Die orientierung der kristallinen und der nichtkristallinen bereiche in verstreckten polyethylenterephthalat-folien

Download Die orientierung der kristallinen und der nichtkristallinen bereiche in verstreckten polyethylenterephthalat-folien

Post on 15-Jun-2016

213 views

Category:

Documents

0 download

TRANSCRIPT

<ul><li><p>Makromol. Chem. 179, 2051-2067 (1978) </p><p>Die Orientierung der kristallinen und der nichtkristallinen Bereiche in verstreckten Polyethylenterephthalat-Folien </p><p>Harald J . Biangardi </p><p>Institut fur Physikalische Chemie der Universitat Mainz, D 6500 Mainz, Jakob-Welder-Weg 15 und Sonderforschungsbereich 41, Chemie und Physik der Makromolekule, Sektion Mainz </p><p>(Eingangsdatum: 24. November 1977) </p><p>SUMMARY: Films of poly(ethy1ene terephthalate) were stretched at 100C with different stretching rates. By </p><p>this, oriented films with birefringences between 3 . were produced. After a crystallization with fixed ends at 150"C, 200C and 240"C, the orientation function of the crystalline regions, the density, and the birefringence were measured. From this data, the orientation function of the noncrystalline regions was computed. The results obtained show, that only a qualitative but not a quantitative computa- tion of the orientation function is possible. With increasing birefringence of the material before crystalliza- tion, the orientation of the crystalline and the noncrystalline regions increases. Up to birefringences of Ano=40. lob3 in both regions a strong increase of the orientation function is observed. At higher birefringences Ano, the increase diminishes and depends strongly on the crystallization temperature. The orientation of the crystals after crystallization is better than the initial average orientation of the sample before crystallization. Further the orientation function of former reported structure models for the crystalline regions were computed in dependence of the structure parameters. Comparing the computed and experimental results one finds, that the change from structures consisting of twisted lamellae into such of bended lamellae occurs at a birefringence Ano=20.10-3. </p><p>and 100. </p><p>1. Einleitung </p><p>Die Morphologie von teilkristallinem Polyethylenterephthalat hangt im wesentlichen vom Orientierungszustand des Materials vor der Kristallisation ab. In einer Reihe von Arbeiten wurde die morphologische Struktur des isotropen' - 3 ) und des hochorientierten4- lo) Materials bestimmt. AuDerdem konnte gezeigt werden, daB man mit wachsender Orientierung des amor- phen Ausgangsmaterials nach einer Temperung einen stetigen Ubergang von der Struktur des isotropen zur Struktur des hochorientierten Materials findet"). Wahrend aber bei diesem Ubergang fur die kristallinen Bereiche konkrete Modellvorstellungen" - 1 3 ) entwickelt werden konnten, war dies fur die nichtkristallinen Bereiche nicht moglich. </p><p>In der vorliegenden Arbeit werden nun durch Kombination von Messungen der Rontgen- streuung und der Doppelbrechung die Orientierung der Kristallite und die der nichtkristallinen Bereiche getrennt bestimmt. Es wird untersucht wie sich diese Orientierungen im einzelnen mit wachsender Doppelbrechung des Materials vor der Kristallisation und mit wachsender Kristallisationstemperatur andern. Des weiteren wurden die Orientierungsfunktionen fur ver- schiedene Modelle (tordierte Lamellen, nichttordierte Lamellen) berechnet und die Ergebnisse mit den experimentellen Resultaten verglichen. Dadurch wurden weitere Einsichten in die Konformationen der Ketten in den nichtkristallinen Bereichen, sowie in den Mechanismus der Kristallisation unter Spannung gewonnen. SchlieDlich konnte genau jene Ausgangsorientie- </p></li><li><p>2052 H. J. Biangardi </p><p>rung bestimmt werden, bei der der ubergang von Strukturen aus vollstandig tordierten Lamellen zu ,,gewellten" Lamellen stattfindet. </p><p>Die hier untersuchten Orientierungsfunktionen sind von wesentlicher Bedeutung fur die Erklarung der mechanischen Eigenschaften, wie insbesondere von S a m u e l ~ ' ~ ) gezeigt wurde. </p><p>2. Experimentelle Ve'erfahren und Auswertemethoden </p><p>200 pm dicke und 5 cm breite Streifen einer amorphen Polyethylenterephthalat-Folie der Fa. Kalle AG wurden bei T, = 100C mit unterschiedlichen Geschwindigkeiten verstreckt und anschlieBend auf Raumtemperatur abgeschreckt. Nach der Messung der Doppelbrechung wurden die Proben mit festgehal- tenen Enden 5 h bei Temperaturen von 150C, 200C und 240C kristallisiert. Danach wurde die Dichte, die Doppelbrechung und die Rontgenstreuung gemessen. </p><p>Die Verstreckung der Proben erfolgte an einer Instron Materialpriifmaschine Typ 11 13 rnit zugehoriger Temperaturkammer. </p><p>Die Dichte wurde nach der Schwebemethode rnit einem Dichtegradienten aus CC14 und Hexan ermittelt. </p><p>Die Messung der Doppelbrechung erfolgte am Polarisationsmikroskop rnit Hilfe eines Kippkompensa- tors der Fa. Leitz. </p><p>Die Weitwinkelrontgenstreubilder wurden rnit einer Siemens-Flachkammer aufgenommen. Die zur Bestimmung der Orientierungsfunktion notwendige azimutale Intensitatsverteilung der Reflexe wurde an einem Siemens Diffraktometer Typ F rnit einem Praparatetrager fur Durchstrahlungsaufnahmen gemessen. </p><p>Die Orientierungsfunktion f ist allgemein durch die Gleichung </p><p>f=$(3(COS28)- 1) (1) </p><p>gegeben15), worin 8 der Winkel zwischen der Vorzugsrichtung und irgendeines fur die Struktur charakteri- stischen Vektors (z. B. der Kettenrichtung) ist. </p><p>Zur Beschreibung der Orientierung der kristallinen Bereiche werden die Orientierungsfunktion fc der Hauptachsenrichtung a und die Orientierungsfunktion f der Hauptachsenrichtung y der Indikatrix benotigt. Beim Polyethylenterephthalat liegt a parallel zur ( I 00)-Netzebenennnormalen und y parallel zur Kettenrichtung2'. </p><p>Um die Orientierungsfunktionenf, undf, der kristallinen Bereiche zu bestimmen, wurden die azimutalen Intensitatsverteilungen I(0) der loo-, -1 10- und 010-Reflexe gemessen. </p><p>In Abb. 1 ist die MeBanordnung zur Bestimmung der azimutalen Intensitatsverteilung I(@) fur Proben rnit axialer Symmetrie gezeigt. Sowohl der Primarstrahl So als auch der abgebeugte Strahl 5 bilden </p><p>I Dekkbr Abb. 1. MeBanordnung zur Ermittlung </p><p>der azimutalen Intensitatsverteilung eines Rontgenreflexes. So Richtung des einfallen- den Rontgenstrahles, s'RichtFng des abge- beugten Rontgenstrahles, d Drehachse, um die die Probe rotiert wird, Qhkl Bragg- winkel des betreffenden Reflexes. Die Ver- streckrichtung der Pfobe steht senkrecht auf die Drehachse d. 0 ist der Winkel zwischen der Verstreckrichtung V und der Ebene, die von den Vektoren So, s' und 2 aufgespannt wird </p><p>Ro- Rohre d </p></li><li><p>Orientierung der kristallinen und nichtkristallinen Bereiche in PET-Folien 2053 </p><p>rnit der Drehachse d' des Praparatehalters jeweils den halben Braggwinkel 9hkl des zu untersuchenden Reflexes. Die Pr?be wird so auf den Praparatehalter aufgebracht, daD die Verstreckrichtung V (Faserachse) senkrecht auf d steht. Der Winkel, den die Verstreckrich:ung V mit der Geraden 6, die in der von go und s' aufgespannten Ebece liegt und senkrecht auf d steht, bildet, ist 8. Wahrend der Messung wird die Probe langsam um d gedreht, sodaD man die Intensitatsverteilung I&amp;,(@ registriert. 1~,1(8) muB anschlieDend beziiglich des Untergrundes (Luftstreuung, amorpher Halo, usw.) korrigiert werden. </p><p>19, ,(e) = I sk - Im (2) Die Korrektur erfolgt so, daO f i r vier verschiedene Winkel 0=0", 30", 60, 90" die radiale Streukurve Is(9) gemessen wurde. AnschlieDend wurde der an einer vollig amorphen Probe gemessene Halo an diese Streukurve Is(9) angepaOt und seine Hohe an der Stelle des zu untersuchenden Reflexes bestimmt. Damit erhalt man vier Punkte von I. bei einem bestimmten SUl und daraus durch lineare Interpolation I"(8). </p><p>wird dann problematisch, wenn, wie im Falle der a-Orientierung, zwei Reflexe in 9-Richtung iiberlappen (010 und 0-11). In diesem Fall wurde auf eine direkte Messung von Iihk,(8) verzichtet und statt dessen im Abstand von A8=10" I@) gemessen, der Untergrund nach dem beschriebenen Verfahren abgezogen und an die verbleibende Kurve an der Stelle der beiden Reflexlagen zwei GauDkurven angepal3t. Die Amplituden der GauDkurven ergaben dann nach einer linearen Interpolation die Intensitatsverteilung Ishk,(8). </p><p>Die Messung von </p><p>Aus der Intensitatsverteilung erhalt man (cos20) iiber die Beziehung </p><p>TI </p><p>j I ( 8 ) cos% sin8 d0 </p><p>Daraus ergibt sich iiber GI. (1) die Orientierungsfunktion f. Wahrend man fz direkt aus Iloo(0) erhalt (a ist parallel zur Netzebenennormalen nloo), ist das </p><p>fur f , nicht moglich. Hier wurde auf die von Wilchinsky") vorgeschlagene Methode zuriickgegriffen und aus Iloo(0), Iolo(8) und I- llo(8) die Orientierungsfunktion f, berechnet. Mit den Gitterdaten fur Polyethylenterephthalat von Fakirov, Fischer und Schmidt") erhalt man dann </p><p>( c o s 2 ~ ) = 1-0,3465 ~ ~ ~ ~ ~ e l o o ~ - o , ~ ~ ~ ~ ~ c o s ~ ~ ~ l o ~ -0,7735 (cos2e-llo) (4) </p><p>Mit Hilfe der Orientierungsfunktionen la&amp; sich nun nach Stein") die Doppelbrechung An, der kristallinen Bereiche berechnen. Es gilt </p><p>Die Hauptbrechungsindizes a, /? und 7 erhalt man iiber die Beziehung von Clausius-Mosotti und rnit den von Ward et al.19*201 angegebenen Werten fur die Polarisierbarkeiten von Polyethylenterephthalat. </p><p>Die Orientierung der Ketten in den nichtkristallinen Bereichen la5t sich durch Kombination der eben beschriebenen rontgenografischen Untersuchungen mit Messungen der Doppelbrechung und der Dichte bestimmen. </p><p>Auf Grund der Additivitat der Polarisierbarkeiten kann man bei nicht zu grol3en Unterschieden in den Hauptbrechungsindices auch eine Additivitat der Doppelbrechungen verschiedener Phasen anneh- men2". Es gilt </p><p>Ank =An:,, , fa . (1 - x,)+ Anc. x, + Anl (6) worin x, der Kristallisationsgrad,f, die Orientierungsfunktion der Ketten in den nichtkristallinen Berei- chen, Atf,,,, die Doppelbrechung einer vollkommen orientierten amorphen Probe, Anc die iiber GI. (5) bestimmte Doppelbrechung der kristallinen Bereiche, Ank die gemessene Doppelbrechung der teilkri- </p></li><li><p>2054 H. J. Biangardi '- </p><p>stallinen Probe und An( der Anteil der Formdoppelbrechung ist. Da Anf gegeniiber Ank im allgemeinen vernachlassigbar istZ2', erhalt man fur fa: </p><p>Umfa nach GI. (7) zu bestimmen, wurden nach der Kristallisation die Doppelbrechung Ank gemessen und der Kristallisationsgrad x, iiber die Dichte bestimmt. </p><p>Da in Folien mit hohen Orientierungen nach der Kristallisation statt einer axialen eine planar-axiale Orientierung auftritt, die mit der einfachen Orientierungsfunktion aus GI. (1) nicht mehr charakterisiert werden kann, wurden nur Folien mit Doppelbrechungen Ano &lt; 100. in die Messungen mit einbezogen. </p><p>3. Experimentelle Ergebnisse </p><p>3.1. Die Orientierung der Ke t t en in den kristallinen Bereichen </p><p>In den Abbn. 2 und 3 sind die OrientierungsgroDen f c und f , als Funktion der Anfangsdoppelbre- chung Ano, die die Proben unmittelbar nach dem Verstrecken hatten, aufgetragen. Man sieht in Abb. 2, daB f a mit zunehmender Anfangsdoppelbrechung Ano abnimmt und sich bei hohen </p><p>Tk =24OoC --- </p><p>0 50 100 ' # I " ' </p><p>Abb. 2 Abb. 3 </p><p>Abb. 2. Gemessene Orientierungsfunktion f, fur verstreckte und kristallisierte Polyethylenterephthalat- Folien, aufgetragen in Abhangigkeit von der Doppelbrechung vor der Kristallisation, Ano. Parameter ist die Kristallisationstemperatur Tk Abb. 3. Gemessene Orientierungsfunktion f, fur verstreckte und kristallisierte Polyethylenterephthalat- Folien, aufgetragen in Abhangigkeit von der Doppelbrechung vor der Kristallisation, Ano. Parameter ist die Kristallisationstemperatur T k . (-.-.-): Verlauf der Orientierungsfunktion der Probe vor der Kristallisation </p></li><li><p>Orientierung der kristallinen und nichtkristallinen Bereiche in PET-Folien 2055 </p><p>Orientierungen dem Wert - 0,5 nahert. Das heiBt, daB sich die (100)-Netzebenennormalen zunehmend senkrecht zur Verstreckrichtung einstellen. In gleicher Weise sieht man aus Abb. 3, daD sich die c-Achsen (Kettenrichtung) der Kristallite zunehmend parallel zur Verstreckrich- tung anordnen. Bis zu Doppelbrechungen von Ano=40. nimmt die Orientierung stark zu, wahrend bei noch hoheren Doppelbrechungen ein deutlich langsamerer Zuwachs zu verzeich- nen ist. Die Orientierung der Kristallite wird auBerdem auch von der Kristallisationstemperatur beeinfluBt. Bei hohen Doppelbrechungen Ano wird die Orientierung der Kristallite rnit wachsen- der Kristallisationstemperatur besser, bei niedrigen Doppelbrechungen Ano ist dagegen der umgekehrte Trend zu beobachten. Die Zunahme der Orientierung rnit der Doppelbrechung Ano ist auBerdem stark abhangig von der Kristallisationstemperatur. Bei sehr hoher Kristallisa- tionstemperatur findet bereits ab Doppelbrechungen von Ano = 70. keine starkere Orientie- rungszunahme mehr statt, was bei tieferen Kristallisationstemperaturen in diesem Doppelbre- chungsbereich noch nicht zu beobachten ist. </p><p>3.2. Orientierung der Ketten in den nichtkristallinen Bereichen </p><p>Um die Orientierungsfunktion fa der Ketten in den nichtkristallinen Bereichen zu bestimmen, wurden die Dichte @k und die Doppelbrechung Ank der Proben nach der Kristallisation gemessen. In Abb. 4 ist die Dichte @k nach einer Kristallisation bei Tk in Abhangigkeit von der Doppelbre- chung Ano dargestellt. Man erhalt rnit zunehmender Anfangsdoppelbrechung Ano und zunehmen- der Kristallisationstemperatur Tk hohere Dichtewerte. Eine Ausnahme bildet dabei das bei Tk=240C und Ano=30. zu beobachtende Minimum der Dichte, das auch bei Proben, die bereits in der Schmelze orientiert wurden, und die vor einer Kristallisation keinerlei Kristallini- tat besitzen, beobachtet ~ i r d ~ ~ ) . </p><p>In Abb. 5 ist die Doppelbrechung Ank der Proben nach einer Kristallisation bei der Kristallisa- tionstemperatur Tk als Funktion der Doppelbrechung Ano aufgetragen. Man sieht, daB Ank bei sehr kleinen Doppelbrechungswerten negativ wird (a-Orientierung), und daB bei groBen Ano die Doppelbrechung Ank nach der Kristallisation bei Tk = 200C ihren maximalen absoluten Wert erreicht. </p><p>Die Bestimmung von fa iiber G1. (7) und den obigen Meoergebnissen fur @k und Ank enthalt verschiedene Schwierigkeiten. Sowohl der Kristallisationsgrad x, als auch die GroBen An, und An&amp; sind rnit groBen Unsicherheiten behaftet. Der Kristallisationsgrad x, hangt wesentlich von der Bestimmungsart ab: Im vorliegenden Fall wird der iiber die Annahme eines 2-Phasen-Mo- dells rnit der Dichte der amorphen und der Dichte ec der kristallinen Phase aus der Dichte @k berechnet. Die Doppelbrechungen An&amp;x und An&amp;x werden iiber die Polarisierbarkeiten aus der Beziehung von Clausius-Mosotti berechnet, wobei das Problem der Anwendbarkeit dieser Beziehung auf Polymere auftritt. Wendet man entsprechende Uberlegungen von Steinz4 an, so zeigt sich, daB der Fehler, der durch die Annahme der Giiltigkeit der klassischen Formel von Clausius-Mosotti entsteht, wesentlich geringer ist, als der Fehler, der durch die Unsicherheit in der Kenntnis der Polarisierbarkeiten des Polyethylenterephthalates gegeben ist. Man kann also rnit G1. (7) sicher keine quantitative, wohl aber, wie sich zeigt, eine qualitative Aussage iiber die Orientierung der Ketten in den nichtkristallinen Bereichen machen. </p><p>Um dies zu tun, wurde fa unter Zugrundelegung von zwei verschiedenen Satzen fur die Werte der Dichten und Polarisierbarkeiten berechnet, wobei die Satze so gewahlt worden sind, daD man die Grenzen erhalt, inner...</p></li></ul>

Recommended

View more >