discrete time mixed h2 / h control · introduction continuous time mixed h2/h∞ control problem:...

9

Click here to load reader

Upload: vutruc

Post on 03-May-2018

217 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Discrete time mixed H2 / H control · Introduction Continuous time mixed H2/H∞ control problem: Zhou, Kemin, et al. ”Mixed H2 and H∞ performance objectives. I. Robust performance

Discrete time mixed H2/H∞ control

Yang Xu

Department of Automatic Control

Lund University

May 25, 2016

Page 2: Discrete time mixed H2 / H control · Introduction Continuous time mixed H2/H∞ control problem: Zhou, Kemin, et al. ”Mixed H2 and H∞ performance objectives. I. Robust performance

Introduction

Continuous time mixed H2/H∞ control problem:

◮ Zhou, Kemin, et al. ”Mixed H2 and H∞ performanceobjectives. I. Robust performance analysis.” AutomaticControl, IEEE Transactions on 39.8 (1994): 1564-1574.

◮ Doyle, John, et al. ”Mixed H2 and H∞ performanceobjectives. II. Optimal control.” Automatic Control, IEEETransactions on 39.8 (1994): 1575-1587.

◮ ...

Discrete time mixed H2/H∞ control problem:

◮ Muradore, Riccardo, and Giorgio Picci. ”Mixed H2/H∞

control: the discrete-time case.” Systems & control letters54.1 (2005): 1-13.

Page 3: Discrete time mixed H2 / H control · Introduction Continuous time mixed H2/H∞ control problem: Zhou, Kemin, et al. ”Mixed H2 and H∞ performance objectives. I. Robust performance

Some notations

◮ w is deterministic disturbance, w0 is stochastic disturbance

◮ ∂D∆= {z : |z |= 1}

◮ For stochastic processes x and y , x ⊥ y meansE (x − x)(y − y)T = 0, where x = Ex , y = Ey .

Page 4: Discrete time mixed H2 / H control · Introduction Continuous time mixed H2/H∞ control problem: Zhou, Kemin, et al. ”Mixed H2 and H∞ performance objectives. I. Robust performance

Mixed H2/H∞ control problemLet G (z) be a discrete-time system with realization

σx = Ax + B0w0 + B1w + B2u

z0 = C0x + D00w0 + D01w + D02u

z = C1x + D10w0 + D11w + D12u

y = C2x + D20w0 + D21w

which satisfies the following assumptions:A1. (A,B2) is stabilizable and (C2,A) is detectable,A2. D02 has full column rank and D20 has full row rank,

A3.

[

A− zI B2

C0 D02

]

has full column rank ∀z ∈ ∂D,

A4.

[

A− zI B0

C2 D20

]

has full row rank ∀z ∈ ∂D,

A5. w ∈ P is a bounded power signal and w0 ∼ GW (0, I ) is anormalized Gaussian white noise. Moreover, w0(k) ⊥ w(j), ∀k ≥ j ,A6. the initial condition x(0) ∼ G (x0,R0) is independent of w0,∀k ≥ 0.

Page 5: Discrete time mixed H2 / H control · Introduction Continuous time mixed H2/H∞ control problem: Zhou, Kemin, et al. ”Mixed H2 and H∞ performance objectives. I. Robust performance

Mixed H2/H∞ controlThe mixed H2/H∞ problem: find u∗ and w∗ such that

J0(w∗, u∗) ≥ J0(w , u∗), J2(w

∗, u∗) ≤ J2(w∗, u)

is solvable, if and only if, the coupled algebraic Riccati equations

(A+ B2F2)TX∞

(

I − γ−2B1BT

1 X∞

)

−1

(A+ B2F2)

− X∞ + (C1 + D12F2)T (C1 + D12F2) = 0

(

AC +(

B1 − B2R−102 D02D01

)

H∞

)TX2

(

AC

+(

B1 − B2R−102 D02D01

)

H∞

)

− X2

+ (C0 + D21H∞)T R02 (C0 + D21H∞) = 0

(

AF +(

B1 − B1DT

20R−120 D21

)

H∞

)

Y2

(

I

+ CT

2 R−120 C2Y2

)

−1 (

AF +(

B1 − B1DT

20R−120 D21

)

H∞

)T

− Y2 + B0R20BT

0 = 0

Page 6: Discrete time mixed H2 / H control · Introduction Continuous time mixed H2/H∞ control problem: Zhou, Kemin, et al. ”Mixed H2 and H∞ performance objectives. I. Robust performance

Mixed H2/H∞ controlIn the three Ricaati equations,

F2 =−(

DT

02D02 + BT

2 X2B2

)

−1

(

BT

2 X2 (A+ B1H∞) + DT

02 (C0 + D01H∞))

L2 =−(

(A+ B1H∞)Y2 (C2 + D21H∞)T + B0DT

20

)

(

D20DT

20 + (C2 + D21H∞)Y2 (C2 +D21H∞)T)

−1

AC =A− B2R−102 DT

02C0

AF =A− B0DT

02R−120 C2

R02 =DT

02D02

R02 =I −D02R−102 D02T

R20 =D20DT

20

R20 =I −DT

20R−120 D20

Page 7: Discrete time mixed H2 / H control · Introduction Continuous time mixed H2/H∞ control problem: Zhou, Kemin, et al. ”Mixed H2 and H∞ performance objectives. I. Robust performance

Mixed H2/H∞ control

The three Ricaati equations have stabilizaing solutions X∞ ≥ 0,X2 ≥ 0 and Y2 ≥ 0.The optimal controller u∗ = K (z)y has a realization given by

σxK = (A+ B1H∞ + B2F2 +2 C2 + L2D21H∞) xK − L2y

u∗ = F2xK

Moreover the optimal value of the performance functionalJ∗2 (w

∗, u∗,w0) is

J∗2 = tr(

BT

0 X2B0 + DT

00D00

)

+tr((

BT

2 X2B2 + DT

02D02

)

F2Y2FT

2

)

Page 8: Discrete time mixed H2 / H control · Introduction Continuous time mixed H2/H∞ control problem: Zhou, Kemin, et al. ”Mixed H2 and H∞ performance objectives. I. Robust performance

A numerical example

A discrete-time system

σx = Ax + B0w0 + B1w + B2u = 1.05x + w0 + w − 0.55u

z0 = C0x + D00w0 + D01w + D02u = 0.94x + 1.36u

z = C1x + D10w0 + D11w + D12u = −0.54x + 0.57u

y = C2x + D20w0 + D21w = −0.59x + 0.52w0 + w

Use MATLAB to solve nonlinear equations. The optimal mixedH2/H∞ controller is

σxK = (A+ B1H∞ + B2F2 +2 C2 + L2D21H∞) xK − L2y

= 0.9376xK + 0.1406y

u∗ = F2xK = 0.3457xK

The optimal H2 cost is J∗2 = 3.42.

Page 9: Discrete time mixed H2 / H control · Introduction Continuous time mixed H2/H∞ control problem: Zhou, Kemin, et al. ”Mixed H2 and H∞ performance objectives. I. Robust performance

Future work

◮ Compare the mixed H2/H∞ performance with pure H2 andH∞ controllers

◮ LMI, Nash game (MIMO)

◮ Minimize H∞ cost with constraint of H2 cost.