direct photon interferometry

32
Direct photon interferometry D.Peressounko RRC “Kurchatov Institute”

Upload: geona

Post on 29-Jan-2016

82 views

Category:

Documents


0 download

DESCRIPTION

Direct photon interferometry. D.Peressounko RRC “Kurchatov Institute”. Outlook. Photons are special: Penetrating=> Specific R(K T ) dependence Massless => Unusual R inv and l inv interpretation Rare => Strong background Experimental review Completed experiments - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Direct photon interferometry

Direct photon interferometry

D.Peressounko

RRC “Kurchatov Institute”

Page 2: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 2

Outlook Photons are special:

Penetrating => Specific R(KT) dependence Massless => Unusual Rinv and inv interpretation Rare => Strong background

Experimental review Completed experiments

TAPS,WA98 Ongoing

PHENIX,STAR Developing

ALICE

Conclusions

Page 3: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 3

Accessing space-time dimensions of different stages of the collision

Pb+Pb @ 17.2 AGeV

Rout Rside Rlong

•3+1 hydro with first order phase transition.•QGP phase includes pre-equilibrium pQCD contribution

D.P. Phys.Rev.Lett.93:022301,2004

QGP

mixed

hadr

Page 4: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 4

KT dependence of photon correlation radii

RHIC Au+Au @ 200 AGeV

D.P. Phys.Rev.Lett.93:022301,2004

D.Srivastava, Phys.Rev.C71:034905,2005

T.Renk, hep-ph/0408218

Page 5: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 5

Predictions for correlation radii

System Rout(fm) Rside(fm) Rlong(fm) Rinv(fm)

4.4 4.2 0.2 D.Srivastava, Phys.Rev.C71:034905,2005

4.3 3.9 1.2 3.0 D.Peressounko, Phys.Rev.Lett.93:022301,2004

ee

KT=1 GeV6.0 3.2 3.3* 3.2 J.Alam et al., Phys.Rev.C70:054901,2004

5.5 3.0 1.6* 3.0 J.Alam et al., Phys.Rev.C67:054902,2003

5.1 4.3 2.8 - T.Renk, hep-ph/0408218

*Not LCMS system

RHIC, Au+Au@200 AGeV, KT=2GeV

Page 6: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 6

Qinv parameterization for massless particles

S(x) = exp( - t2/2 – x2/Ro2 - y2/Rs

2 - z2/Rl2),

C2(qo,qs,ql)=1 + exp( -qo2(Ro

2 +22) -qs2Rs

2 -ql2Rl

2)

C2(Qinv)=

∫d3q/qe C2(qo,qs,ql) (Qinv2+q2)

∫d3q/qe (Qinv2+q2)

= 1/(4)∫[1+ exp{-Qinv2(K0

2/M2cos2 (Ro2+22) + Rs

2 sin2sin2 + Rl2sin2cos2 ) }] d

= 1+invexp{-Qinv2Rinv

2)

Rinv = <Rs,Rl> (not Ro!) inv = 1/(4) ∫exp{ - 4KT2(Ro

2 + 2)cos2}d

For massless particles (,e) Qinv parameterization is very special!

(integrate in CM frame of the pair)

Page 7: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 7

Qinv parameterization for massless particles (MC)

Set 1: Ro = 6 Rs = 6 Rl = 6

Set 2: Ro = 4 Rs = 6 Rl = 6

Set 3: Ro = 2 Rs = 6 Rl = 6

Set 4: Ro = 6 Rs = 4 Rl = 6

Set 5: Ro = 6 Rs = 2 Rl = 6

Set 6: Ro = 6 Rs = 4 Rl = 4

Set 7: Ro = 4 Rs = 4 Rl = 4

Set 8: Ro = 2 Rs = 4 Rl = 4

Set 9: Ro = 6 Rs = 2 Rl = 2

inv = Erf(2KT√Ro2 + 2)/(2KT√Ro

2 + 2)

inv=1/(2KT√Ro2 + 2)

Page 8: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 8

Background photon correlations Bose-Einstein 0 correlations

Resonance decays

Collective flow

0

0

}

0

0

0

}

Page 9: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 9

0 BE residual correlations

D.P. Phys.Rev.Lett.93:022301,2004

R=4 fm

R=5 fm

R=6 fm

C2=1+exp(-Qinv

2R2)

Page 10: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 10

0 BE residual correlations

A.Deloff and T.Siemiarczuk,ALICE internal note INT-98-50

=1/2(k1-k2)

C2()=1+/(1+2R

2)2

dN/dp=p·epx(-p/[3GeV])

Page 11: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 11

0 BE residual correlations

O.V.Utyuzh, G.Wilk, Nukleonika 49:S15 (2004), hep-ph/0312364

Varying width (and strength) Varying strength

Page 12: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 12

TAPS: detector setup

BaF2 25 cm long (12 X0) prism of hexagonal cross section, the diameter of the inner circle being 5.9 cm (69% of the Moliere radius).

Min angle cut between photons 8.30

Distance to IP 62 cm

Typical photon energy ~10 MeV

Page 13: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 13

TAPS: m distribution and C2

Geantsimulations

86Kr+natNi @ 60 AMeV 181Ta+197Au @ 40 AMeV

Comparison to BUU calculations

Page 14: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 14

Number of events collected: Peripheral (20% min bias) 3897935Central (10% min bias) 5817217

WA98 setup

Page 15: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 15

Two photon correlation functions

Page 16: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 16

WA98: apparatus effectsLmin = 20 cm (5 modules)

Lmin = 25 cm (6 modules)

Lmin = 30 cm (7 modules)

Lmin = 35 cm (9 modules)

200 < KT < 300 MeV

100 < KT < 200 MeV

100 < KT < 200 MeV

200 < KT < 300 MeV

Page 17: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 17

Hadrons and photon conversion

“Narrow” (16 + 1)% (4 + 1)%

“Neutral” ( 1 + 4)% (1 + 4)%

“All” (37 + 4)% (22 + 4)%

“Narrow neutral” (1 + 1)% (1 + 1)%

obs = =1 (N

dir)2

2 (Ntot + cont)2

Contamination, (charged + neutral)

100<KT<200 200<KT<300pid

true

(1+ cont/ Ntot)2

Page 18: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 18

Photon background correlations

00 Bose-Einstein correlations:

Slope: -(4.5±0.4)·10-3 (GeV-1)

Elliptic flow:

Slope: -(3.1±0.4)·10-3 (GeV-1)

Decays of resonances:

K0s→20→4

K0L→30→6

→30→6→0→3

Page 19: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 19

C2(Qinv) =1 + /(4) ∫ do exp{ - Qinv2 (Rs

2 sin2 sin2 + Rl2 sin2 cos2 )

- (Qinv2 + 4KT

2)cos2 Ro2 } R

Rlong

Rside

Rinv = f(Rs,Rl)

inv = Erf(2KTRo)

2KTRo

(for massless particles!)

Invariant correlation radius

Page 20: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 20

Subtraction method,upper limit

Yield of direct photons

Correlation method:

Subtraction method

Predictions

hadronic gasQGP

sumpQCD

Predictions:S. Turbide, R. Rapp, and C. Gale, hep-ph/0308085.

Ndir = N

total √2

inv = Erf(2KTRo)

2KTRo

Most probable yield (Ro=6 fm)The lowest yield (Ro=0)

Page 21: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 21

PHENIX setup

Lead ScintillatorLead + scintillatingplates of 5.5*5.5 cm2 at a distance 510 cm from IP.

Lead GlassPbGl crystals4*4 cm2 cross sectiondistance 550 cm from IP

Page 22: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 22

PHENIX: Comparison to data

d+Au collisions at √sNN=200 GeV

Page 23: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 23

STAR

Use 1 gamma in TPC, 1 gamma in calorimeter.

A procedure has been developed which permits the measurement of gamma-gamma HBT signals despite the large background of gammas from π0 mesons

Gamma energy > 1.0 GeV is required for the residual π0 correlation to be “small”

“No HBT” calculation may be needed but appears to be doable.

Conclusions from the talk of J. Sandweiss on “RHIC-AGS users meeting”, June 21, 2005, BNL:

Page 24: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 24

ALICE setup

PHOS:crystals PbW04

2*2 cm cross section Distance to IP 460 cm

Page 25: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 25

ALICE: unfolding and resolution

Page 26: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 26

ALICE: photon correlations in HIJING event

Kt=200 MeV

Page 27: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 27

Summary Direct photon and electron interferometry is

rather special subject due to penetrating nature, zero mass and low yield.

Two-photon correlations were observed in two experiments up to now.

Photon correlations are analyzed now at PHENIX and STAR.

PHOS detector at ALICE is very promising tool due to fine granularity and high spatial and energy resolutions.

Page 28: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 28

PHENIX: MC simulations

Kt = 0.2 GeV

Using measured spectra and yields for 0, kaons and

K+→

K0S→

K0L→30

→30

c=4.7 m

c=15. m

c=0.02 m

Page 29: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 29

Jan-e Alam et al., ee correlations

J.Alam et al., Phys.Rev.C70:054901,2004

KT=1 GeV

Not LCMS

Page 30: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 30

T.RenkSide

Long

side

out

T.Renk, hep-ph/0408218

Page 31: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 31

Penetrating probes: probe all stages?

RHIC Au+Au @ 200 AGeV

D.P. Phys.Rev.Lett.93:022301,2004

Page 32: Direct photon interferometry

D.Peressounko, WPCF, Kromeriz, 2005 32

Possible sources of distortion of correlation function

Apparatus effects (cluster splitting and merging) Hadron misidentification Photon conversion Photon background correlations:

Bose-Einstein correlations of parent 0; Collective (elliptic) flow; Residual correlations due to decays of resonances;