diffusion-reaction. acid base reactions rcooh rcoo - + h + k1k1 k -1

28
Diffusion-Reaction

Post on 22-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Diffusion-Reaction

Acid Base Reactions

RCOOH RCOO- + H+

k1

k-1

1 1/ [ ) [ ][ ]dC dt k RCOOH k RCOO H

Naproxen

H3CO

COOH

CH3

Naproxen

Log P: 2.97CLogP: 2.816

Naproxen Physical Properties

• Solubility of free acid [HA]o=1.37x10-4M

• Mw=230.36

• [HA]o = 315.6 gm/L. =0.315 mg/ml

• pKa= 4.57

• How long does it take a small particle ~ 0.1mm in radius to dissolve (in acid)?

Dissolution time (Large Particle)

hr

DChrt sodiss

3.6

sec22857

)315)(.000005/(.)003.0)(01.0)(1200(

)/(

What does ionization of the acid do?

Let’s start with a film model

Cs

h

C=0

SS

At the interface the ionization increases the solubility and we have HA, A- and H+ diffusing species.

Cs

h

C=0

HA

A-

H+

Non Steady State Membrane Transport

2 2 2 2 2 2

2 2

/ [ / / / ]

( / / / ) [ ]

Non Steady, stagnant

C/ t=D / [ ]

x y zC t v C x v C y v C z

D C x C y C z r

C x r

Assumptions

• Stagnant fluid vi=0

• Steady State dC/dt = 0

• One dimensional

Transport Equation: One for each species

HH

AA

HAHA

rdxHdD

rdxAdD

rdxHAdD

22

22

22

/0

/0

/0

Acid Base Reaction Terms

RCOOH RCOO- + H+

k1

k-1

1 1

1 1

1 1

[ ) [ ][ ]

[ ) [ ][ ]

[ ) [ ][ ]

HA

A

H

HA A H

r k RCOOH k RCOO H

r k RCOOH k RCOO H

r k RCOOH k RCOO H

r r r

Add Equations

HH

AA

HAHA

rdxHdD

rdxAdD

rdxHAdD

22

22

22

/0

/0

/0HAtot

Htot

Total HA + A-

A

tot

tot

AHA

AAHAHA

D

AHAHA

dxHADd

dxAdDdxHAdD

rdxAdDrdxHAdD

HA

22

2222

2222

D Assume

][

0/][

]//[

]/[/

Total H=H+ + HA

H

tot

tot

HHA

HHHHA

D

HHAH

dxHDd

dxHdDdxHAdD

rdxHdDrdxHAdD

HA

22

2222

2222

D Assume

][

/][

]//[

]/[/

Resulting Equations

dcxH

baxHA

HAAHK

dxHDd

dxHADd

tot

tot

A

tot

tot

][

][

Solution

]/[][

0/][

0/][22

22

Now add Boundary Conditions

Solid

Bulk:

HA=0

A - = 0

H +=H + bulk

Interface BC’s

HA=HA0= solubility

KA = H+ A -/HA

dH+ /dx=dA - /dx=0 (can not penetrate boundary)

0 hx

Solve these equations: Key assumptions

• Equilibrium rate constants are fast relative to diffusion

• Equal diffusivities

• Equal film thickness

Resulting Equations

dcxH

baxHA

tot

tot

][

][

Condition mEquilibriu and sBC' with Solve

Conclusion

• Ionization at the interface accelerated dissolution…due to added species (A-)

• The effect can be orders of magnitude.pH=pKa +2 ~ 102 increase in rate

Reversible Reaction:

A B

k1

k-1

Lovastatin: Lactone-Free Acid

H3C

CH3

O

O

HO

H

CH3

H H

H3C

O

O

H3C

CH3

O

OH

HO

H

CH3

H H

H3C

O

O

OH

H2O

(A)

(E)

K=[E]/[A}

Reversible Reaction: (Not include ionization at this time)

Aqueous phase

k1,a

,k-1,a

Ka

Membrane Phase;k1,m,k-1,mKm

Equilibrium constant differs in two phases: Ka>Km

Partition Coefficients

PCA

PCE

Transport Equations: In each Phase

AEK

axaEDAD

dxEdDdxAdD

rr

EA

EA

EA

/

][][

0//

ma, Phase;Each In

21

2222

Transport Equations: In each Phase

AEK

axaEDAD

dxEdDdxAdD

rr

EA

EA

EA

/

][][

0//

ma, Phase;Each In

21

2222

Transport Equations: In each Phase

AEK

axaEDAD

dxEdDdxAdD

rr

EA

EA

EA

/

][][

0//

ma, Phase;Each In

21

2222

Let’s do one Phase (Olander reference)

1

A

film E)in the(A

componentA totalofflux J SS),(at Film intoA ofFlux

,

,0

:'

adE/dxDdA/dx-DJ

AAxx

AAx

sBC

EA

LL

l

Material A diffuses into film m’ and can react to form E in film

Solution (Olander)

membrane theintoflux the

increases membrane in theReaction

t.CoeffieienTransfer Mass

})/(1{

)]()/(1)[/(0

A

AEAA

LlAELA

k

KDDkk

AAKDDxDJ