directional couplers 22

33
Directional Couplers MR. HIMANSHU DIWAKAR Assistant Professor JETGI MR. HIMANSHU DIWAKAR JETGI 1

Upload: himanshu-diwakar

Post on 15-Apr-2017

72 views

Category:

Engineering


8 download

TRANSCRIPT

Page 1: Directional couplers 22

JETGI 1

Directional Couplers

MR. HIMANSHU DIWAKARAssistant Professor

JETGI

MR. HIMANSHU DIWAKAR

Page 2: Directional couplers 22

JETGI 2

Directional coupler• A directional coupler is a four-port waveguide junction as shown in

Fig. It consists of a primary waveguide 1-2 and a secondary waveguide 3-4.

• When all ports are terminated in their characteristic impedances, there is free transmission of power, without reflection, between port 1 and port 2, and there is no transmission of power between port 1 and port 3 and vice versa.

MR. HIMANSHU DIWAKAR

Page 3: Directional couplers 22

JETGI 3

Cont’d• The characteristics of a directional coupler can be expressed in terms

of its coupling factor and its directivity.

MR. HIMANSHU DIWAKAR

Page 4: Directional couplers 22

JETGI 4

Cont’d

•Assuming that the wave is propagating from port l to port 2 in the primary line, the coupling factor and the directivity are defined, as

MR. HIMANSHU DIWAKAR

Page 5: Directional couplers 22

JETGI 5

Cont’d• It should be noted that port 2, port 3, and port 4 are terminated in their

characteristic impedances.

• The coupling factor is a measure of the ratio of power levels in the primary and secondary lines. Hence if the coupling factor is known, a fraction of power measured at port 4 may be used to determine the power input at port 1.

• The directivity is a measure of how well the forward traveling wave in the primary waveguide couples only to a specific port of the secondary waveguide.

MR. HIMANSHU DIWAKAR

Page 6: Directional couplers 22

JETGI 6

Several types of directional couplers exist1. A two-hole directional coupler

2. Four-hole directional coupler

3. Reverse-coupling directional coupler (Schwinger coupler)

4. Bethe-hole directional coupler

Only the very commonly used two-hole directional coupler is described here.

MR. HIMANSHU DIWAKAR

Page 7: Directional couplers 22

JETGI 7

Two hole and four hole directional coupler

Two-hole directional coupler Four-hole directional coupler.

MR. HIMANSHU DIWAKAR

Page 8: Directional couplers 22

JETGI 8

Schwinger and Bethe-hole directional coupler.

Schwinger coupler Bethe-hole directional coupler.

MR. HIMANSHU DIWAKAR

Page 9: Directional couplers 22

JETGI 9

Two-Hole Directional Couplers• A two-hole directional coupler with traveling waves propagating in it

is illustrated in Fig. The spacing between the centers of two holes must be L Where n is any positive integer.

MR. HIMANSHU DIWAKAR

Page 10: Directional couplers 22

JETGI 10MR. HIMANSHU DIWAKAR

Page 11: Directional couplers 22

JETGI 11

Cont’d• A fraction of the wave energy entered into port 1 passes through the holes

and is radiated into the secondary guide as the holes act as slot antennas.

• The forward waves in the secondary guide are in the same phase, regardless of the hole space, and are added at port 4.

• The backward waves in the secondary guide (waves are progressing from right to left) are out of phase by (2L/ A8)27T rad and are canceled at port 3.

MR. HIMANSHU DIWAKAR

Page 12: Directional couplers 22

JETGI 12

S Matrix of a Directional Coupler• In a directional coupler all four ports are completely matched. Thus

the diagonal elements of the S matrix are zeroesie

• As noted, there is no coupling between port 1 and port 3 and between port 2 and port 4. Thus

Consequently, the S matrix of a directional coupler becomesMR. HIMANSHU DIWAKAR

Page 13: Directional couplers 22

JETGI 13

Cont’d• The above matrix can be further reduced by means of the zero

property of the S matrix, so we have

• Also from the unity property of the S matrix, we can write

• From above equations

MR. HIMANSHU DIWAKAR

Page 14: Directional couplers 22

JETGI 14

Cont’d

LetWhere p is positive and real. Then from Eq.

Where q is positive and real.

MR. HIMANSHU DIWAKAR

Page 15: Directional couplers 22

JETGI 15

Cont’d

So

MR. HIMANSHU DIWAKAR

Page 16: Directional couplers 22

JETGI 16

Hybrid Couplers• Hybrid couplers are interdigitated microstrip couplers consisting of

four parallel strip lines with alternate lines tied together.

• A single ground plane, a single dielectric, and a single layer of metallization are used.

• This type of coupler, called a Lange hybrid coupler [3], has four ports, as shown in Fig.

MR. HIMANSHU DIWAKAR

Page 17: Directional couplers 22

JETGI 17

A signal wave incident in port 1 couples equal power into ports 2 and 4, but none into port 3.

There are two basic types of Lange couplers: 180° hybrids and 90°(quadrature) hybrids.

Also named as Lange hybrid coupler

MR. HIMANSHU DIWAKAR

Page 18: Directional couplers 22

JETGI 18

Cont’d•Hybrid couplers are frequently used as components in

microwave systems or subsystems such as attenuators, balanced amplifiers, balanced mixers, modulators, discriminators, and phase shifters.

• In modern microwave circuit design, Lange hybrid couplers are commonly used in balanced amplifier circuitry for high-power and broad-bandwidth applications.

MR. HIMANSHU DIWAKAR

Page 19: Directional couplers 22

JETGI 19

Microwave propagation in ferrites• Ferrites are non metallic materials with resistivity nearly times

greater then metals and with dielectric constant around 10-15 and relative permabilities of 1000 order.

• These are oxide based compounds having general composition of the form ie mixture of metallic ferrites and ferric oxides.

• Ferrites have atoms with large no. of spinning electrons resulting in strong magnetic properties. These magnetic properties are due magnetic dipole moment associated with the electron spin.

MR. HIMANSHU DIWAKAR

Page 20: Directional couplers 22

JETGI 20

Cont’d• These are the raw materials used for making the microwave

components.• Irreversible property:-• Whatever you have the property in forward direction it will not be in the

reverse direction.

• Now we are going towards different microwave components where we are using these ferrite materials.

MR. HIMANSHU DIWAKAR

Page 21: Directional couplers 22

JETGI 21

Cont’d

• Gyrator • Isolator• Circulator• We will discuss here only isolators and circulators.

MR. HIMANSHU DIWAKAR

Page 22: Directional couplers 22

JETGI 22

CIRCULATORS AND ISOLATORS

• Both microwave circulators and microwave isolators are nonreciprocal transmission devices that use the property of Faraday rotation in the ferrite material.

• To understand the operating principles of circulators and isolators, let us describe the behavior of ferrites in the nonreciprocal phase shifter.

MR. HIMANSHU DIWAKAR

Page 23: Directional couplers 22

JETGI 23

Microwave Circulators• A microwave circulator is a multiport waveguide junction in which the

wave can flow only from the nth port to the (n + 1)th port in one direction as in figure

Although there is no restriction on the number of ports, the four-port microwave circulator is the most common.

MR. HIMANSHU DIWAKAR

Page 24: Directional couplers 22

JETGI 24

Cont’d• One type of four-port microwave circulator is a combination of two 3-dB side-hole

directional couplers and a rectangular waveguide with two nonreciprocal phase shifters as shown in Fig.

MR. HIMANSHU DIWAKAR

Page 25: Directional couplers 22

JETGI 25

Cont’d• Each of the two 3-dB couplers in the circulator introduces a phase shift of 90°and

each of the two phase shifters produces a certain amount of phase change in a certain direction as indicated.

• Since the two waves reaching port 4 are out of phase by 180°, the power transmission from port 1 to port 4 is zero.

• In general, the differential propagation constants in the two directions

• where m and n are any integers, including zeros.MR. HIMANSHU DIWAKAR

Page 26: Directional couplers 22

JETGI 26

Cont’d•Many types of microwave circulators are in use today.

However, their principles of operation remain the same.

•A perfectly matched, lossless, and nonreciprocal four-port circulator has an S matrix of the form

MR. HIMANSHU DIWAKAR

Page 27: Directional couplers 22

JETGI 27

Cont’d

• Using the properties of S parameters as described previously, the S matrix in Eq.

MR. HIMANSHU DIWAKAR

Page 28: Directional couplers 22

JETGI 28

Microwave Isolators

• An isolator is a nonreciprocal transmission device that is used to isolate one component from reflections of other components in the transmission line.

• An ideal isolator completely absorbs the power for propagation in one direction and provides lossless transmission in the opposite direction.

• Thus the isolator is usually called uniline.

MR. HIMANSHU DIWAKAR

Page 29: Directional couplers 22

JETGI 29

Cont’d• Isolators are generally used to improve the frequency stability of

microwave generators, such as klystrons and magnetrons, in which the reflection from the load affects the generating frequency.

• In such cases, the isolator placed between the generator and load prevents the reflected power from the unmatched load from returning to the generator.

• As a result, the isolator maintains the frequency stability of the generator.

MR. HIMANSHU DIWAKAR

Page 30: Directional couplers 22

JETGI 30

Faraday-rotation isolator

MR. HIMANSHU DIWAKAR

Page 31: Directional couplers 22

JETGI 31

Cont’d• Isolators can be made by inserting a ferrite rod along the axis of a rectangular

waveguide as shown in above Figure.

• The input resistive card is in the y-z plane, and the output resistive card is displaced 45° with respect to the input card. The dc magnetic field, which is applied longitudinally to the ferrite rod, rotates the wave plane of polarization by 45°.

• The degrees of rotation depend on the length and diameter of the rod and on the applied dc magnetic field.

• An input TE10 dominant mode is incident to the left end of the isolator. Since the TE10 mode wave is perpendicular to the input resistive card, the wave passes through the ferrite rod without attenuation.

MR. HIMANSHU DIWAKAR

Page 32: Directional couplers 22

JETGI 32

Cont’d• The wave in the ferrite rod section is rotated clockwise by 45° and is normal to the output

resistive card. As a result of rotation, the wave arrives at the output end without attenuation at all.

• On the contrary, a reflected wave from the output end is similarly rotated clockwise 45° by the ferrite rod.

• However, since the reflected wave is parallel to the input resistive card, the wave is thereby absorbed by the input card.

• The typical performance of these isolators is about 1-dB insertion loss in forward transmission and about 20- to 30-dB isolation in reverse attenuation.

MR. HIMANSHU DIWAKAR

Page 33: Directional couplers 22

JETGI 33

Thank youMR. HIMANSHU DIWAKAR