dhananjay regmi: causes and human impacts of the seti river (nepal) disaster of 2012

11
0 Causes and Human Impacts of the Seti River (Nepal) Disaster of 2012 Jeffrey S. Kargel, Lalu Paudel, Gregory Leonard, Dhananjay Regmi, Sharad Joshi, Khagendra Poudel, Bhabana Thapa, Teiji Watanabe, and Monique Fort ABSTRACT: On May 5, 2012, a hyperconcentrated slurry flood in the Seti River suddenly burst forth onto a small village and rural areas in the valley upstream from Pokhara, the second largest city of Nepal. The flood swept away unsuspecting tourists, picnickers, laborers and local residents of Kharapani village. It killed 32 people and left another 40 missing, and it displaced many more. The flood killed livestock, wiped out local livelihoods, destroyed temples, roads, community buildings and vital infrastructure such as suspension bridges, electric poles and drinking water transmission pipes. The disaster, at first seemingly without cause, also took a psychological toll on the survivors in the affected villages and in Pokhara, whose residents wonder if the events could recur and if they could be the next victims. Satellite remote sensing and field investigations support the following scenario. A hazardous condition started by a rockfall blockage, a few weeks prior to the disaster, of the Seti River gorge and then filling of the impoundment reservoir by early spring melting of the snowfields and glaciers. A rock and ice avalanche from Annapurna IV (~7500 m) dislodged the previous rockfall dam when the rockice avalanche mixture swept into the reservoir. A hyperconcentrated slurry flow then swept down the Seti River. Eyewitness reports leading to and during the disaster and during recovery operations support this sequence. The geologic causes of the disaster pertain to the unique physiographic attributes of the upper Seti Basin as well as the general tectonic environment and lithologic makeup and glacial history of the Himalaya, which together have produced a highly unstable environment of frequent bedrock failures, deep river incision and river damming, deposition of vast amounts of unconsolidated glacigenic sediment, and frequent mass movements and floods involving the sediment, bedrock, ice, and impounded water. We also gathered information about the human root causes of the high death toll and to gather demographic and physiographic data that help to constrain scenarios of potential future disasters of similar types in this area. The toll increased as a result of people inhabiting unsafe places against existing landuse/habitation zoning restrictions. Nature and the law, if both had been respected by Seti Valley residents, would not have caused a disaster of this magnitude. However, an even greater disaster could happen any year, as we have identified several possible modes of catastrophic discharge of water and sediment into the Seti River. 1. Introduction On May 5, 2012, just after 9 AM local time, a tourist flight operator—Captain Alexander Maximov—was flying an ultralight Aeroprakt aircraft over the Seti River valley just north of his Avia Club operating base in Pokhara, Nepal. He observed a huge yellow cloud spreading across the upper part of the basin (the Sabche Cirque); according to our interviews of him, the cloud was Glacial Flooding & Disaster Risk Management Knowledge Exchange and Field Training July 11-24, 2013 in Huaraz, Peru HighMountains.org/workshop/peru-2013

Upload: harlin-media

Post on 15-Mar-2016

237 views

Category:

Documents


2 download

DESCRIPTION

On May 5, 2012, a hyperconcentrated slurry flood in the Seti River suddenly burst forth onto a small village and rural areas in the valley upstream from Pokhara, the second largest city of Nepal. The flood swept away unsuspecting tourists, picnickers, laborers and local residents of Kharapani village. It killed 32 people and left another 40 missing, and it displaced many more. The flood killed livestock, wiped out local livelihoods, destroyed temples, roads, community buildings and vital infrastructure such as suspension bridges, electric poles and drinking water transmission pipes. The disaster, at first seemingly without cause, also took a psychological toll on the survivors in the affected villages and in Pokhara, whose residents wonder if the events could recur and if they could be the next victims. Satellite remote sensing and field investigations support the following scenario....

TRANSCRIPT

Page 1: Dhananjay Regmi: Causes and human impacts of the Seti River (Nepal) disaster of 2012

0  

Causes  and  Human  Impacts  of  the  Seti  River  (Nepal)  Disaster  of  2012  

Jeffrey  S.  Kargel,  Lalu  Paudel,  Gregory  Leonard,  Dhananjay  Regmi,  Sharad  Joshi,  Khagendra  Poudel,  Bhabana  Thapa,  Teiji  Watanabe,  and  Monique  Fort  

ABSTRACT:  On  May  5,  2012,  a  hyperconcentrated  slurry   flood   in   the  Seti  River  suddenly  burst   forth  onto  a  small   village   and   rural   areas   in   the   valley   upstream   from   Pokhara,   the   second   largest   city   of  Nepal.   The   flood   swept   away   unsuspecting   tourists,   picnickers,   laborers   and   local   residents   of  Kharapani  village.   It   killed  32  people  and   left   another  40  missing,   and   it  displaced  many  more.  The   flood   killed   livestock,   wiped   out   local   livelihoods,   destroyed   temples,   roads,   community  buildings  and  vital   infrastructure  such  as  suspension  bridges,  electric  poles  and  drinking  water  transmission  pipes.  The  disaster,  at   first  seemingly  without  cause,  also  took  a  psychological   toll  on   the   survivors   in   the   affected   villages   and   in  Pokhara,  whose   residents  wonder   if   the   events  could  recur  and  if  they  could  be  the  next  victims.  Satellite  remote  sensing  and  field  investigations  support  the  following  scenario.    A  hazardous  condition  started  by  a  rockfall  blockage,  a  few  weeks  prior   to   the   disaster,   of   the   Seti   River   gorge   and   then   filling   of   the   impoundment   reservoir   by  early  spring  melting  of  the  snowfields  and  glaciers.    A  rock  and  ice  avalanche  from  Annapurna  IV  (~7500  m)  dislodged  the  previous  rockfall  dam  when  the  rock-­‐ice  avalanche  mixture  swept  into  the   reservoir.   A   hyperconcentrated   slurry   flow   then   swept   down   the   Seti   River.     Eyewitness  reports  leading  to  and  during  the  disaster  and  during  recovery  operations  support  this  sequence.  The  geologic   causes  of   the  disaster  pertain   to   the  unique  physiographic  attributes  of   the  upper  Seti  Basin  as  well  as  the  general  tectonic  environment  and  lithologic  makeup  and  glacial  history  of  the  Himalaya,  which  together  have  produced  a  highly  unstable  environment  of  frequent  bedrock  failures,   deep   river   incision   and   river   damming,   deposition   of   vast   amounts   of   unconsolidated  glacigenic  sediment,  and  frequent  mass  movements  and  floods  involving  the  sediment,  bedrock,  ice,  and  impounded  water.  We  also  gathered  information  about  the  human  root  causes  of  the  high  death  toll  and  to  gather  demographic  and  physiographic  data  that  help  to  constrain  scenarios  of  potential   future  disasters  of   similar   types   in   this   area.    The   toll   increased  as   a   result   of  people  inhabiting  unsafe  places  against  existing  land-­‐use/habitation  zoning  restrictions.  Nature  and  the  law,  if  both  had  been  respected  by  Seti  Valley  residents,  would  not  have  caused  a  disaster  of  this  magnitude.   However,   an   even   greater   disaster   could   happen   any   year,   as   we   have   identified  several  possible  modes  of  catastrophic  discharge  of  water  and  sediment  into  the  Seti  River.      

1. IntroductionOn   May   5,   2012,   just   after   9   AM   local   time,   a   tourist   flight   operator—Captain   Alexander  Maximov—was  flying  an  ultralight  Aeroprakt  aircraft  over  the  Seti  River  valley  just  north  of  his  Avia  Club  operating  base  in  Pokhara,  Nepal.    He  observed  a  huge  yellow  cloud  spreading  across  the  upper  part  of  the  basin  (the  Sabche  Cirque);  according  to  our  interviews  of  him,  the  cloud  was  

Glacial Flooding & Disaster Risk ManagementKnowledge Exchange and Field Training

July 11-24, 2013 in Huaraz, PeruHighMountains.org/workshop/peru-2013

Page 2: Dhananjay Regmi: Causes and human impacts of the Seti River (Nepal) disaster of 2012

   

1  

unlike  any  meteorological  cloud  or  snow  avalanche  he  had  ever  seen.    He  then  observed  a  muddy  flash  flood  racing  down  the  Seti  River.    During  his  return  to  the  Pokhara  airport,  he  radioed  the  first   eyewitness   report   of   something   devastating   in   progress,   and   this   news  was   broadcast   by  local  radio  stations.    Speculation  holds  that  the  timely  dissemination  of  Captain  Maximov’s  report  may  have  saved  many   lives   in  areas   farther  downstream.    The  upstream  residents  and  tourists,  picnickers,  and  streambed  laborers  were  caught  completely  unprepared,  with  no  warning  at  all,  and  many  perished.    A  preliminary  report  prepared  by   ICIMOD  with  Kargel’s   input  offers  some  details   of   the   disaster   and   the   early   development   and   testing   of   working   hypotheses   (REF).    Captain  Maximov  also  had  wingtip  video  cameras  mounted  on  his  aircraft.  The  aircraft’s  cameras  recorded  the  dust  cloud  as  well  as  the  flood  racing  at  high  speed  down  valley.  

On  the  ground,  mayhem  and  death  occurred  as  the  sediment-­‐  and  log-­‐laden  slurry  flow  proceeded  in  a  series  of  pulses  lasting  for  many  hours  cumulatively.  Each  pulse  had  a  peak  flow  lasting  only  a  few  minutes.    Many  of   these  pulses,   starting  with   the   first   one,  were   recorded  on   resident   and  tourist   eyewitnesses’  mobile  phone  video   cameras;   quite   a   few  of   these—many   rather   tragic—were  posted  rapidly  on  Youtube.    The  eyewitness  accounts  and  videos  from  the  aircraft  operator  and  people  on  the  ground—including  media  reports  as  well  as  our  own  interviews  of  survivors—form   a   cornerstone   of   observations   upon   which   the   geomorphologic   process   causes   and  geological  underpinning  of  the  disaster  could  be  reconstructed.      Other  key  observations  include  a  seismic  signal  picked  up  due  to  the  triggering  avalanche,  satellite-­‐based  imaging  before  and  after  the  disaster,  and  helicopter-­‐borne  field  reconnaissance  and  ground-­‐based  field  studies  following  the  disaster.      

Our  analysis  of  an  amateur  video  taken  of  the  first  flood  wave  as  it  reached  Pokhara  indicated  a  peak   discharge   of   >1000   m3/s.     It   was   further   estimated—with   wide   uncertainty—that   the  cumulative   flow  volume  emitted  during  more   than  twenty   flood  waves  was  at   least  2  x  106  m3,  perhaps  more  by  a  factor  of  several,  but  not  likely  more  than  107  m3.  

The   Seti   River   disaster   could   have   been   just   one   more   in   an   unending   series   of   barely   noted  human  tragedies  in  the  Himalaya  at  the  hands  of  nature  if  it  was  not  for  the  modern  way  that  this  tragedy  was  documented.    From  ubiquitous  mobile  phone  video  cameras  that  almost  everybody  has   these   days   the   event   was   documented   starting   within   minutes   of   its   avalanche   trigger  through  all  the  human  suffering.    Satellite  eyes  in  the  sky  observed  the  scene  shortly  before  and  shortly   after   the   disaster,   aiding   in   the   forensics   search   for   causes.     Ubiquitous   modern  technology—including   mobile   phones—may   be   instrumental   in   development   of   an   SMS   text-­‐based  warning   system.     Imprudent  habitation   and   improper  usage  of   the   flood  plain   shared  as  much  blame  for  much  of  the  disaster  as  nature  carries.    Tragic  as  this  disaster  was,  it  could  have  been  much  worse  according  to  what  our  field  survey  found.  

2. Study  Area    The  Seti  River,  west  Nepal,   originates   from   the  Annapurna  Range   (Tethys  Himalaya)  and   flows  across  the  Higher  Himalaya  and  down  to  the  Lesser  Himalaya  along  the  Pokhara  Valley  (Figure  1).  It  has  a  very  steep  profile  in  the  north  near  the  Annapurna  Range  (Tethys  Himalaya  and  Higher  Himalaya)   and   then   flows   with   a   gentle   profile   in   most   parts   of   its   length   across   the   Lesser  Himalaya,  where  it  flows  within  terraced  clastic  sedimentary  deposits  of  the  Pokhara  Valley.  The  Pokhara  Valley   is   a   result  of   at   least   two  giant  debris-­‐flow  events   in   the  past   (Yamanaka  et   al.,  1982;  Fort,  1987).  One  took  place  12,000  ±  1000  B.P.,  at  the  end  of  the  last  glaciation  (Koirala  and  Rimal,  1996;  Koirala  et  al.,  1996),  and  led  to  the  formation  of  oldest  terrace  of  the  Pokhara  Valley  

Page 3: Dhananjay Regmi: Causes and human impacts of the Seti River (Nepal) disaster of 2012

   

2  

known  as  the  Ghachok  Formation.  A  second  event  similar  size  and  nature  occurred  750  ±  50  B.P.  (Koirala   et   al.,   1996;   Hanisch   and   Koirala,   2010)   and   resulted   in   the   Pokhara   Formation  (Yamanaka  et  al.  1982,  Fort  1987).    Damming  of  tributaries  of  the  Seti  River  by  the  huge  amount  of   sediments   along   the   main   channel   resulted   in   the   formation   of   a   number   of   lakes   in   the  Pokhara  valley.  The  sediment  source  is  believed  to  be  the  sediments  accumulated  in  the  bowl-­‐like  structure   in  between  the  Annapurna   IV  and  Machhapuchre  mountains.  This  bowl-­‐like  structure  has  been  named  as  the  Sabche  Cirque  (Yamanaka  et  al.  1982,  Fort  1987).    During  the  Pleistocene  late  glacial  maximum,  ice  probably  occupied  the  entire  cirque  basin,  whereas  today  glaciers  have  retreated  to  positions  along  the  cirque  headwall,  where  snow  avalanches,  wind-­‐blown  snow  from  the  Annapurna  peaks,  and  rock  debris  from  the  steep  bedrock  walls  feed  them  at  elevations  lower  than  the  terminations  of  most  other  glaciers  of  the  eastern  and  central  Himalaya.      

 3. Methodology  

Study  was  started  with  the  working  hypothesis  such  as:  i)  GLOF;  ii)  Rockfall-­‐impounded  lake;  iii)  karst  cave  lake;  iv)  The  rock  avalanche/landslide  trigger;  v)  All-­‐of-­‐the-­‐above  approach  with  multiple  water  sources.  Every  hypothesis  was  evaluated  on  the  basis  of  the  field  observation  and  mapping  and  have  led  us  to  the  conclusions.  

 

 

Figure  1:  Google  map  showing  the  location  of  Annapurna  IV  and  the  Seti  river  valley  

 

The   field   work   mainly   consists   of   the   geological   mapping   at   1:25000   scale.   Basic   mappable  lithological  units  were  identified  first  and  lithological  boundaries  were  traced  on  the  topographic  

Page 4: Dhananjay Regmi: Causes and human impacts of the Seti River (Nepal) disaster of 2012

   

3  

base  map.  Geological  traverses  were  made  mainly  on  the  roads,  rivers  and  foot  trails.  Dilute  HCl  was  used   to   identify   the  carbonates.  Structural  data   (strike  and  dip  of  beds  and   foliation)  were  measured   with   the   help   of   geological   compass   and   plotted   on   the   map.   A   cross-­‐section   was  prepared   across   the   mapped   area.   Representative   samples   were   taken   from   the   bed   rock,  sediments  of  the  Annapurna  Formation,  air  fall  dust,  and  sediment  of  the  Seti  River  flood  plain  for  laboratory  analysis.      

Flood   inundation  map  was  prepared  using   the   existing   top   sheets   and   the  detail   topographical  survey  at  1  m  contour  level  and  by  using  software  like  HEC-­‐RAS  and  Arc  GIS.  

 

4.  Results  4.1.  Bedrock  geology  of  the  Seti  River  Basin  

A   regional   geological  map   and   cross-­‐section   of   the   Seti   River   Basin   covering   the   area   north   of  Pokhara  was  prepared   in   the   field   (Figs.  2  and  3).  The   lithology  of   the  area  was  separated   into  several  mappable  units  based  on  distinctions  of  lithology,  presence  or  absence  of  fossils,  sediment  consolidation,   and   position   within   the   overall   rock   sequence.   The   lithological   boundaries  observed   along   the   accessible   routes   were   extended   to   the   inaccessible   areas   based   on  orientation  of  the  beds  and  foliation  (strike  and  dip).  The  bedrock  of  the  area  can  be  divided  into  three   tectonic   units,   i.e.,   the   Lesser   Himalaya,   Higher   Himalaya   and   the   Tethys   Himalaya  separated   by   major   regional   faults   namely   the   Main   Central   Thrust   (MCT)   and   Annapurna  Detachment   (AD).   Unconsolidated   materials   are   much   younger   and   include   the   Annapurna  formation  (calcareous  silts,  sands,  and  gravels)  and  Recent  glaciers,  moraines,  debris  flows,  and  alluvial  gravels.  As  we  describe  below,  the  2012  disaster  has  a  strong  involvement  from  the  deep  Seti  River  gorge  and  the  high,  steep  peaks  of  the  Annapurna  Range;  these  are  erosional  features  developed  in  the  rocks  of  the  Tethys  Himalaya  and  Higher  Himalaya.    The  disaster  also  involved  sediment  derived  from  the  Quaternary  age  Annapurna  formation.  Hence,  the  disaster  relates  very  strongly   to   the  geology  of   the  Sabche  Cirque  as  well   as   to  both  ancient  and  extant  glaciers  and  glacial  processes.  A  detailed  report  of  the  geology  and  geomorphology  of  the  Seti  Basin,  due  for  submission  to  a  peer-­‐reviewed  journal,  is  in  preparation.    

4.2.  Geology  implications  for  the  Seti  Flood  Disaster  of  May  5,  2012  and  future  hazards  

The   main   objectives   of   the   present   study   were   to   evaluate   which   of   the   proposed   working  hypotheses  is  supported  by  geological  data  and  to  access  future  hazard  in  the  Pokhara  valley.    

 4.2.1.  Implication  for  the  karst  formation  

Karst  topography  is  formed  in  easily  soluble  rocks  such  as  carbonates  (limestone  and  dolomites)  and  evaporates  (gypsum  and  salt).  It  is  evident  from  the  present  geological  mapping  that  about  7  km  stretch  of  the  Seti  river  flows  across  carbonate  rocks  (marbles,  calc-­‐schists  and  calc-­‐gneisses)  (See   Fig.   2).   These   rocks   are   mainly   composed   of   calcite   (CaCO3).   Karst   topography   is   very  common   in   the   Pokhara   valley   in   the   carbonate   cemented   terraces.   Mahendra   Cave,   Chamere  Cave  and  Gupteshowr    Cave  are  some  examples.  Therefore,  it  is  quite  possible  that  underground  channels   and   caves   are   present   also   in   the   Seti   River   gorge.     This   would   increase   the   volume  

Page 5: Dhananjay Regmi: Causes and human impacts of the Seti River (Nepal) disaster of 2012

   

4  

available   to   store   water   when   the   gorge   is   dammed   and   hence   increase   the   potential   flood  volumes  when  the  dam  is  broken.    

4.2.2.  Implications  for  the  sediment  source  of  the  2012  hyperconcentrated  slurry  flow  Sedimentological  analysis  shows  that  the  samples  from  the  Annapurna  Formation,  airfall  dust  and  Seti   River   flood   plain   deposits   (recent   sediment   and   ancient   terraces)   have   similar  sedimentological  and      

 Fig.  2.  Geological  map  of  the  Seti  River  basin  north  of  Pokhara.  A-­‐B  line  of  cross  section  in  Fig.  4.      

 

Page 6: Dhananjay Regmi: Causes and human impacts of the Seti River (Nepal) disaster of 2012

   

5  

 Fig.   3.   Simplified,   schematic   geological   cross-­‐section   across   the   Pokhara   valley.   The   line   of   cross-­‐section  is  shown  in  Fig.  2.  MCT:  Main  Central  Thrust,  AD:  Annapurna  Detachment  (=South  Tibetan  Detachment  System).  

 

compositional   characteristics.   All   the   samples   contain   rock   fragments   composed   of   marble,  limestone,   calc-­‐gneiss   and   calc-­‐schists.   It   indicates   that   they   have   come   from   the   same   source  (provenance).     Our   interpretation   is   that   the   fine   sediment   contained   in   the   slurry   flow   was  derived   from   the   Annapurna   formation,   which   in   turn   represents   glacial   deposits   laid   down  during   the   Pleistocene,   when   a   huge   glacial   ice   mass   occupied   the   Sabche   Cirque.     Extensive  glacial   erosion   took   place,   enlarging   and   giving   form   to   the   Sabche  Cirque   and   also   generating  abundant  rock  debris,  which  accumulated  in  moraines  and  a  thick  debris  cover  on  the  ice.      During  a  climatic  amelioration,  probably  around  13,000  years  ago,  supraglacial  lakes  formed  on  the  debris-­‐covered  glaciers,  and  these  enlarged  and  merged  into  an  enormous  lake  at  least  5  km  across  and  possibly  over  1000  m  deep.    The  lake  was  dammed  at  the  downstream  side  by  a  thick  accumulation   of   ice-­‐cored   debris.     Glaciers   continued   to   flow   into   the   lake   and   transported  boulders,  sand,  and  silt,  and  moraines  collapsed  into  the  lake  as  ice  gradually  retreated,  causing  huge  debris  flows  and  landslide  deposits  in  the  lake.    This  ancient  mass  of  lake  silt  beds,  moraines,  debris  flow  deposits,  and  landslides—mainly  of  glacial  and  glaciolacustrine  origin—are  what  now  comprises  the  Annapurna  formation.    Outbursts  from  the  lake  and/or  the  Annapurna  sediments  produced  the  terraced  deposits  of  the  Pokhara  Valley.    These  outbursts  as  well  as  steadier  glacier  meltwater  discharge  also  eroded  the  deep  gorge  near  the  exit  from  the  Sabche  Cirque.    Erosion  of  the  gorge  was  both  due  to  dissolution  of  carbonates  and  mechanical/hydraulic  erosion  due  to  the  Seti  River  and  its  tributaries.      

Page 7: Dhananjay Regmi: Causes and human impacts of the Seti River (Nepal) disaster of 2012

   

6  

Rock  debris  eroded  and  transported  by  small  residual  glaciers,  rockfalls,  and  avalanches—such  as  the  rock/ice  avalanche  of  May  5,  2012—continue   to  add  masses  of  sediment  within   the  Sabche  Cirque.  Remnants  of  the  Annapurna  formation  as  well  as  the  younger  glacial  deposits  and  mass  movement   materials   still   tower   in   unstable   relief   and   remain   geomorphologically   very   active,  producing  many   small  debris   flows  and   floods.    Most  of   these  are   contained  within   the  Sabche  Cirque   and   have   no   consequences   to   people   downstream.   The   largest   of   the   floods   and   mass  movements   could   travel   as   far   as   Pokhara   and   thus   have   a   potential   to   produce   tragic  consequences  in  the  Seti  Valley  below,  as  residents  unfortunately  discovered  on  May  5,  2012.    

 

4.2.3.  Implications  for  the  water  source  of  the  2012  hyperconcentrated  slurry  flow  Large  single  events  of  anomalous  monsoon  rainfall  could  produce  up  to  107  m3  or  even  2x107  m3  of  water  runoff,  which  could  be  discharged  in  as  little  as  a  day  from  the  Sabche  Cirque  and  may  produce  peak  flows  of  100-­‐400  m3/s.    The  May  5,  2012  event  was  not  a  monsoonal  event  and  not  due  to  any  kind  of  precipitation  event,  and  anyway  it  produced  brief  but  highly  peaked  discharges  exceeding  1000  m3/s.      The  behavior  of   the  hyperconcentrated  slurry   flood   is  such  that  sudden  release   from   a   natural   water   reservoir   must   have   taken   place.     We   have   considered   four  candidates   for   a   reservoir:   (1)   in   or   on   the   glacier   ice,   (2)   inside   caves   in   the   Annapurna  formation,   (3)   inside   caves  within   the   high-­‐grade  metamorphic   rocks   of   the   Tethyan  Group   or  Higher   Himalayas,   or   (4)   inside   the   gorge.    We   have   found   evidence   that   all   of   these   types   of  spaces  may  exist  in  the  Sabche  Cirque  and  its  outlet  gorge,  any  of  which  could  remain  a  factor  for  future   impoundments   of  water   and   potential   outburst   floods.     However,   six   clues   point   to   the  gorge  as  the  main  reservoir  and  hence  indicate  a  blockage  and  then  a  sudden  unblockage  of  the  gorge  as  the  primary  cause  of  the  outburst.    Next  we  summarize  these  clues  and  what  they  imply  about  the  sequence  of  events  that  led  to  the  disaster.    

1.  Water  flow  in  the  Seti  River  was  virtually  cut  off  to  Pokhara  and  the  upstream  villages  in  the  days  and  weeks  before  the  disaster,  according  to  many  eyewitness  reports.    This  implies  a  nearly  complete   stream   blockage.     The   blockage   must   have   been   below   the   point   where   the   major  tributaries  within  the  Sabche  Cirque  join  but  above  the  upstream  villages  where  the  diminished  (almost  zero)  flow  was  observed.    This  constrains  the  point  of  blockage  to  a  short  segment  of  the  Seti  River.    Had   the  blockage  been  above   the  point  where   the   two  major   tributaries   (the  north  branch  and  west  branch)  join  in  the  gorge  area,  perhaps  half  (more  or  less)  of  the  water  would  have  been  blocked  but  much   flow  would  have   continued.      This   first   clue   tends   to   rule  out   the  glacier  ice  and  the  Annapurna  formation  as  hosts  of  the  reservoir,  but  it  allows  the  gorge  and  also  could  allow  any  karstic  cavernous  spaces  connected  to  the  gorge  that  could  have  been  filled  due  to  damming  of  the  gorge.      

2.  When  the  Seti  River  was  blocked,  a  trickle  continued  but  changed  color  from  the  usual  white  caused  by  abundant  suspended  rock  flour.  (“Seti”  means  “white,”  so  it  is  the  White  River)    Hence,  water  draining   from   the  glaciers   and   from   the  Annapurna   formation  was  blocked,   leaving  only  small  amounts  of  water  runoff  from  points  below  the  glaciers  and  the  Annapurna  formation.    This  again  points  to  a  blockage  in  the  gorge  area  below  the  Annapurna  formation  and  below  where  the  two  major  tributaries  join.  3.  The  ice/rock  avalanche  from  Annapurna  IV  triggered  the  outburst,  and  to  have  done  so  there  should   be   a   direct   pathway   from   the   avalanche   to   the   reservoir.     The   main   glacial   lakes   and  drained   ice   basins   we   have   observed   (Fig.   Y)   are   west   of   where   the   avalanche   impacted   and  traversed,   and   so   a   glacier   lake   outburst   flood   appears   improbable   as   the   cause   of   the   2012  

Page 8: Dhananjay Regmi: Causes and human impacts of the Seti River (Nepal) disaster of 2012

   

7  

disaster.   We   have   traced   the   route   of   the   avalanche   to   the   gorge,   and   so   again   the   gorge   is  implicated  as  the  most  likely  reservoir.  4.   Satellite   observations   have   definitively   identified   several   discrete   erosional   events   along   the  walls   of   the   gorge.     Our   observations   via   satellite   and   helicopter   have   identified   the   biggest   of  these  as  a  site  of  recurrent  rockfalls  into  the  gorge.      

5.  Helicopter-­‐borne  observations  show  a  white  sediment  staining  or  covering  of  the  walls  of  the  gorge  consistent  with  it  having  contained  a  sediment-­‐laden  reservoir  in  the  gorge.    6.   Our   observations   have   indicated   that   the   gorge   volume   is   far   greater   than   we   had   initially  believed,  and  so   it   could  have  contained  enough  water  and  sediment  volume  to  have  explained  the  slurry  flood  disaster.    The  gorge  is  both  wider  in  some  sections  and  far  deeper  (exceeding  500  m)  than  we  had  suspected  at  first.    The  gorge  geometry  is  such  that  a  contained  volume  of  more  than  107  m3   is  possible,   i.e.,   enough   to  explain   the  2012  outburst   flood  volume.       Furthermore,  there   remains   some   speculation   with   some   limited   supporting   observations   that   the   gorge  geometry  may  widen  at  the  bottom  with  karst  cave-­‐like  structures,  which  may  add  to  the  present  estimations   of   contained   volume.     Consequently,   our   earlier   assessment   that   the   flood   water  volume  required  multiple  sources  is  no  longer  a  requirement.    The  gorge  alone—with  or  without  additional   water-­‐filled   karstic   caverns—might   be   sufficient   to   explain   the   flood   volume.     The  rockfall-­‐dammed  gorge  hypothesis  is  thus  the  simplest  and  likeliest  explanation.    

 

4.3.  Implication  for  future  hazards  4.3.1.  Landslide,  rock  fall,  and  rock  avalanche    

The  bedrock  in  the  upper  Seti  Basin  are  quite  unstable  due  to  the  steep  slopes  and  high  relief  and  the  known  history  of  large  and  small  mass  movements.  Huge  rock  sliding  along  the  bedding  plane  (plane  failure)  is  quite  common  in  the  area.  Freeze  and  thaw  action  of  water  is  playing  significant  role   in   the   failure  of   slopes,   including   failure  according   to  knickpoint   theory   (REF).    Large  rock  sliding   along   the   gorge   wall   of   the   Seti   River   may   cause   frequent   damming   of   the   Seti   River.  Similar  flash  floods  are  thus  possible  in  the  future  by  the  failure  of  the  landslide  dam.    

4.3.2.    Ice  avalanche  Ice  from  a  cornice  was  apparently  involved  in  the  May  5,  2012  avalanche.    Hanging  glaciers  are  also  present  high  on  the  walls  of  the  Sabche  Cirque.        Collapsing  ice  could  impart  enough  energy  to   the  unconsolidated  sediment  of   the  Annapurna   formation  to  generate  a   large  sediment  mass  movement.    An  ice  avalanche  into  a  glacial  lake  could  generate  a  GLOF.      

4.3.3.  Debris  flow  hazard  by  liquefaction    The   Annapurna   Formation   is   loose   sediment   of   about   500-­‐600  m   thick   (more   in   some   areas)  covered  in  the  upper  part  by  glaciers  and  kettle  lakes.  In  the  spring  and  summer,  huge  amounts  of  ice  and  snow  are  melted  and  this  melt  water  saturates  the  sediments,  potentially  weakening  the  cohesion   of   the   sediment.   Strong   monsoon   rains   could   likewise   saturate   the   sediment.     Many  debris   flows   are   observed   in   the   Annapurna   formation,   so   we   know   that   sediment   flow   is   a  frequent  occurrence.    The  recent  debris  flows  we  have  observed  are  relatively  small,  and  events  of  that  magnitude  do  not  pose  a  threat.    However,  if  a  strong  earthquake  occurs  at  this  situation,  or  if  a  large  discrete  monsoonal  rain  event  adds  onto  already-­‐saturated  conditions,  the  sediment  

Page 9: Dhananjay Regmi: Causes and human impacts of the Seti River (Nepal) disaster of 2012

   

8  

may  liquefy  from  a  large  area  and  flow  downstream  and  potentially  cause  a  huge  disaster  in  the  Pokhara  valley.      4.3.4.  Glacier  lake  outburst  flood  

We  have  discovered  a  substantial  ice  basin  which  could  impound  several  million  cubic  meters  of  water   if   not   for   the   fact   that   the   basin   is   breached   already.    We   also   see   indications   of   rapid  drainage  downstream  from  it   in  recent  years.     It  would  appear  that  glacier   lake  outburst   floods  (GLOFs)   have   occurred   from   the   glaciers   in   the   Sabche   Cirque,   but   their   hydrograph   peak  discharge   magnitudes   were   apparently   too   small   to   be   noticed   downstream.     We   have   some  concern  about   these  as  possible   future  hazards   if   the   ice  basin  should  become  closed  and   lakes  should  grow  and  a  GLOF  of   larger  magnitude   should  occur  or   if   sediment   from   the  Annapurna  formation  should  be  ingested  into  a  GLOF  and  a  large,  fluid  debris  flow  should  form.    Hence,  there  should  be  satellite-­‐based  or  aircraft-­‐based  monitoring  of  glacial  lakes  in  the  Sabche  Cirque.        

5. Socioeconomic/demographic  survey  of  the  disaster’s  impacts    To  investigate  the  socio-­‐economic  status  in  flood-­‐affected  area  of  Seti  river  basin  in  Pokhara  we  carried  out  a  socio-­‐economic  field  survey  in  the  downstream  affected  areas  of  the  Seti  river  basin  from   the   end   of   the  December   2012   to   first  week   of   January   2013.   Similarly,   flood   inundation  mapping  of  Seti  River  was  also  conducted  in  this  period.  The  results  are  summarized  here.    

The   most   of   the   riverbank   dwellers   are   migrants   and   have   low   ability   and   low   propensity   to  purchase   safer   lands   for   settlements   in   urban   area.   Since   labor   was   the   main   occupation   of  majority  of   the  affected  population,   their  rent  paying  capacity  would  be   lower.    Therefore,   they  settled   along   the   marginal   public   lands   without   caring   about   the   risk   of   flood   havoc   or   in   a  calculated  gamble  knowing  that  there  is  some  risk.  More  than  90  percent  of  households  had  prior  knowledge  about  probable  risks  in  the  settlement.  They  had  seen  mud  in  the  river  water  without  heavy  rain.  However,  they  were  busy  in  eking  out  their  livelihoods  and  became  less  careful  about  the  risk  and  stayed  at  their  own  dwellings.    

The   river  mapping   focuses  on  producing  a   flood   inundation  map,  overlaying   the  map  prepared  from  the  survey  data  so,   that   the  scenario  of   the  Seti  River  and   its  periphery  can  be  visualized,  and  possible   future  risks   to  nearby  areas  can  be  better  assessed.  Ultimately,   the  hazardous  and  vulnerable   zones   by   the   river   are   depicted.   Furthermore,   we   have   suggested   precautions   and  remedies  that  could  be  undertaken  to  mitigate  future  floods,  hyperconcentrated  slurry  flows,  and  debris  flows  in  this  and  nearby  valleys.      

We   have   identified   several   villages   that   are   exceptionally   prone   to   being   swept   away   by  floods.    We  have  withheld   naming   them  pending   detailed   study   so   as   to   avoid   a   possible   panic  response  when  our  findings  are  still  preliminary  and  based  on  a  quick  assessment.    In  one  village  more  than  fifty  houses  are  clustered  together  and  about  fifteen  houses  on  the  banks  in  clear  and  immediate  danger  of  being  swept  away  by  possible  floods.  In  another  village  a  school  along  with  the  school  children  and  teachers  as  well  as  residents  are  in  immediate  jeopardy  of  a  flood  due  to  a  GLOF  or  a  monsoon-­‐driven  flood  or  a   landslide;   in   June  2012  already  a   landslide  buried  part  of  that  village  but  amazingly  nobody  was  killed.    Residents  in  these  and  other  villages  can  be  swept  away   at   any   time;   therefore   there   is   an  urgent   need   for   developing   and   implementing   suitable  tools  and  procedures  for  forecasting  and  real-­‐time  warning  of  flash  floods  and  debris  flows.  

Page 10: Dhananjay Regmi: Causes and human impacts of the Seti River (Nepal) disaster of 2012

   

9  

A   fuller   report  on   these  aspects  of  our  work   is   in  preparation  and  will  be   submitted   to  a  peer-­‐reviewed  journal.    A  PhD  dissertation  on  this  topic  has  been  initiated.  

 

6.  Recommendations  

The  2012  disaster  is  not  likely  to  be  replicated  exactly,  but  something  similar  is  likely.    To  protect  the   Pokhara   residents   from   future   geological   hazards   comparable   to   the   2012   event,   or  potentially  worse,  the  following  are  recommended.  

(1) Landslide,  rockfall,  and  debris  flow  mapping  of  the  Seti  River  basin.  (2) Mapping  of  the  landslide  and  rockfall  hazards  (potential  for  future  events)  (3) Studies   of   the   monsoon   precipitation   regime   and   extreme   weather   (temperature   and  

precipitation)  with  effects  on  runoff.  (4) Studies  of  the  earthquake  or  precipitation-­‐driven  liquefaction  potential  assessment  of  the  

Annapurna  formation.    (5) Modeling   of   flow   peak   discharge/flood   level/inundation   for   floods,   hyperconcentrated  

slurries,  and  debris  flows  arising  from  the  Sabche  Cirque.  (6) Design   of   a   warning   system   perhaps   involving   SMS   text  messaging.     The   residents   and  

officials   receiving   any   warnings   should   be   trained   in   how   to   respond   if   an   anomalous  situation  is  observed.    Residents  will  have  to  be  a  part  of  the  system,  so  it  will  be  important  to   engage   with   the   residents   by   consulting   with   them   during   the   system   design   and  implementation   and   in   educating   them   on   the   nature   of   the   hazard   environment   and  training  them  in  the  use  iof  the  warning  system.  

(7) Discussion  with   city,   district,   and   national   officials   about   land-­‐use   and   demographics   in  relationship  to  the  2012  disaster  and  remaining  hazards.    

 7. Acknowledgements    This  work  was  supported  by  the  USAID  Climate  Change  Resilient  Development  (CCRD)  Project  (Grant  Number  CCRDCS0009)  and  by  the  NASA/USAID  Science  of  Terra  and  Aqua  Program.    

 8. References      

Fort,  M.,  1987,  Sporadic  morphogenesis  in  a  continental  subduction  setting:  an  example  from  the  Annapurna  Range,  Nepal  Himalaya.Zeitschr.  Geomorphology,  Suppl.  V.  63,  pp.    9-­‐36.  

Koirala,   A.   and   Rimal,   L.N.,   1996,   Geological   hazards   in   Pokhara   Valley,   western   Nepal.-­‐J.   Nep.  Geol.  Soc.,  13:  99-­‐108.    

Koirala,  A.,  Rimal,  L.N.,  Sikrikar,  S.  M.,  Pradhananga,  U.  B.  and  Pradhan,  P.  M.,  Hanisch,  J.,  Jäger,  S.,  Kerntke,   M.,   1996:   The   engineering   and   environmental   geological   map   of   the   Pokhara  Valley  1:50.000,  DMG/BGR-­‐Project,  Dept.Mines,Geology,  Kathmandu.  

Harris,  N.  And  Whalley,  J.,  2001.  Mountain  building.  Block  4.  The  Open  University,  UK,  165p.  

Jackson,  M.,   and  R.  Bilham,  1994.  Constraints  on  Himalayan  Deformation   inferred   from  Vertical  Velocity  Fields  in  Nepal  and  Tibet,      J.  Geophys.  Res.,  99(B7),  13897-­‐13912.  

Mattauer,  M.,   1989.  Monts   et  Merveilles,  Beautes   et  Richesse  de   la  Geologie.  Hermann  Editeurs  des  Sciences  et  des  Art,  Paris,  267p.    

Page 11: Dhananjay Regmi: Causes and human impacts of the Seti River (Nepal) disaster of 2012

   

10  

Shrestha,  A.B.,   P.  Mool,   J.  Kargel,  R.B.   Shrestha,   Samjwal  Bajracharya,   Sagar  Bajracharya,   and  D.  Tandukar,   2012,   Quest   to   unravel   the   cause   of   the   Seti   flash   flood,   5  May   2012,   online  report  posted  by  ICIMOD.    http://www.icimod.org/?q=7377.  

Yamanaka,   H.   and   Iwata,   S.,   1982,   River   terraces   along   the   middle   Kali   Gandaki   and  MarsyandiKhola,  Central  Nepal.  J.  Nepal  Geol.  Soc.,  v.  2,  pp.  95-­‐111.