dissertation poster.pdf

1
A Molecular Dynamics Study on the liquidliquid extraction of Uranyl ions with TriButylPhosphate Mark Thomas 7. Umbrella Sampling 8. Conclusion 10. Bibliography Nuclear reprocessing is becoming an increasingly important process in a time where there is a large focus on the sustainability of power generation. Not only can it reduce the highlevel waste volume, but can improve the efficiency of the cycle, by recycling unreacted fuel. The PUREX process is the most widely used method. 1) The fuel rods are dissolved in nitric acid; 2) This is then contacted with an organic phase containing 30% v/v tributylphosphate (TBP) (as seen in figure 1) in dodecane; 3) The TBP selectively binds to uranyl nitrate; 4) These neutral complexes readily migrate into the organic phase. 1. Introduction Although widely used since the 1950’s , there are many aspects of the process that are not understood on a molecular level. The TBP tends to form structures called reverse micelles around polar molecules such as water and acids due to its hydrophilic and hydrophobic properties, aggregating at the interface [1] . The particular mechanism of the extraction around the interface is unknown. Moreover, there have been continuous improvements in the force field models used for Molecular Dynamics (MD) simulations, meaning that the validity of earlier results are now bought into question. The drivers for third phase formation are still unknown, an occurrence that can seriously impair the liquidliquid extraction. (UO 2 2+ ) aq +2(NO 3 ) aq +2(TBP) org → ??? → (UO 2 (NO 3 ) 2 2TBP) org 2. Motivations & Objectives Motivations Increase efficiency of process by gaining further understanding on rate of mass transfer and partitioning coefficients To further understand the driving forces of third phase so it can be avoided Objectives Systematically and rigorously test the force field models for TBP, water and dodecane Gain further insight into the kinetics, complexation and extraction mechanisms 3. Methodology GROMACS 4.6.7 NPT – 1 atm Berendsen barostat. 298.15 K vrescale thermostat [2] Time step of 1 ps Energy minimisation followed by MD Force Field System OPLS2005 [3] TBP MNDO & ‘DL’ Water TIP3P & SPC/E Dodecane OPLSAA HNO 3 ESP [4] UO 2 + QM [5] 4. Binary System -4 -3 -2 -1 0 1 2 0.6 0.7 0.8 0.9 1 Excess enthaly of mixing (kJ/mol) Scaling factor for MNDO charge Simulation Experimental New TBP partial charges optimised for the description of a TBP/dodecane system, were found to lead to TBP/water immiscibility, counter to experimental observation. It is known that saturation point TBP:H 2 O is 1:1 [6] . Changing LennardJones (LJ) potentials had little effect on structure Scaling partial charges on TBP resulted in homogenous mixture and better thermodynamic properties of system (reasonable description of TBP/dodecane also) 0.9 best match with free energy of solvation, 0.8 best match with excess enthalpy of mixing. 0.84 OPLSMNDO compromise was taken 5. Ternary System A new charged dodecane model was developed to prevent liquidgel phase transition. Dodecane was added into the system for 3 different TBP:H 2 O ratios. Hydrophobic dodecane avoids contact with water. Resulted in single phase with possible reverse micelles formed. Nitric acid was added into the system. Emulsion like structure observed. No H 2 O dcc interactions, but HNO 3 slightly more dispersed. Down to more negatively charged H atom. Reverse micelles formed protecting polar molecules from ddc. O Aq nH 2 O 4 1247 nHNO 3 35 - nTBP 38 - nDDC 108 - nH 3 O + - 210 nNO 3 - - 210 The TBP scaling factor 0.6 underestimated intermolecular forces. A factor of 0.84 or 0.9 OPLSMNDO is recommended The unchanged OPLSAA dodecane prevents liquidgel phase transition Current force field models do not favour uranyl extraction, despite formation of reverse micelles Recommendations Add polarizabilities to force field models, in particular phosphate head Increase LJ potential between uranyl and TBP Carry out/compare results to additional experimental data (neutron scattering & xray diffraction) The author would like to thank Junju Mu, Karl Fairhurst and Gareth Myers for their results and continuing cooperation, and Andrew Masters for his limitless help and knowledge throughout. Systems Free energy of solvation of H 2 O in TBP (kJ mol -1 ) Experimental -19.58112 0.60 MNDO -6.12 ± 0.29 0.70 MNDO -10.14 ± 0.79 0.80 MNDO -15.47 ± 0.57 0.81 MNDO -15.18 ± 0.25 0.82 MNDO -16.66 ± 0.39 0.83 MNDO -14.38 ± 0.52 0.84 MNDO -17.05 ± 0.96 0.85 MNDO -14.54 ± 0.15 0.86 MNDO -17.71 ± 0.81 0.87 MNDO -18.99 ± 0.61 0.88 MNDO -20.93 ± 1.04 0.89 MNDO -19.29 ± 1.50 0.90 MNDO -19.75 ± 0.41 1.00 MNDO -22.84 ± 0.92 0.60 MNDO 0.84 MNDO 0.9 MNDO LJ – 1.25 LJ – 1.75 LJ – 2 LJ 5 Gibbs Free Energy Profile “Double Pull” 1. C. A. Hawkins, L. X. Dang, M. Nilsson, and H. D. Nguyen Q. N. Vo, The Journal of Physical Chemistry, vol. 119, no. 4, pp. 1588–1597, 2015. 2. J. Postma H. Berendsen, The Journal of Chemical Physics, vol. 81, no. 8, pp. 3684-3690, 1984. 3. H. Beard, Y. Cao J. Banks, J. Comput. Chem., vol. 26, pp. 1752–1780, 2005. 4. M. Burgard, and G. Wipff M. Baaden, J. Phys. Chem., vol. 105, pp. 11131-11141, 2001. 5. S. P. Tiwari, and E. J. Maginn N. Rai, The Journal of Physical Chemistry, vol. 116, p. 1088510897, 2012. 6. L. Donadieu, and M. Benedict D. R. Olander, A.1.Ch.E. Journal, vol. 7, no. 1, pp. 152-157, 1961. Table 1: Force fields used for system and each molecule. Figure 2: 0.6 MNDO TBP (PINK) & TIP3P H 2 O (PURPLE). Figure 3: 0.84 MNDO TBP (PINK) & TIP3P H 2 O (PURPLE). Figure 4: TBP (RIGHT) & H 2 O (LEFT) dimer formed in system. Figure 5: Effect of partial charges on enthalpy of system. Table 2: Effect of charge of free energy of solvation. Figure 6: RDF of OWOW interactions. Effect of partial charges & LJ scaling. Figure 7: Uncharged and charged dodecane model (PURE). Figure 8: RDF of ddcH 2 O & POW for ternary system. Figure 9: TBP (GREEN) & H 2 O (BLUE) for ternary system. Figure 10: TBP (RIGHT) & HNO 3 (LEFT) dimer. Figure 11: TBP (GREEN), HNO 3 (RED) H 2 O (BLUE). Figure 12: Gibbs free energy curve for pulling & “double” pulling simulation. kJ mol 1 Figure 13: Pulling of uranyl ion (RED) from the aqueous phase consisting of NO 3 (GREEN), H 3 O + (ORANGE) & H 2 O (BLUE). Table 3: Composition of pulling simulations. Figure 1: Structure of TBP molecule. Uranyl nitrate ion was pulled across interface, expected to lose 2(H 2 O) and form (UO 2 (NO 3 ) 2 2TBP). Uranyl nitrate in fact pulled water across interface and did not bind with TBP. Gibbs free energy profile indicates that extrachon process is unfavourable, with an achvahon energy of 60 kJ mol 1 . This result can not be true otherwise the PUREX process wouldn't work, and we believe we have seriously undereshmated the anrachons between TBP and uranyl. “Double Pull” simulahon, showed that organic phase is more favourable than interface. POW H 2 Oddc 9. Acknowledgements 6. Quaternary System

Upload: thomasmd9

Post on 04-Dec-2015

231 views

Category:

Documents


0 download

TRANSCRIPT

post

erse

ssio

n.co

m

A  Molecular  Dynamics  Study    on  the  liquid-­‐liquid  extraction  of  

 Uranyl  ions  with  Tri-­‐Butyl-­‐Phosphate    

Mark  Thomas  

7.  Umbrella  Sampling   8.  Conclusion  

10.  Bibliography  

Nuclear  reprocessing  is  becoming  an  increasingly  important  process  in  a  time  where  there  is  a  large  focus  on  the  sustainability  of  power  generation.  Not  only  can  it  reduce  the  high-­‐level  waste  volume,  but  can  improve  the  efficiency  of  the  cycle,  by  recycling  unreacted  fuel.  The  PUREX  process  is  the  most  widely  used  method.  1)  The  fuel  rods  are  dissolved  in  nitric  acid;  2)  This   is   then   contacted   with   an   organic   phase   containing   30%   v/v                                                    

tri-­‐butyl-­‐phosphate  (TBP)  (as  seen  in  figure  1)  in  dodecane;  

3)  The  TBP  selectively  binds  to  uranyl  nitrate;  4)  These  neutral  complexes  readily  migrate  into  the  organic  phase.  

1.  Introduction  

Although  widely  used  since  the  1950’s  ,  there  are  many  aspects  of  the  process  that  are  not  understood  on  a  molecular  level.  The  TBP  tends  to  form  structures  called  reverse  micelles  around  polar  molecules   such  as  water  and  acids  due   to   its  hydrophilic  and  hydrophobic  properties,   aggregating  at   the   interface   [1].   The  particular  mechanism  of   the  extraction  around  the   interface   is  unknown.  Moreover,   there  have  been  continuous   improvements   in   the   force  field  models  used   for  Molecular  Dynamics   (MD)   simulations,  meaning   that   the   validity  of   earlier   results   are  now  bought   into  question.   The  drivers   for   third  phase   formation  are   still   unknown,   an  occurrence  that  can  seriously  impair  the  liquid-­‐liquid  extraction.  

(UO22+)aq+2(NO3

-­‐)aq+2(TBP)org  →  ???  →  (UO2(NO3)2  �  2TBP)org  

2.  Motivations  &  Objectives  Motivations  •  Increase   efficiency   of   process   by   gaining   further   understanding   on   rate   of  

mass  transfer  and  partitioning  coefficients  •  To  further  understand  the  driving  forces  of  third  phase  so  it  can  be  avoided  Objectives  •  Systematically  and  rigorously  test  the  force  field  models  for  TBP,  water  and  

dodecane  •  Gain   further   insight   into   the   kinetics,   complexation   and   extraction  

mechanisms  

3.  Methodology  •  GROMACS  4.6.7  •  NPT  –  1  atm  Berendsen  barostat.  298.15  K          

v-­‐rescale  thermostat  [2]  •  Time  step  of  1  ps  •  Energy  minimisation  followed  by  MD  

Units rdf. Read up on particular thermostats

Force  Field  System   OPLS-­‐2005  [3]  

TBP   MNDO  &  ‘DL’  Water   TIP3P  &  SPC/E  Dodecane   OPLS-­‐AA  HNO3   ESP  [4]  

UO2+   QM  [5]  

4.  Binary  System  

-4

-3

-2

-1

0

1

2

0.6 0.7 0.8 0.9 1

Exc

ess

enth

aly

of m

ixin

g (k

J/m

ol)

Scaling factor for MNDO charge

Simulation

Experimental

New   TBP   partial   charges   optimised   for   the   description   of   a   TBP/dodecane   system,  were  found  to  lead  to  TBP/water  immiscibility,  counter  to  experimental  observation.  It  is  known  that  saturation  point  TBP:H2O  is  1:1  [6].  •  Changing  Lennard-­‐Jones  (LJ)  potentials  had  little  effect  on  structure  •  Scaling   partial   charges   on   TBP   resulted   in   homogenous   mixture   and   better  

thermodynamic  properties  of  system  (reasonable  description  of  TBP/dodecane  also)  •  0.9  best  match  with   free  energy  of   solvation,  0.8  best  match  with  excess  enthalpy  of  

mixing.  0.84  OPLS-­‐MNDO  compromise  was  taken    

5.  Ternary  System  A  new  charged  dodecane  model  was  developed  to  prevent   liquid-­‐gel  phase  transition.  Dodecane  was  added  into  the  system  for  3  different  TBP:H2O   ratios.   Hydrophobic   dodecane   avoids   contact   with   water.  Resulted  in  single  phase  with  possible  reverse  micelles  formed.  

Nitric   acid   was   added   into  the   system.   Emulsion   like  structure   observed.   No   H2O-­‐dcc   interactions,   but   HNO3  slightly   more   dispersed.  Down   to   more   negatively  charged   H   atom.   Reverse  micelles   formed   protecting  polar  molecules  from  ddc.  

  O   Aq  

nH2O   4   1247  

nHNO3   35   -  

nTBP   38   -  

nDDC   108   -  

nH3O+   -   210  

nNO3-   -   210  

•  The  TBP  scaling  factor  0.6  underestimated  intermolecular  forces.  A  factor  of  0.84  or  0.9  OPLS-­‐MNDO  is  recommended  

•  The  unchanged  OPLS-­‐AA  dodecane  prevents  liquid-­‐gel  phase  transition  •  Current  force  field  models  do  not  favour  uranyl  extraction,  despite  formation  

of  reverse  micelles  Recommendations  •  Add  polarizabilities  to  force  field  models,  in  particular  phosphate  head  •  Increase  LJ  potential  between  uranyl  and  TBP  •  Carry  out/compare  results  to  additional  experimental  data  (neutron  scattering  

&  x-­‐ray  diffraction)  

The   author  would   like   to   thank   Junju  Mu,   Karl  Fairhurst  and  Gareth  Myers  for  their  results  and  continuing   cooperation,   and   Andrew   Masters  for   his   l imit less   help   and   knowledge  throughout.  

Systems   Free energy of solvation of H2O in TBP (kJ mol-1)  

Experimental   -19.58112  0.60 MNDO   -6.12 ± 0.29  0.70 MNDO   -10.14 ± 0.79  0.80 MNDO   -15.47 ± 0.57  0.81 MNDO   -15.18 ± 0.25  0.82 MNDO   -16.66 ± 0.39  0.83 MNDO   -14.38 ± 0.52  0.84 MNDO   -17.05 ± 0.96  0.85 MNDO   -14.54 ± 0.15  0.86 MNDO   -17.71 ± 0.81  0.87 MNDO   -18.99 ± 0.61  0.88 MNDO   -20.93 ± 1.04  0.89 MNDO   -19.29 ± 1.50  0.90 MNDO   -19.75 ± 0.41  1.00 MNDO   -22.84 ± 0.92  

0.60  MNDO  0.84  MNDO  0.9  MNDO  LJ  –  1.25  LJ  –  1.75  

LJ  –  2  LJ  -­‐  5  

Gibbs  Free  Energy  Profile  “Double  Pull”  

1.  C. A. Hawkins, L. X. Dang, M. Nilsson, and H. D. Nguyen Q. N. Vo, The Journal of Physical Chemistry, vol. 119, no. 4, pp. 1588–1597, 2015.

2.  J. Postma H. Berendsen, The Journal of Chemical Physics, vol. 81, no. 8, pp. 3684-3690, 1984. 3.  H. Beard, Y. Cao J. Banks, J. Comput. Chem., vol. 26, pp. 1752–1780, 2005. 4.  M. Burgard, and G. Wipff M. Baaden, J. Phys. Chem., vol. 105, pp. 11131-11141, 2001. 5.  S. P. Tiwari, and E. J. Maginn N. Rai, The Journal of Physical Chemistry, vol. 116, p.

10885−10897, 2012. 6.  L. Donadieu, and M. Benedict D. R. Olander, A.1.Ch.E. Journal, vol. 7, no. 1, pp. 152-157, 1961.

Table  1:  Force  fields  used  for  system  and  each  molecule.  

Figure  2:  0.6  MNDO  TBP  (PINK)  &  TIP3P  H2O  (PURPLE).   Figure  3:  0.84  MNDO  TBP  (PINK)  &  TIP3P  H2O  (PURPLE).   Figure  4:  TBP  (RIGHT)  &  H2O  (LEFT)  dimer  formed  in  system.  

Figure  5:  Effect  of  partial  charges  on  enthalpy  of  system.  

Table  2:  Effect  of  charge  of  free  energy  of  solvation.  

Figure  6:  RDF  of  OW-­‐OW  interactions.  Effect  of  partial  charges  &  LJ  scaling.  

Figure  7:  Uncharged  and  charged  dodecane  model  (PURE).  

Figure  8:  RDF  of  ddc-­‐H2O  &  P-­‐OW  for  ternary  system.  

Figure  9:  TBP  (GREEN)  &  H2O  (BLUE)  for  ternary  system.  

Figure  10:  TBP  (RIGHT)  &  HNO3  (LEFT)  dimer.   Figure  11:  TBP  (GREEN),  HNO3  (RED)  H2O  (BLUE).  

Figure  12:  Gibbs  free  energy  curve  for  pulling  &  “double”  pulling  simulation.  

kJ  mol-­‐1  

Figure  13:  Pulling  of  uranyl  ion  (RED)  from  the  aqueous  phase  consisting  of  NO3-­‐  (GREEN),  H3O+  (ORANGE)  &  H2O  (BLUE).  

Table  3:  Composition  of  pulling  simulations.  

Figure  1:  Structure  of  TBP  molecule.  

Uranyl   nitrate   ion   was   pulled   across   interface,  e x p e c t e d   t o   l o s e   2 ( H 2O )   a n d   f o rm  (UO2(NO3)2�2TBP).   Uranyl   nitrate   in   fact   pulled  water   across   interface   and   did   not   bind  with   TBP.  Gibbs   free   energy   profile   indicates   that   extrachon  process   is   unfavourable,  with   an   achvahon   energy  of  60  kJ  mol-­‐1.  This  result  can  not  be  true  otherwise  the  PUREX  process  wouldn't  work,   and  we  believe  we   have   seriously   undereshmated   the   anrachons  between  TBP  and  uranyl.  “Double  Pull”  simulahon,  showed  that  organic  phase  is  more  favourable  than  interface.    

P-­‐OW  H2O-­‐ddc  

9.  Acknowledgements  

6.  Quaternary  System