d “t

imin

g no

t aut

horiz

ed fo

r de

finin

g th

e M

AP

t”.

NO

TE

: T

imin

g f

rom

th

e F

AF

bas

ed o

n g

rou

nd

sp

eed

may

als

o b

e u

sed

to

ass

ist

the

pla

nn

ing

of

a st

abili

zed

app

roac

h.

6.1.

6

If up

on r

each

ing

the

MA

Pt t

he r

equi

red

visu

al r

efer

ence

is n

ot e

stab

lishe

d, th

e pr

oced

ure

requ

ires

that

a m

isse

d6.

1.6 

appr

oach

be

initi

ated

at o

nce

in o

rder

to m

aint

ain

prot

ectio

n fr

om o

bsta

cles

.

6.1.

7 6.1.

7  M

isse

d a

pp

roac

h g

rad

ien

t

6.1.

7.1

Page 13: DOC 8168 APPROACH

Norm

ally procedures are based on a minim

um m

issed approach climb gradient of 2.5 per cent. A

gradient of 26.1.7.1 

per cent may be used in the procedure construction if the necessary survey and safeguarding have been provided.

With the approval of the appropriate authority, gradients of 3, 4 or 5 per cent m

ay be used for aircraft whose clim

b

performance perm

its an operational advantage to be thus obtained.

6.1.7.2

When a gradient other than a 2.5 per cent is used, this is indicated on the instrum

ent approach chart. In6.1.7.2 

addition to the OC

A/H

for this gradient, the OC

A/H

applicable to the nominal gradient w

ill also be shown.

6.1.7.3

Special conditions. It is em

phasized that a missed approach procedure w

hich is based on the nominal clim

b6.1.7.3 

gradient of 2.5 per cent cannot be used by all aeroplanes when operating at or near m

aximum

certificated gross mass

and engine-out conditions. The operation of aeroplanes under these conditions needs special consideration at

aerodromes w

hich are critical due to obstacles on the missed approach area. T

his may result in a special procedure

being established with a possible increase in the D

A/H

or MD

A/H

.

Fig

ure I-4-6-1. M

issed ap

pro

ach p

hases

6.2

6.2 INIT

IAL

PH

AS

E

The initial phase begins at the M

AP

t and ends at the start of climb (S

OC

). This phase requires the concentrated

attention of the pilot on establishing the climb and the changes in aeroplane configuration. It is assum

ed that guidance

equipment is not extensively utilized during these m

anoeuvres, and for this reason, no turns are specified in this phase.

6.3

6.3 INT

ER

ME

DIA

TE

PH

AS

E

6.3.1

The interm

ediate phase begins at the SO

C. T

he climb is continued, norm

ally straight ahead. It extends to the first6.3.1 

point where 50 m

(164 ft) obstacle clearance is obtained and can be maintained.

6.3.2

The interm

ediate missed approach track m

ay be changed by a maxim

um of 15 from

that of the initial missed

6.3.2 

approach phase. During this phase, it is assum

ed that the aircraft begins track corrections.

6.4

6.4 FIN

AL

PH

AS

E

6.4.1

The final phase begins at the point w

here 50m (164 ft) obstacle clearance is first obtained and can be

6.4.1 

maintained. It extends to the point w

here a new approach, holding or a return to en-route flight is initiated. T

urns may

be prescribed in this phase.

6.4.2

6.4.2  Tu

rnin

g m

issed ap

pro

ach

6.4.2.1

Turns in a m

issed approach procedure are only prescribed where terrain or other factors m

ake a turn6.4.2.1 

necessary.

6.4.2.2

If a turn from the final approach track is m

ade, a specially constructed turning missed approach area is

6.4.2.2 

specified.

6.4.3

6.4.3  Airsp

eed

6.4.3.1

The protected airspace for turns is based on the speeds for final m

issed approach.6.4.3.1 

6.4.3.2

How

ever, where operationally required to avoid obstacles, the IA

S as slow

as for intermediate m

issed approach6.4.3.2 

may be used. In this case, the instrum

ent approach chart contains the following note: “M

issed approach turn limited to

... km/h (kt) IA

S m

aximum

”.

6.4.3.3

In addition, where an obstacle is located early in the m

issed approach procedure, the instrument approach

6.4.3.3 

chart is annotated “Missed approach turn as soon as operationally practicable to ... heading”.

NO

TE

: Flig

ht p

erson

nel are exp

ected to

com

ply w

ith su

ch an

no

tation

s on

app

roach

charts an

d to

execute th

e

app

rop

riate man

oeu

vres with

ou

t un

du

e delay.

6.4.4

6.4.4  Tu

rn p

arameters

The follow

ing parameters are specific to turning m

issed approaches:

a.bank angle: 15 average achieved;

b.speed: see 6.4.3, “A

irspeed”;

c.w

ind: where statistical data are available, a m

aximum

95 per cent probability on omnidirectional basis is

used. Where no data are available, om

nidirectional wind of 56 km

/h (30 kt) is used; and

d.flight technical tolerances:

pilot reaction time: 0 to +

3 s; and

bank establishment tim

e: 0 to +3 s.

77 VIS

UA

L M

AN

OE

UV

RIN

G (C

IRC

LIN

G) A

RE

A

7.1

7.1 PU

RP

OS

E

7.1.1

Page 14: DOC 8168 APPROACH

Vis

ual m

aneu

verin

g (c

irclin

g) is

the

term

use

d to

des

crib

e th

e ph

ase

of fl

ight

afte

r an

inst

rum

ent a

ppro

ach

has

7.1.

been

com

plet

ed. I

t brin

gs th

e ai

rcra

ft in

to p

ositi

on fo

r la

ndin

g on

a r

unw

ay w

hich

is n

ot s

uita

bly

loca

ted

for

stra

ight

-in

appr

oach

, i.e

. one

whe

re th

e cr

iteria

for

alig

nmen

t or

desc

ent g

radi

ent c

anno

t be

met

.

7.2 7.

2 V

ISU

AL

FL

IGH

T M

AN

OE

UV

RE

7.2.

1

A c

irclin

g ap

proa

ch is

a v

isua

l flig

ht m

anoe

uvre

. Eac

h ci

rclin

g si

tuat

ion

is d

iffer

ent b

ecau

se o

f var

iabl

es s

uch

as7.

2.1 

runw

ay la

yout

, fin

al a

ppro

ach

trac

k, w

ind

velo

city

and

met

eoro

logi

cal c

ondi

tions

. The

refo

re, t

here

can

be

no s

ingl

e

proc

edur

e de

sign

ed th

at w

ill c

ater

for

cond

uctin

g a

circ

ling

appr

oach

in e

very

situ

atio

n.

7.2.

2

Afte

r in

itial

vis

ual c

onta

ct, t

he b

asic

ass

umpt

ion

is th

at th

e ru

nway

env

ironm

ent s

houl

d be

kep

t in

sigh

t whi

le a

t7.

2.2 

min

imum

des

cent

alti

tude

/hei

ght (

MD

A/H

) fo

r ci

rclin

g. T

he r

unw

ay e

nviro

nmen

t inc

lude

s fe

atur

es s

uch

as th

e ru

nway

thre

shol

d or

app

roac

h lig

htin

g ai

ds o

r ot

her

mar

king

s id

entif

iabl

e w

ith th

e ru

nway

.

7.3 7.

3 P

RO

TE

CT

ION

7.3.

1 7.3.

1  T

he

visu

al m

ano

euvr

ing

(ci

rclin

g)

area

The

vis

ual m

anoe

uvrin

g ar

ea fo

r a

circ

ling

appr

oach

is d

eter

min

ed b

y dr

awin

g ar

cs c

entr

ed o

n ea

ch r

unw

ay th

resh

old

and

join

ing

thos

e ar

cs w

ith ta

ngen

t lin

es. T

he r

adiu

s of

the

arcs

is r

elat

ed to

:

a.ai

rcra

ft ca

tego

ry;

b.sp

eed:

spe

ed fo

r ea

ch c

ateg

ory

in C

hapt

er 1

, 1.3

.5;

c.w

ind

spee

d: 4

6 km

/h (

25 k

t) th

roug

hout

the

turn

; and

d.ba

nk a

ngle

: 20

aver

age

or 3

per

sec

ond,

whi

chev

er r

equi

res

less

ban

k.

7.3.

2 7.3.

2  O

bst

acle

cle

aran

ce

Whe

n th

e vi

sual

man

oeuv

ring

(circ

ling)

are

a ha

s be

en e

stab

lishe

d, th

e ob

stac

le c

lear

ance

alti

tude

/hei

ght (

OC

A/H

) is

dete

rmin

ed fo

r ea

ch c

ateg

ory

of a

ircra

ft.

NO

TE

: T

he

info

rmat

ion

in T

able

I-4-

7-3

sho

uld

no

t b

e co

nst

rued

as

op

erat

ing

min

ima.

7.3.

3 7.3.

3  M

inim

um

des

cen

t al

titu

de/

hei

gh

t (M

DA

/H)

Whe

n th

e O

CA

/H is

est

ablis

hed,

an

MD

A/H

is a

lso

spec

ified

to a

llow

for

oper

atio

nal c

onsi

dera

tions

. Des

cent

bel

ow

MD

A/H

sho

uld

not b

e m

ade

until

:

1.vi

sual

ref

eren

ce h

as b

een

esta

blis

hed

and

can

be m

aint

aine

d;

2.th

e pi

lot h

as th

e la

ndin

g th

resh

old

in s

ight

; and

3.th

e re

quire

d ob

stac

le c

lear

ance

can

be

mai

ntai

ned

and

the

airc

raft

is in

a p

ositi

on to

car

ry o

ut a

land

ing.

7.3.

4 7.3.

4  V

isu

al m

ano

euvr

ing

(ci

rclin

g)

area

exc

lusi

on

s

7.3.

4.1

A s

ecto

r in

the

circ

ling

area

whe

re a

pro

min

ent o

bsta

cle

exis

ts m

ay b

e ig

nore

d fo

r O

CA

/H c

alcu

latio

ns if

it is

7.3.

4.1 

outs

ide

the

final

app

roac

h an

d m

isse

d ap

proa

ch a

reas

.

7.3.

4.2

Whe

n th

is o

ptio

n is

exe

rcis

ed, t

he p

ublis

hed

proc

edur

e pr

ohib

its c

irclin

g w

ithin

the

entir

e se

ctor

in w

hich

the

7.3.

4.2 

obst

acle

is lo

cate

d (s

ee F

igur

e I-

4-7-

2).

7.4 7.

4 M

ISS

ED

AP

PR

OA

CH

PR

OC

ED

UR

E W

HIL

E C

IRC

LIN

G

7.4.

1

If vi

sual

ref

eren

ce is

lost

whi

le c

irclin

g to

land

from

an

inst

rum

ent a

ppro

ach,

the

mis

sed

appr

oach

spe

cifie

d fo

r7.

4.1 

that

par

ticul

ar p

roce

dure

sha

ll be

follo

wed

. The

tran

sitio

n fr

om th

e vi

sual

(ci

rclin

g) m

anoe

uvre

to th

e m

isse

d ap

proa

ch

shou

ld b

e in

itiat

ed b

y a

clim

bing

turn

, with

in th

e ci

rclin

g ar

ea, t

owar

ds th

e la

ndin

g ru

nway

, to

retu

rn to

the

circ

ling

altit

ude

or h

ighe

r, im

med

iate

ly fo

llow

ed b

y in

terc

eptio

n an

d ex

ecut

ion

of th

e m

isse

d ap

proa

ch p

roce

dure

. The

indi

cate

d

airs

peed

dur

ing

thes

e m

anoe

uvre

s sh

all n

ot e

xcee

d th

e m

axim

um in

dica

ted

airs

peed

ass

ocia

ted

with

vis

ual

man

oeuv

ring.

7.4.

2

The

circ

ling

man

oeuv

re m

ay b

e ca

rrie

d ou

t in

mor

e th

an o

ne d

irect

ion.

For

this

rea

son,

diff

eren

t pat

tern

s ar

e7.

4.2 

requ

ired

to e

stab

lish

the

airc

raft

on th

e pr

escr

ibed

mis

sed

appr

oach

cou

rse

depe

ndin

g on

its

posi

tion

at th

e tim

e vi

sual

refe

renc

e is

lost

.

7.5 7.

5 V

ISU

AL

MA

NO

EU

VR

ING

US

ING

PR

ES

CR

IBE

D T

RA

CK

7.5.

1.1

In th

ose

loca

tions

whe

re c

lear

ly d

efin

ed v

isua

l fea

ture

s pe

rmit

(and

if it

is o

pera

tiona

lly d

esira

ble)

, a S

tate

may

7.5.

1.1 

pres

crib

e a

spec

ific

trac

k fo

r vi

sual

man

oeuv

ring

in a

dditi

on to

the

circ

ling

area

.

7.5.

1.2

Sin

ce v

isua

l man

oeuv

ring

with

a p

resc

ribed

trac

k is

inte

nded

for

use

whe

re s

peci

fic te

rrai

n fe

atur

es w

arra

nt7.

5.1.

such

a p

roce

dure

, it i

s ne

cess

ary

for

the

fligh

t cre

w to

be

fam

iliar

with

the

terr

ain

and

visu

al c

ues

to b

e us

ed in

wea

ther

cond

ition

s ab

ove

the

aero

drom

e op

erat

ing

min

ima

pres

crib

ed fo

r th

is p

roce

dure

.

7.5.

1.3

Thi

s pr

oced

ure

is b

ased

on

the

airc

raft

spee

d ca

tego

ry. I

t is

publ

ishe

d on

a s

peci

al c

hart

on

whi

ch th

e vi

sual

7.5.

1.3 

feat

ures

use

d to

def

ine

the

trac

k, o

r ot

her

char

acte

ristic

feat

ures

nea

r th

e tr

ack,

are

sho

wn.

7.5.

1.4

Not

e th

at in

this

pro

cedu

re:

7.5.

1.4  1.

navi

gatio

n is

prim

arily

by

visu

al r

efer

ence

and

any

rad

io n

avig

atio

n in

form

atio

n pr

esen

ted

is a

dvis

ory

only

;

and

2.th

e m

isse

d ap

proa

ch fo

r th

e no

rmal

inst

rum

ent p

roce

dure

app

lies,

but

the

pres

crib

ed tr

acks

pro

vide

for

man

oeuv

ring

to a

llow

for

a go

-aro

und

and

to a

chie

ve a

saf

e al

titud

e/he

ight

ther

eafte

r (jo

inin

g th

e do

wnw

ind

leg

of th

e pr

escr

ibed

trac

k pr

oced

ure

or th

e in

stru

men

t mis

sed

appr

oach

traj

ecto

ry).

7.5.

2.2

The

dire

ctio

n an

d th

e le

ngth

of e

ach

segm

ent a

re d

efin

ed. I

f a s

peed

res

tric

tion

is p

resc

ribed

, it m

ust b

e7.

5.2.

publ

ishe

d on

the

char

t.

7.5.

2.4

Page 15: DOC 8168 APPROACH

When a m

inimum

altitude/height is specified at the beginning of the segment, the length of the final segm

ent is7.5.2.4 

adjusted, if necessary, taking into account the descent gradient/angle. This descent gradient/angle is indicated on the

chart.

7.5.3

7.5.3  Pro

tection

area associated

with

the p

rescribed

track

The protection area is based on a corridor w

ith a constant width (T

able I-4-7-4), centred on the nominal track. T

he

corridor starts at the “divergence” point and follows the track, including a go-around for a second visual m

anoeuvring

with prescribed track.

7.5.4

7.5.4  Min

imu

m o

bstacle clearan

ce (MO

C) an

d O

CA

/H

The O

CA

/H for visual m

anoeuvring on prescribed tracks provides the minim

um obstacle clearance (M

OC

) over the

highest obstacle within the prescribed track area. It also conform

s to the limits specified in T

able I-4-7-3 and is not less

than the OC

A/H

calculated for the instrument approach procedure w

hich leads to the visual manoeuvre.

7.5.5

7.5.5  Visu

al aids

Visual aids associated w

ith the runway used for the prescribed track (i.e. sequenced flashing lights, P

AP

I, VA

SIS

, etc.)

are shown on the chart w

ith their main characteristics (i.e. slope of the P

AP

I or VA

SIS

). Lighting on obstacles is

specified on the chart.

Tab

le I-4-7-2. Exam

ple o

f determ

inin

g rad

ii for visu

al man

oeu

vring

(circling

) area for aero

dro

mes at 1000 ft

MS

L

Aircraft

catego

ry/IAS

A/100 kt

B/135 kt

C/180 kt

D/205 kt

E/240 kt

TA

S at 2000 ft M

SL +

25 kt wind

131168

215242

279

Turn radius (nm

)0.69

1.131.85

2.343.12

Straight segm

ent (nm)

0.30.4

0.50.6

0.7

Radius from

threshold

(nm)

1.682.66

4.25.28

6.94

Tab

le I-4-7-3. OC

A/H

for visu

al man

oeu

vring

(circling

) app

roach

Aircraft categ

ory

Ob

stacle clearance

Lo

west O

CH

AA

LM

inim

um

Visib

ility

A295 ft/90 m

394 ft/120 m1.0 nm

/1.9 km

B295 ft/90 m

492 ft/150 m1.5 nm

/2.8 km

C394 ft/120 m

591 ft/180 m2.0 nm

/3.7 km

D394 ft/120 m

689 ft/210 m2.5 nm

/4.6 km

E492 ft/150 m

787 ft/240 m3.5 nm

/6.5 km

Tab

le I-4-7-4. Sem

i-wid

th o

f the co

rrido

r

Aircraft C

atego

ryA

BC

DE

Sem

i-wid

th4593 ft/1400 m

4921 ft/1500 m5905 ft/1800 m

6890 ft/2100 m8530 ft/2600 m

Fig

ure I-4-7-1. V

isual m

ano

euvrin

g (circlin

g ap

pro

ach) area

Fig

ure I-4-7-2. V

isual m

ano

euvrin

g (circlin

g) area —

pro

hib

ition

on

circling

Fig

ure I-4-7-4. A

rea

Page 16: DOC 8168 APPROACH

8

8 C

HA

RT

ING

/AE

RO

NA

UT

ICA

L IN

FO

RM

AT

ION

PU

BL

ICA

TIO

N (

AIP

)

8.2 8.

2 C

HA

RT

ED

AL

TIT

UD

E/F

LIG

HT

LE

VE

LS

In a

dditi

on to

min

imum

IFR

alti

tude

s es

tabl

ishe

d fo

r ea

ch s

egm

ent o

f the

pro

cedu

re, p

roce

dure

alti

tude

s/he

ight

s w

ill

also

be

prov

ided

. Pro

cedu

re a

ltitu

des/

heig

hts

will

, in

all c

ases

, be

at o

r ab

ove

any

min

imum

cro

ssin

g al

titud

e

asso

ciat

ed w

ith th

e se

gmen

t. P

roce

dure

alti

tude

/hei

ght w

ill b

e es

tabl

ishe

d ta

king

into

acc

ount

the

air

traf

fic c

ontr

ol

need

s fo

r th

at p

hase

of f

light

.

8.4.

1.1

The

des

cent

gra

dien

t(s)

/ang

les

used

in th

e co

nstr

uctio

n of

the

proc

edur

e ar

e pu

blis

hed

for

the

final

app

roac

h8.

4.1.

segm

ent.

8.4.

1.2

Whe

re th

e di

stan

ce in

form

atio

n is

ava

ilabl

e, d

esce

nt p

rofil

e ad

viso

ry in

form

atio

n fo

r th

e fin

al a

ppro

ach

shou

ld8.

4.1.

be p

rovi

ded

to a

ssis

t the

pilo

t to

mai

ntai

n th

e ca

lcul

ated

des

cent

gra

dien

t. T

his

shou

ld b

e a

tabl

e sh

owin

g

altit

udes

/hei

ghts

thro

ugh

whi

ch th

e ai

rcra

ft sh

ould

be

pass

ing

at e

ach

2 km

or

1 N

M a

s ap

prop

riate

.

8.4.

3.1

An

obst

acle

cle

aran

ce a

ltitu

de (

OC

A)

and/

or a

n ob

stac

le c

lear

ance

hei

ght (

OC

H)

is p

ublis

hed

for

each

8.4.

3.1 

inst

rum

ent a

ppro

ach

and

circ

ling

proc

edur

e.

8.4.

3.2

A s

trai

ght-

in O

CA

/H is

not

pub

lishe

d w

here

the

final

app

roac

h al

ignm

ent o

r de

scen

t gra

dien

t crit

eria

are

not

8.4.

3.2 

met

. In

this

cas

e, o

nly

circ

ling

OC

A/H

are

pub

lishe

d.

8.4.

3.3

Pro

cedu

res

that

req

uire

the

use

of fo

reca

st a

ltim

eter

set

ting

are

so a

nnot

ated

on

the

appr

oach

cha

rts.

8.4.

3.3 

8.4.

4.1

Onl

y on

e m

isse

d ap

proa

ch p

roce

dure

is p

ublis

hed

for

each

app

roac

h pr

oced

ure.

8.4.

4.1 

8.4.

4.2

If th

e m

isse

d ap

proa

ch p

oint

(M

AP

t) is

def

ined

by

a fa

cilit

y or

fix

at th

e M

AP

t, th

e pr

oced

ure

will

be

anno

tate

d8.

4.4.

“Tim

ing

not a

utho

rized

for

defin

ing

the

MA

Pt”

.

8.4.

4.4

The

OC

A/H

for

the

nom

inal

2.5

per

cen

t is

alw

ays

publ

ishe

d on

the

inst

rum

ent a

ppro

ach

char

t (IA

C).

If8.

4.4.

addi

tiona

l gra

dien

ts a

re s

peci

fied

in th

e co

nstr

uctio

n of

the

mis

sed

appr

oach

pro

cedu

re, t

hey

and

thei

r as

soci

ated

OC

A/H

val

ues

are

publ

ishe

d as

alte

rnat

ive

optio

ns.

8.4.

4.5

Whe

re o

pera

tiona

lly r

equi

red

to a

void

obs

tacl

es, r

educ

ed s

peed

s as

slo

w a

s th

e IA

S fo

r in

term

edia

te m

isse

d8.

4.4.

appr

oach

may

be

used

. In

such

cas

es, t

he p

roce

dure

is a

nnot

ated

“M

isse

d ap

proa

ch tu

rn li

mite

d to

... k

m/h

(kt

) IA

S

max

imum

”.

8.4.

4.6

Whe

n a

grad

ient

oth

er th

an th

e no

min

al g

radi

ent i

s us

ed in

the

cons

truc

tion

of th

e m

isse

d ap

proa

ch p

roce

dure

,8.

4.4.

this

is in

dica

ted

in th

e IA

C a

nd, i

n ad

ditio

n to

the

OC

A/H

for

the

spec

ific

grad

ient

, the

OC

A/H

app

licab

le to

the

nom

inal

grad

ient

is a

lso

show

n.

8.4.

5.1

A s

ecto

r in

the

circ

ling

area

whe

re a

pro

min

ent o

bsta

cle

exis

ts m

ay b

e ig

nore

d fo

r O

CA

/H.

8.4.

5.1 

8.4.

5.2

Whe

n th

is o

ptio

n is

exe

rcis

ed, t

he p

ublis

hed

proc

edur

e w

ill p

rohi

bit t

he p

ilot f

rom

circ

ling

with

in th

e to

tal s

ecto

r8.

4.5.

whe

re th

e ob

stac

le e

xist

s.

8.4.

6.4

Dep

artu

re r

oute

s ar

e la

bele

d as

RN

AV

onl

y w

hen

that

is th

e pr

imar

y m

eans

of n

avig

atio

n ut

ilize

d.8.

4.6.

8.4.

6.6

Whe

n pr

oced

ures

are

iden

tifie

d as

“R

NA

V”,

any

of t

he fo

llow

ing

navi

gatio

n se

nsor

s ca

n be

use

d: b

asic

GN

SS

,8.

4.6.

DM

E/D

ME

or

VO

R/D

ME

. How

ever

, som

e pr

oced

ures

may

iden

tify

spec

ific

sens

or(s

) th

at a

re r

equi

red

for

the

proc

edur

e, o

r se

para

te p

roce

dure

s m

ay b

e pu

blis

hed,

eac

h id

entif

ying

a p

erm

itted

sen

sor.

NO

TE

: U

nle

ss o

ther

wis

e st

ated

, all

way

po

ints

are

fly

-by

way

po

ints

.8.

4.7 8.

4.7 

Des

cen

t g

rad

ien

ts/a

ng

les

for

char

tin

g

Des

cent

gra

dien

ts/a

ngle

s fo

r ch

artin

g sh

all b

e pr

omul

gate

d to

the

near

est o

ne-t

enth

of a

per

cen

t/deg

ree.

Des

cent

grad

ient

/ang

les

shal

l orig

inat

e at

a p

oint

15

m (

50 ft

) ab

ove

the

land

ing

runw

ay th

resh

old.

For

pre

cisi

on a

ppro

ache

s,

diffe

rent

orig

inat

ion

poin

ts m

ay a

pply

. Ear

th c

urva

ture

is n

ot c

onsi

dere

d in

det

erm

inin

g th

e de

scen

t gra

dien

t/ang

le.

8.4.

8 8.4.

8  D

esce

nt

ang

les

for

dat

abas

e co

din

g

Par

agra

ph 8

.4.7

app

lies,

exc

ept o

nly

to d

esce

nt a

ngle

s an

d th

at th

e an

gles

sha

ll be

pub

lishe

d to

the

near

est o

ne

hund

redt

h of

a d

egre

e.

8.4.

9.1

The

des

cent

pat

h re

ache

s a

cert

ain

altit

ude

at th

e F

AF

. In

orde

r to

avo

id o

vers

hoot

ing

the

desc

ent p

ath,

the

8.4.

9.1 

FA

F p

ublis

hed

proc

edur

e al

titud

e/he

ight

sho

uld

be 1

5 m

(50

ft)

belo

w th

is a

ltitu

de. T

he p

roce

dure

alti

tude

/hei

ght s

hall

not b

e le

ss th

an th

e O

CA

/H o

f the

seg

men

t pre

cedi

ng th

e fin

al a

ppro

ach

segm

ent.

8.4.

9.2

Bot

h th

e pr

oced

ure

altit

ude/

heig

ht a

nd th

e m

inim

um a

ltitu

de fo

r ob

stac

le c

lear

ance

sha

ll be

pub

lishe

d. In

no

8.4.

9.2 

case

will

the

proc

edur

e al

titud

e/he

ight

be

low

er th

an a

ny m

inim

um a

ltitu

de/h

eigh

t for

obs

tacl

e cl

eara

nce.

8.4.

9.3

The

des

igne

d st

abili

zed

desc

ent p

ath

will

cle

ar th

e st

epdo

wn

fix m

inim

um o

bsta

cle

clea

ranc

e al

titud

e.8.

4.9.

8.5 8.

5 P

RO

CE

DU

RE

NA

MIN

G F

OR

AR

RIV

AL

AN

D A

PP

RO

AC

H C

HA

RT

S

8.5.

1.2

Pro

cedu

re id

entif

icat

ion

8.5.

1.2 

Page 17: DOC 8168 APPROACH

8.5.1.2.1

General. T

he procedure identification shall only contain the name describing the type of radio navigation aid

8.5.1.2.1 

providing the final approach lateral guidance. Precision approach system

s such as ILS or M

LS shall be identified by the

system nam

e (ILS, M

LS, etc.). If tw

o radio navigation aids are used for final approach lateral guidance, the title shall

only include the last radio navigation aid used.

For exam

ple: If an ND

B is used as the F

AF

, and a VO

R is used as the last navaid on the final approach to runw

ay 06,

the procedure shall be identified as VO

R R

wy 06. If a V

OR

is used for the initial approach followed by a final approach

to Rw

y 24 using an ND

B, the procedure shall be identified as N

DB

Rw

y 24.

8.5.1.2.2

Additional navaids. If additional navigations aids are required (such as fix form

ations or transition routes) for8.5.1.2.2 

the approach procedure, they shall be specified on the plan view of the chart, but not in the title.

8.5.1.2.3

Multiple procedures. A

single approach chart may portray m

ore than one approach procedure when the

8.5.1.2.3 

procedures for the intermediate approach, final approach and m

issed approach segments are identical. If m

ore than

one approach procedure is depicted on the same chart, the title shall contain the nam

es of all the types of navigation

aids used for final approach lateral guidance, separated by the word “or”. T

here shall be no more than three types of

approach procedure on one chart.

For exam

ple: ILS or N

DB

Rw

y 35L

8.5.1.2.4

Helicopter approach shall be identified by the navigation aid type used for final approach guidance, follow

ed8.5.1.2.4 

by the final approach track.

For exam

ple: VO

R 235

8.5.1.2.5

Circling approach. W

hen only circling minim

a are provided on a chart, the approach procedure shall be8.5.1.2.5 

identified by the last navaid providing final approach guidance followed by a single letter, starting w

ith the letter A.

When there are tw

o or more approaches at an airport (or a nearby airport), a different letter shall be used. If the IF

R

portion of the procedure is the same but there are different circling tracks for the sam

e procedure, only one procedure

with one title should be prom

ulgated and the different circling procedures indicated in the procedure, only one

procedure with one title should be prom

ulgated and the different circling procedures indicated in the procedure. The

suffix letter shall not be used again for any procedures at that airport, at any other airport serving the same city, or at

any other airport in the same S

tat, serving a city with the sam

e name.

For exam

ple: VO

R-A

VO

R-B

ND

B-C

8.5.1.3

Duplicate procedure identification

8.5.1.3 

8.5.1.3.1

A single letter suffix, starting w

ith the letter Z, follow

ing the radio navigation aid type shall be used if two or

8.5.1.3.1 

more procedures to the sam

e runway cannot be distinguished by the radio navigation aid type only.

For exam

ple: VO

R Z

Rw

y 20 VO

R Y

Rw

y 20

8.5.1.3.2

The single letter suffix shall be used as follow

s:8.5.1.3.2 

1.w

hen two or m

ore navigation aids of the same type are used to support different approaches to the sam

e

runway;

2.w

hen two or m

ore missed approaches are associated w

ith a comm

on approach, each approach shall be

identified by a single letter suffix;

3.if different approach procedures using the sam

e radio navigation type are provided for different aircraft

categories; and

4.if tw

o or more arrivals are used to a com

mon approach and are published on different charts, each

approach shall be identified by a single letter suffix. If additional radio navigation aids are required for the

arrival, they shall be specified on the chart's plan view.

For exam

ple:

ILS Z

RW

Y 20 (“D

NA

VO

R A

rrival” shown in the plan view

)

ILS Y

RW

Y 20 (“C

AB

VO

R A

rrival” shown in the plan view

)

8.5.1.4.1

All navigation equipm

ent that is required for the execution of the approach procedure and not mentioned in

8.5.1.4.1 

the procedure identification shall be identified in notes on the chart.

For exam

ple:

“VO

R required” on an N

DB

approach.

“Dual A

DF

required” when required on an N

DB

approach where tw

o AD

Fs are required.

“When inbound from

XX

X N

DB

, change over to YY

Y N

DB

at midpoint.”

“DM

E required” on a V

OR

/DM

E arc approach.

8.5.1.5

Minim

um B

oxes8.5.1.5 

The O

CA

/H for each aircraft category shall be published in the m

inimum

box on the chart. Where an O

CA

/H is

predicated on a specific navigation aid (e.g. stepdown fixes), or a specific R

NA

V functionality (e.g. LN

AV

/VN

AV

), or an

RN

P value, this shall be clearly identified.

Exam

ples:

OC

A/O

CH

CA

T A

CA

T B

CA

T C

CA

T D

CA

T H

CA

T I

210 ft (170 ft)210 ft (170 ft)

220 ft (180 ft)230 ft (190 ft)

210 ft (170 ft)

RN

P 0.3

290 ft (250 ft)290 ft (250 ft)

290 ft (250 ft)290 ft (250 ft)

290 ft (250 ft)

LN

AV

/VN

AV

560 ft (520 ft)560 ft (520 ft)

560 ft (520 ft)560 ft (520 ft)

560 ft (520 ft)

LN

AV

710 ft (670 ft)710 ft (670 ft)

710 ft (670 ft)710 ft (670 ft)

710 ft (670 ft)

VO

R/D

ME

740 ft (700 ft)740 ft (700 ft)

740 ft (700 ft)740 ft (700 ft)

740 ft (700 ft)

VO

R800 ft (760 ft)

800 ft (760 ft)800 ft (760 ft)

800 ft (760 ft)800 ft (760 ft)

Tab

le I-4-8-1. Ch

arted altitu

des/flig

ht levels

Fig

ure I-4-8-2. P

roced

ure altitu

de/h

eigh

t vs. min

imu

m altitu

des w

ith step

do

wn

fix

Page 18: DOC 8168 APPROACH