designing with austempered ductile iron...

120
Designing with Austempered Ductile Iron (ADI) J. R. Keough and K. L. Hayrynen Applied Process Inc. Technologies Division, Livonia, MI G. L. Pioszak University of Michigan Copyright 2010 American Foundry Society ABSTRACT Austempered Ductile Iron (ADI) is a ferrous, cast material with a high strength-to-weight ratio and good dynamic properties. However, many designers are only vaguely familiar with the savings related to near net shape castings and totally unfamiliar with this material that can compete favorably with steel and aluminum castings, weldments and forgings. This paper will review the design considerations for ADI to help the mechanical designer in his/her material/process selection activity early in the design process. INTRODUCTION The Austempering process is a high performance, isothermal heat treating process that imparts superior properties to ferrous materials. It was developed in the 1930's and, although in wide use, is familiar to only a fraction of the design community. Ductile iron or spheroidal graphite iron was developed in the 1940's. Ductile iron, with its unique, spheroidal graphite morphology, produces an iron that has tensile and impact properties sufficient for products as varied as brake calipers, pump impellers and steering knuckles . The application of the Austempering process to ductile iron produces a material called Austempered Ductile Iron (ADI) that has a strength-to-weight ratio that exceeds that of aluminum. ADI was commercialized beginning in the 1970's and has seen significant growth in the decades following. The selection of ADI as a material for design consideration has been driven by the ductile iron foundries and the Austempering suppliers and not by the mechanical design community. That is the direct result of the lack of shared information on the technology and a near-absence of references to ADI in the most widely used engineering textbooks and databases. The design information necessary for the selection of ADI as an option exists, but has largely been available in fragments located in often obscure papers and texts. To simplify the process for the selection of ADI, it is important to have ADI design information readily available in a format that mechanical designers can easily interpret and use. This paper, and the references indicated herein, are intended to aid the mechanical designer in the consideration of ADI for a design solution. WHERE TO BEGIN A designer given a product or component to consider must always start by narrowing down the entire world of materials to those that might have appropriate properties, have reasonable manufacturability and low cost. As engineers, we would prefer that cost be no issue and be able to deal only with making a perfect part. However, we live in an imperfect world and cost is the ultimate reality. All components will eventually fail. It is simply a matter of how long we want them to live and how long we can practically afford for them to live. Narrowing down the material/process world for a specific application includes such considerations as: Strength (tensile strength, yield strength, etc.) Dynamic Performance (toughness, fatigue strength); Wear resistance (abrasion, rolling, sliding, galling); Special features such as corrosion resistance, noise damping, electrical resistivity, etc; Manufacturability (combining features, machinability, near net shape, process reliability, dimensional repeatability); Cost (cost of the material blank, cost of the finished component, cost of inventory). This paper is an attempt to guide the designer through the consideration of Austempered Ductile Iron (ADI). The authors’ goal is to provide the necessary comparative information to allow one to filter through the first several layers of decision making and get to the roots of an ADI design….or not. THE DUCTILE IRON PROCESS Ductile iron is an iron-based alloy which contains a carbon content that is high enough to exceed its solubility in iron; resulting in the presence of pure carbon or graphite dispersed within an iron matrix. In the case of ductile iron, the shape of the graphite is spheroidal or Paper 10-129.pdf, Page 1 of 15 AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Upload: vutram

Post on 28-Mar-2018

277 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

Designing with Austempered Ductile Iron (ADI)

J. R. Keough and K. L. Hayrynen Applied Process Inc. Technologies Division, Livonia, MI

G. L. Pioszak University of Michigan

Copyright 2010 American Foundry Society

ABSTRACT Austempered Ductile Iron (ADI) is a ferrous, cast material with a high strength-to-weight ratio and good dynamic properties. However, many designers are only vaguely familiar with the savings related to near net shape castings and totally unfamiliar with this material that can compete favorably with steel and aluminum castings, weldments and forgings. This paper will review the design considerations for ADI to help the mechanical designer in his/her material/process selection activity early in the design process. INTRODUCTION The Austempering process is a high performance, isothermal heat treating process that imparts superior properties to ferrous materials. It was developed in the 1930's and, although in wide use, is familiar to only a fraction of the design community. Ductile iron or spheroidal graphite iron was developed in the 1940's. Ductile iron, with its unique, spheroidal graphite morphology, produces an iron that has tensile and impact properties sufficient for products as varied as brake calipers, pump impellers and steering knuckles . The application of the Austempering process to ductile iron produces a material called Austempered Ductile Iron (ADI) that has a strength-to-weight ratio that exceeds that of aluminum. ADI was commercialized beginning in the 1970's and has seen significant growth in the decades following. The selection of ADI as a material for design consideration has been driven by the ductile iron foundries and the Austempering suppliers and not by the mechanical design community. That is the direct result of the lack of shared information on the technology and a near-absence of references to ADI in the most widely used engineering textbooks and databases. The design information necessary for the selection of ADI as an option exists, but has largely been available in fragments located in often obscure papers and texts. To simplify the process for the selection of ADI, it is important to have ADI design information readily available in a format that mechanical designers can easily

interpret and use. This paper, and the references indicated herein, are intended to aid the mechanical designer in the consideration of ADI for a design solution. WHERE TO BEGIN A designer given a product or component to consider must always start by narrowing down the entire world of materials to those that might have appropriate properties, have reasonable manufacturability and low cost. As engineers, we would prefer that cost be no issue and be able to deal only with making a perfect part. However, we live in an imperfect world and cost is the ultimate reality. All components will eventually fail. It is simply a matter of how long we want them to live and how long we can practically afford for them to live. Narrowing down the material/process world for a specific application includes such considerations as:

• Strength (tensile strength, yield strength, etc.) • Dynamic Performance (toughness, fatigue

strength); • Wear resistance (abrasion, rolling, sliding,

galling); • Special features such as corrosion resistance,

noise damping, electrical resistivity, etc; • Manufacturability (combining features,

machinability, near net shape, process reliability, dimensional repeatability);

• Cost (cost of the material blank, cost of the finished component, cost of inventory).

This paper is an attempt to guide the designer through the consideration of Austempered Ductile Iron (ADI). The authors’ goal is to provide the necessary comparative information to allow one to filter through the first several layers of decision making and get to the roots of an ADI design….or not. THE DUCTILE IRON PROCESS Ductile iron is an iron-based alloy which contains a carbon content that is high enough to exceed its solubility in iron; resulting in the presence of pure carbon or graphite dispersed within an iron matrix. In the case of ductile iron, the shape of the graphite is spheroidal or

Paper 10-129.pdf, Page 1 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 2: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

round and is described as having graphite nodules. (The material is interchangeably referred to as ductile iron, nodular iron and spheroidal graphite (SG) iron). A complete listing of the minimum tensile properties to meet the grades for ductile iron according to ASTM International is given in Table 1.1 Other commonly used standards for ductile iron include: SAE J434-04, ISO 1083:2004 and DIN EN 1563-2005.2-4

Table 1. Tensile Properties of Ductile iron per ASTM A536-84(2009) Standard Specification for Ductile Iron

Grade UTS min

psi / MPa

Yield Strength min

psi / MPa

% Elongation min

60-40-18 60 000 / 414 40 000 / 276 18 65-45-12 65 000 / 448 45 000 / 310 12 80-55-06 80 000 / 552 55 000 / 379 6 100-70-03 100 000 / 689 70 000 / 483 3

120-90-02* 120 000 / 827 90 000 / 621 2

*120-90-02 grade is quenched & tempered The properties of ductile iron are largely dependent on the relative amounts of ferrite and pearlite present within the matrix microstructure. Photomicrographs of two commonly used grades of ductile iron, 65-45-12 and 80-55-06, are shown in Figures 1(a) and (b), respectively. In these photomicrographs, ferrite is the white phase surrounding the round graphite nodules while pearlite is the dark microconstituent. Ferrite is a soft, low strength phase so the strength of the iron decreases as the volume of ferrite increases.

(a)

Grade 60-45-12

(b) Grade 80-55-06

Fig. 1. Photomicrographs of commonly used grades of ductile iron taken at the same magnification. Etched with 5% Nital. The number and shape of the graphite nodules is important when producing ductile iron. These characteristics are described as the nodule count and nodularity, respectively. Nodule count (number per mm2) should be sufficiently high to minimize the presence of porosity and carbides. Nodularity (% round) must be sufficient to achieve the minimum ultimate tensile strength (UTS) and elongation (%EL) levels, especially as the yield strength of the material increases. Ductile iron castings range in size from a few grams to over 200 tonnes and can be produced using a number of different molding methods. These methods include:

• Green sand mold; • No bake sand mold; • Permanent mold (mostly pipe); • Lost foam; • Investment cast (lost wax).

The mold method that is utilized will depend upon a number of factors including:

• Size of casting; • Complexity of casting shape; • Production quantities; • Surface finish; • Linear dimensional tolerances; • Cost.

Green sand molding is often used to produce engineered castings because of its relatively low cost compared to other methods and its versatility; allowing for the production of both small and large castings. On the other end of the spectrum is investment casting or the lost wax process. Although this process is more expensive than green sand molding, it is used for small castings that have

Paper 10-129.pdf, Page 2 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 3: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

high tolerances and require better surface finish than can be produced using a green sand process. THE ADI PROCESS In order to produce ADI, ductile iron must undergo a heat treat process called Austempering. Austempering was developed in the 1930’s and has subsequently been applied to steel to produce a microstructure called Bainite. While the steps for Austempering ductile iron are essentially the same as those for steel, the resultant microstructure is different. It is called Ausferrite and consists of a mixture of high carbon Austenite and ferrite. A schematic that illustrates the Austempering process is shown in Figure 2. Austempering, in general, consists of the following:

• Heating to a temperature to produce Austenite; • Quenching rapidly to avoid the formation of

pearlite or other microconstituents to a temperature above the Martensite start (Ms). This quench temperature is referred to as the Austempering temperature;

• Holding at the selected Austempering temperature for a time sufficient to transform the Austenite to the desired end product; Bainite for steel and Ausferrite for ductile iron.

Fig. 2. An isothermal transformation diagram that illustrates the basic steps of the Austempering process for a cast iron with >2% silicon. HOW TO SELECT DUCTILE IRON FOR AUSTEMPERING Austempering is a heat treat process that is applied to improve the properties of ductile iron. It will not be successful if the base iron is not of high quality. For the purpose of austempering, high quality can be defined as:

• Minimum nodule count of 100 per mm2; • Minimum nodularity of 85%; • Combined maximum of 1.5% of porosity;

carbides, inclusions and micro-shrinkage; • Consistent chemistry.

A high nodule count is important to minimize segregation of alloy elements which can promote the presence of carbides as well as delay the rate of formation of the Ausferrite microstructure. Additionally, a high nodule count will prevent the formation of porosity or micro-shrinkage as well as promote the formation of small, round graphite nodules. Upon examining the grades of ductile iron in Table 1, one can see that the chemistry of the iron is not part of the specification. All that is required to certify ductile iron to a particular grade is that the minimum tensile properties are met. Conversely, most steels and aluminum alloys are specified by chemical composition. In order to be successful at Austempering ductile iron, chemistry (or the hardenability) of the iron is important. Hardenability refers to an ability to form Martensite or the ability to cool from the austenitizing temperature to the Austempering temperature without forming any undesirable microconstituents like pearlite. Because heavy sections cool more slowly, they require more hardenability or more alloy additions. A qualified heat treater can work with a designer to choose the proper chemistry of ductile iron to be Austempered. In general, most section sizes less than 20 mm can through harden without making alloy additions provided the Austempering setup and apparatus is adequate for the purpose. When alloy additions are necessary, Cu, Ni or Mo are typically used. Beyond meeting hardenability requirements, consistent chemistry is necessary for lot-to-lot repeatability. The chemistry of the iron will play an important role in establishing the as-cast microstructure of the component. The relative amounts of ferrite and pearlite that are present in the as-cast material will affect the growth of the component in response to Austempering. This is especially important when machining is completed prior to heat treatment as it will be desirable for the parts to grow to the final dimensions for each heat treat lot. If a high quality ductile iron component with the proper alloy content is Austempered, its properties will depend on the selection of the heat treatment temperatures and times. ADI refers to a family of materials that encompass a wide range of properties as indicated in Table 2. The relevant SAE, ISO and DIN standards are listed in the references section.5-8 It should be noted that the first grade of ADI listed in Table 2, GR 750-500-11 (GR 110-70-11), is unique in that the final microstructure contains some blocky (proeutectoid) ferrite by design. As a result, the heat treat rules and hardenability relationships for this grade are slightly different compared to those previously described. Once again, a knowledgeable heat treater can assist the design engineer if this grade of ADI is utilized.

Paper 10-129.pdf, Page 3 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 4: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

Table 2. The Six Standard Grades of ADI as

designated by ASTM A897-A897M-06.5

Prior Grading System

Tensile Strength

(MPa/ksi)

Yield Strength

(MPa/ksi)

Elong.

(%)

Typical Hardness (HBW)

750 / 110 500 / 70 11 241-302 1 900 / 130 650 / 90 9 269-341 2 1050 / 150 750 / 110 7 302-375 3 1200 / 175 850 / 125 4 341-444 4 1400 / 200 1100 / 155 2 388-477 5 1600 / 230 1300 / 185 1 402-512

*Note: All properties are minimum requirements except hardness which is typical. Photomicrographs of two grades of ADI are provided in Figure 3. These grades represent the range in microstructure fineness that can be developed by varying the Austempering temperature.

(a)

Grade 900-650-09

(b)

Grade 1600-1300-01

Fig. 3. Photomicrographs of ADI microstructures (Ausferrite). Etched with 5% Nital.

THE MECHANICAL DESIGN PROCESS- WHERE TO START (The “Mouth” of the Funnel) The mechanical designer has a tough job. He/she must be able to satisfy the physical performance, aesthetics and the cost of the component or system. The range of material/process choices has broadened dramatically in the past several decades. While steel properties have been rather well defined for over 50 years, the properties of materials like the various aluminum alloys, composite materials, ceramic materials and polymers has been evolving as the information “blanks” are being filled in with experimental and experiential investigations. In parallel with the materials developments have been remarkable engineering and manufacturing process developments in everything from 3-D, finite element analysis (FEA) and stereolithographic prototypes, to new, more efficient and accurate welding, casting, stamping, cutting, forging and machining techniques. Finally, the mechanical designer must decide for a specific application if the material/process selections that he/she makes are based on a product that is: life-and-death and/or cosmetic and/or low/cost, etc. The mechanical designer would, in fact, be happy to have fewer choices because it would make his/her life easier to choose from a smaller, rather than a larger range of options. Today, we are not offered that simplicity and must wade through a plethora of material/process combinations, all with their own strengths and weaknesses. Then, finally, we must choose. In the previous sections, you have learned the basics of the ductile iron process, the Austempering process and ADI. Now how do we apply that knowledge to the real material/process selection process? Let’s get started. THE FIRST, MOST IMPORTANT DECISIONS

• What is the function of the part under consideration?

• What is the mode of failure in precedent parts/designs?

• What are we trying to improve? These are the broadest and most variable questions. For example, if the design is a lever device for an agricultural equipment application, one might be able to deduce the following:

• The part will require a high strength-to-weight ratio;

• The part may be exposed to cold temperatures; • Nobody will die or be injured if this part fails; • The part will be loaded in low-cycle fatigue.

Paper 10-129.pdf, Page 4 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 5: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

Narrowing the material/process combinations to those options that adequately address the aforementioned requirements/conditions constitutes what we will call, getting into the mouth of the decision making funnel. A high strength-to-weight ratio would eliminate material/process combinations like zinc die castings, or gray iron castings and most polymers or ceramic materials. Good properties at cold temperatures would further narrow the range of steels and irons that would be appropriate, but aluminum, having no ductile-to-brittle transition temperature, would perform well in low temperature conditions. The fact that nobody will die or be injured if this part fails allows the designer to be a bit more aggressive in his/her mechanical safety factors which usually leads to reduced cost. Cast, wrought and welded designs would all be candidates. This decision would probably eliminate exotic manufacturing processes (EDM, precision forging, machining from bar stock) and materials (titanium alloys, electro-slag remelted steel bar) as the design could be accomplished with conventional processes that are lower in cost. The fact that the part will be loaded in low-cycle fatigue may imply to the designer that we have a finite life issue where the part will be highly loaded at a lower number of fatigue cycles. We need only to design a component that will have sufficient strength to survive this high loading for just the number of cycles expected for the life of the system. This will also reduce the cost of the chosen material/process combination selected. A key road sign for the designer is if a precedent part failed. When there are failures, one can proceed immediately to design a solution to the failure. Did it wear out? If yes, we need to find a material/process combination that gives us a part with sufficient strength and dynamic properties that can survive the wear conditions that the part is exposed to for the desired life cycle. A more difficult proposition is if there has never been a failure in service on a like component. Why would one change a part that has never failed in service? The nearly universal answer to this is either cost, weight or availability…..but usually cost. If cost were not an issue, we would use cheap materials and overdesign everything. If weight were the only issue, we would use expensive, exotic light-weight materials that would last forever. In any case, we need to acquire the materials, and some materials and processes are just scarce or being eliminated for environmental or regulatory reasons. For example, lead is being eliminated in metal solders and free-machining steels, chromium and

other heavy metals are an ongoing environmental concern to water supplies and some polymers and composites cannot be recycled at all. In this “mouth of the funnel” decision making process, ADI can be considered in the following, relative terms:

• It has a high strength-to-weight ratio; • It has good dynamic properties; • It has good wear resistance for a given hardness; • It is a cast material and has the advantages of

near net shape processing and generally good manufacturability;

• It is cost competitive with other common engineering materials.

MONOTONIC PROPERTIES The monotonic properties include such measures as tensile (ultimate) strength, yield (proof) strength, compressive strength, shear strength, elongation, reduction in area, Young’s modulus (stiffness) and Poisson’s ratio. All of these measure the deflection or distortion of the material under a given, single-cycle, stress up to, and including, failure. Manufacturers over time have contented themselves with supplying mechanical engineers with tensile strength, yield strength and elongation because these three properties are easily gathered in one test. This data is familiar to us so we continue to gather it. After all, our material standards are based on them. However, without much fanfare, two of the three measures have become largely meaningless. Scores of interdependent property relationships related to tensile strength continue to exist. For example, the endurance ratio portends high cycle fatigue performance for a given tensile strength. The problem is that for most design applications, if the part has yielded (plastically deformed or elongated), it is scrap. That is reflected in the fact that FEA models do not consider either tensile strength or elongation in their long list of coefficients and exponents because those models are used to design parts that are not plastically deformed. Those models also use such values as Young’s Modulus (stiffness) and Poisson’s Ratio (directional deflection) to accurately model the dimensional response of a component to a given input. Yield strength is a useful measure because it predicts the onset of plastic deformation. Elongation is only useful to the extent that it gives us a relative “feel” for the ductility of a material. Unfortunately, the low speed at which the load is applied in a tensile test is not often encountered in the ductile failure of a component. As stated before, if a component elongates in service, it is usually scrap and, therefore, not a useful measure in design. Figure 4 shows the relationship between elongation and yield strength for several material/process combinations.

Paper 10-129.pdf, Page 5 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 6: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

Fig. 4. Yield (Proof) Stength for ADI vs. various common engineering materials. Examination of Figure 4 shows that ADI is a rather disruptive technology as it changes the order of things that we knew. Historically, we knew that if we had a design application with stress levels exceeding 500 MPa (~73 ksi) that we had one material choice…..steel. Neither the aluminum alloys nor the ductile iron alloys could function for very long at those stress levels. Then came ADI and our choices changed. Now the designer had to choose a material instead of just defaulting to steel. To make the traditional mechanical designer comfortable with ADI, standards with minimum requirements defined in tensile strength, yield strength, elongation and hardness were developed. See Table 2. As you can see from Table 2 and the comparative Figure 4, the ADI grades are viable alternatives to some of the incumbent material/process combinations that designers are more familiar with. Figure 5 is a comparison of the elongation of ADI to steel, aluminum, titanium, as-cast ductile iron and carbon fiber composite materials. As can be seen in this figure, the various grades of ADI (#20) are spread throughout the distribution.

Fig. 5. Typical percent elongation for various material/process combinations.

A note about when reduction in area is called for. In most ductile materials, when the tensile bar is pulled, the bar fails in a “necked” area. This is an area where the deformation concentrates after the onset of plastic deformation. Oddly, ADI does not neck. In a test bar, this is manifested by the entire gage length getting smaller in diameter with no specific smaller diameter section surrounding the failure. As such, the percent reduction in area for ADI is nearly identical to the percent elongation. Yield strength is a useful value in both traditional infinite life (stress controlled) mechanical design and finite life (strain controlled) FEA designs. Practically, for most designs, yield stress represents the load that you never want your component to see…..the “stress ceiling”. As such, many of the following comparisons use yield strength as the constant comparative value and relate it to various other properties to give the reader a relative placement of ADI to other common (and not so common) engineering materials. Young’s Modulus (stiffness) is one property that seems to require “re-invention” by each generation of engineers. (The push to make systems lower in mass invariably leads to systems that vibrate too much or make too much noise or are felt to be “harsh” by the untrained end-user). To make components lighter, the first place we look is the low density materials, but the problem is that the low density materials tend to have very low stiffness. Figure 6 shows the relationship between yield strength and Young’s Modulus for several material families. In this comparison, steel has the highest stiffness at about 205 GPa and aluminum has about one-third the stiffness at 70 GPa. ADI is an excellent compromise (at about 165 GPa), having 2.3 times the stiffness of aluminum as well as more than three times the strength. The limiting factor with ADI in designing for stiffness is the minimum section size achievable. In conventional sand molding, the minimum ductile iron / ADI design thickness would about 5mm generally and 3mm in specific areas. With precision core sets, investment castings and other processes, it is possible to achieve a general ductile iron wall thickness of 3mm. A thin-walled ADI design can replace a heavy-walled aluminum part at equal weight, but ADI will not be able to replace an aluminum die casting with a 2.5mm wall thickness. Stiffness often has a dynamic inference. That is the case with ADI when used in gear and rolling contact applications. For example, in a gear tooth application, ADI may have a lower allowable contact stress than carburized and hardened steel. But because it has a lower Young’s Modulus for a given input load, ADI will have a larger “contact patch” and, thus, a lower contact stress for a given input load. In this case, the lower Young’s Modulus works to the advantage of the ADI as it “elastically conforms” better to the mating part, assuming that the increased backlash on the gear tooth is not a functional issue.

Paper 10-129.pdf, Page 6 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 7: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

Fig. 6. Young’s Modulus (stiffness) for various material /process combinations. DYNAMIC PROPERTIES Dynamic properties include such measures as fatigue strength (rotating bending, rolling, gear tooth contact and bending), wear resistance, galling resistance and toughness. Figure 7 shows the typical 10 million cycle allowable rotating bending stress of ADI compared to several material/process combinations. Examination of these results shows that ADI is very competitive with neutral hardened, medium carbon steel.

Fig. 7. Typical 10MM cycle allowable bending stress (MPa) for various materials.. ADI has a few unique properties related to fatigue strength. Figure 8 demonstrates them graphically. Unlike all the other ferrous and non-ferrous materials, ADI’s bending fatigue strength is at a maximum in the lower strength grades. Furthermore, most materials exhibit an increase in fatigue strength if they are shot peened, fillet rolled or ground. This occurs because the dislocations in

the metal matrix generated by one of the aforementioned processes increase the compressive stresses at the surface. This manifests itself as a 5-20% increase in allowable bending fatigue load. In addition to the creation of matrix dislocations during surface working, the carbon-stabilized Austenite in the Ausferrite structure undergoes a metallurgical transformation to Martensite in a ferrite “nest”. This results in a local volumetric expansion that dramatically increases surface compressive stress and allowable fatigue load, making ADI competitive with carburized steel. Figure 8, compiled from AGMA 939-A07 9 and AGMA 2001-D04 10 shows the comparative allowable stresses of various material/process combinations used in the manufacture of gears.

Fig. 8. A comparison of the allowable bending stress for ADI (as machined and shot peened) vs. other, conventional steel material/process combinations. If one is designing with “strain controlled” FEA models, the necessary coefficients and exponents are now available. Sources for them are included in the references with the most widely used one being the American Foundry Society’s Research Report entitled “ Strain-Life Fatigue Properties Database for Cast Iron” on CD.11 This paper seeks only to familiarize you with the relative fatigue strength of various material/process combinations so that you can determine if ADI should even be considered for a given fatigue application. The strain transformation of the ausferrite matrix as a result of surface work also makes ADI wear better than its bulk hardness would indicate. Figure 9 compares the pin abrasion wear resistance of ADI with several other materials, all at a bulk hardness of 40 HRC.

Paper 10-129.pdf, Page 7 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 8: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

Fig. 9. Relative volume loss to abrasion of several material/process combinations at 40 HRC. This surface “strain transformation” effect also positively affects the contact fatigue properties of ADI. Figure 10 draws on AGMA 9-10 for comparative data in contact fatigue. ADI compares favorably with neutral (through) hardened steel, nitrided steel and induction hardened steel. ADI is perfectly adequate for contact stress levels up to about 1600 MPa. Above 1600 MPa, carburized and hardened steel is currently the only alternative.

Fig. 10. Allowable contact stress for ADI (as machined) compared to other, conventional steel material/process combinations. Galling resistance is often important for parts that twist against each other in service. Table 3 shows the result of galling tests on various grades of ADI, Carbo-Austempered™ steel, Carburized & Hardened steel and bearing bronze. During testing, Grade 900 ADI did not gall. This would imply that ADI 900 might be a very cost effective alternative to expensive bronze in some galling applications.

Table 3. Self Mated Galling Results for ADI, Carbo-AustemperedTM Steel, Carburized & Hardened Steel

and Bearing Bronze.

Material

Volume Loss

(mm3)

Hardness

(HRC)

Galling Threshold

(MPa) Grade 900 ADI 10.9 30 1527+ Grade 1050 ADI 10.7 40 894 Grade 1600 ADI 9.4 52 941 C/A 8620 Surface 10.6 54 512 C/H 8620 Surface 10.6 60 882 SAE 660 Bronze 70.1 27(HRB) 311+ + Indicates no galling occurred during testing. ADI is a moderately tough material for its strength. For those familiar with designing with ductile iron, a general rule of thumb for ADI would be that compared to as-cast ductile iron, ADI will have twice the strength for a given level of ductility. The measures of toughness include impact strength (notched and un-notched) and fracture toughness. Once again, the existing standards have developed over time with the tests that are easy to make. Charpy and Izod impact tests are time honored measures. Unfortunately, they do not offer one bit of data that is useful in FEA design. In Charpy impact, ADI is better than as-cast ductile iron and aluminum, but inferior to steel. Fracture toughness (K1C) is a test that measures the energy required to propagate an existing crack. In fracture toughness, the performance of ADI is similar to that of steel for a similar strength/hardness. Figure 11 shows the relative value of fracture toughness for several material/process combinations.

Fig. 11. Room temperature fracture toughness of ADI compared to several material/process combinations. Austenite is a face-centered-cubic (FCC) metallic matrix structure. As such, it has no ductile to brittle transition temperature. Aluminum is 100% FCC and that is why the

Paper 10-129.pdf, Page 8 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 9: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

properties of an airplane’s skin and wings do not deteriorate at -60°C (-76°F) during high altitude flight. Similarly, ADI has FCC austenite as one of its principal constituents and the lower strength grades of ADI (those with the highest percentage of austenite in the microstructure) have the most gentle ductile to brittle profile. In fact, ADI maintains nearly 70% of its room temperature fracture toughness at -40° as can be seen in Figure 12.

Fig. 12. Fracture toughness of two types of ADI over a range of temperatures. (Grade 1~302HBW and Grade 1.5~321HBW). OTHER PROPERTIES These “other” properties are as varied as the applications being considered. They may include such measures as density (specific gravity), corrosion resistance, coefficient of thermal expansion, thermal conductivity, damping coefficient and other measures as specific as magnetic permeability and electrical resistivity. Today, designers are often pressed for weight reductions to either reduce energy requirements on moving systems or to reduce shipping costs or to reduce the structural needs of a system made up of many components. Figure 13 compares the densities of several material/process combinations. The popularity of aluminum stems largely from its low density and good manufacturability. Low density, by itself, is insufficient to compare materials. For instance, Styrofoam and balsa wood have low densities, but their strengths are insufficient for most component designs. Figure 14 compares the relative weight per unit of yield strength of various materials.

Fig. 13. A comparison of typical specific gravities for various material/process combinations.. In general, there is no free lunch for weight reduction. The lowest density materials tend to have the lowest yield strength and the lowest stiffness. More exotic materials like titanium and some carbon composite materials can escape that rule, but they tend to be very expensive, brittle or have poor manufacturability. Note in the comparison in Figure 14 that ADI has a relatively low specific weight.

Fig. 14. Relative weight per unit of yield strength for several material/process combinations. A material’s ability to damp noise is often important in the perceived quality of a device or system. Gray iron with large, coarse graphite flakes is referred to as “damped iron” for its ability to damp noise. Conversely, aluminum is a notoriously “noisy” material. Table 4 shows the relative damping capacities of various materials. Note that Austempered ductile irons, with their Ausferritic matrix, have better damping capacity than regular ferritic/pearlitic ductile irons. The increase in damping seems to be proportional to the size and distribution of the ferrite plates in ADI’s Ausferrite matrix. A higher strength grade of ADI (with a larger volume of finer ferrite platelets) has a higher damping coefficient than a lower strength grade of ADI (with fewer, coarser ferrite platelets).

Paper 10-129.pdf, Page 9 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 10: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

Table 4. Relative Damping Capacity for various material/process combinations.

Material/Process Relative Damping Capacity Coarse Flake (damped) Gray Iron

100 - 500

Fine Flake Gray Iron 20 - 100 Austempered Ductile Iron (ADI)

9 - 30

Ductile Iron 5 - 20 Carbon Steel 4 Carbidic (White) Iron 2 - 4 Aluminum (typical) 0.4 Corrosion resistance is a material feature that must be addressed in most designs; even finite life designs. Table 5 shows the galvanic series for selected metal alloys. The light metal alloys (magnesium and aluminum) are subject to rapid corrosion and must either be attached with (and to) welds or fasteners of like galvanic behavior or insulated from them. For example, magnesium alloy (mag) wheels on cars must be coated and attached with insulating (non-conductive) washers to prevent them from coupling to ground through iron and/or steel components and rapidly corroding in service. The silicon-iron-graphite oxide that develops on cast iron advances very slowly, once established. ADI is incrementally more corrosion resistant than steels and other cast irons due to the presence of graphite and Austenite in the metal matrix. (Note the position of graphite and the Austenitic materials in the Galvanic Series). For example, a Grade 1050-7 ADI has 9% graphite and approximately 30% Austenite in its structure making the material more cathodic than ferritic/pearlitic ductile irons or steels. Ferrous alloys hardened to high tensile strengths can be subject to environmentally assisted failure (EAF) under the right conditions. Designers are familiar with the risk of using quenched and tempered steels at elevated hardnesses loaded at a constant elevated stress (near the proof strength of the material). Liquids and other sources of hydrogen ambient to the highly stressed region of the component can induce brittle failures at bulk loads calculated to be below the proof stress. ADI is also subject to EAF.12 A failure of this type requires the presence of three conditions: (1) A high and constant stress near the proof stress and/or local plastic deformation; (2) A slow strain rate and (3) a hydrogen or liquid source of hydrogen ions. Therefore, in designing with ADI, one should never use it in an application where the parts are locally plastically deformed at a high (and sustained) stress level.

Table 5. The (Relative) Galvanic Series for selected metal alloys.

ANODIC / LEAST NOBLE / CORRODED Magnesium Alloys Zinc Alloys Aluminum Alloys Mild Steel and Wrought Iron Alloyed Carbon Steels Cast Iron (including Ductile Iron) Austempered Ductile Iron (ADI) Ferritic and Martensitic Stainless Steels Ni-Resist (majority Austenitic Cast Iron) Titanium Lead Tin Inconel Brass Copper Bronze Austenitic Stainless Steel (fully Austenitic) Silver Graphite Zirconium Gold Platinum CATHODIC /MOST NOBLE / PROTECTED

Previously in this paper, we discussed the effects of the FCC Austenite in ADI’s microstructure affecting its low temperature toughness. The presence of Austenite in the structure also produces other characteristics of note in ADI. We know that the Austenite in the Ausferrite structure is thermally stable to very low (liquid helium) temperatures. However, the Austenite can break down into ferrite and carbide if exposed to elevated, long-term service temperatures; resulting in a gradual degradation of tensile strength and toughness. Earlier research13 has demonstrated that the ADI microstructure is long-term stable as long as operating temperatures did not exceed about 60°C (108°F) less than the isothermal transformation (Austempering) temperature. Table 6 shows estimated maximum continuous operating temperatures for the various grades of ADI. Table 6. Estimated maximum operating temperature

for the various grades of ADI.13

Grade of ADI Maximum Operating Temperature

750-500-11 315°C (600°F) 900-650-09 315°C (600°F) 1050-750-07 300°C (572°F) 1200-850-04 290°C (554°F) 1400-1100-02 280°C (536°F) 1600-1300-01 260°C (500°F)

Paper 10-129.pdf, Page 10 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 11: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

Austenite also has the affect of increasing the coefficient of thermal expansion in ADI. Ferritic, pearlitic and Martensitic irons and steels have a coefficient of thermal expansion of about 11(mm/mm/°C)x10-6. ADI, depending on the grade, has a coefficient of thermal expansion ranging from about 13.5-14.5 (mm/mm/°C)x10-6 . By comparison, aluminum alloys have a coefficient of thermal expansion of about 18 (mm/mm/°C)x10-6 . This property needs attention in cases where tolerance fitting is required at temperature. For example, a forged steel crankshaft rotating in an aluminum block will require special design features to not leak oil at operating temperatures. Conversely, an ADI crankshaft operating in an iron block would require extra cold clearance to allow for the greater crankshaft growth at operating temperatures. MANUFACTURABILITY AND COST CONSIDERATIONS Items considered in manufacturability include minimized operational steps, near net shape, machinability, low-energy production, recyclability, weldability, reduced numbers of sub-components, availability, lot size, tooling costs, and component size and shape. Figure 15 shows a simple case of a forged steel end connector as compared to an ADI casting. In this case, the numbers are very clear. With ADI you buy less material because ductile iron is 10% less dense and because the holes have been cored into the casting. The part is machined in the soft, as-cast condition. Furthermore, ductile iron can be machined much more quickly than forged steel with extended tool life. Unlike the continuous, spring-like chips produced during the machining of steel, the chips from ductile iron machining are discontinuous, can be handled using standard magnetic techniques and are 100% recyclable. In the absence of an assignable cause failure, the designer is most often asked to reduce the cost of the component to make the producer’s product or system cost competitive and more profitable. The task is to produce a component or a system to the minimum engineering requirement for the application at the lowest price. Often, the cost of the material blank is eclipsed in this consideration by the price of machining, plating, transport, inventory, tooling, and so on. For instance, it is common for an ADI blank to be 20-30% lower in cost than a heat treated steel forging. However, the principal savings may not be in the blank, but in the money saved by machining the part in the soft, as-cast condition and then Austempering. This can result in doubling machining center throughput and greatly increased tool life…aspects saving much more than the savings on the heat treated blank.

Fig. 15. Cast ADI end connectors compared to forged steel in a manufacturing sequence. The lowest cost path is to cast the part, machine it completely in the soft, as-cast condition and then austemper. Because of the dimensional repeatability of the ADI process, this is a viable option in about three quarters of the applications. However, in applications where the tolerances are on the order of 0.01mm, the part will require machining after austempering. Machining ADI can be, and is being, done every day; even for ADI exceeding 400 HBW. The key is in understanding how to correctly set up for it. For example, if one uses their experiential knowledge with steel and sets up to machine a 320 HBW ADI using the tools, set-up and settings they use for a 320 HBW steel, the machinist will mistakenly conclude that ADI cannot be practically machined. However, if you know the critical differences, ADI can be machined. Those differences are:

1. Difference: ADI has a 20% lower Young’s modulus than steel with similar yield strength for a given hardness, resulting in excessive, high-frequency vibration and tool wear. Solution: The ADI part must be secured with a very rigid chucking scheme and short tool holder moments must be employed.

2. Difference: ADI undergoes a “strain transformation” in front of the tool, similar to some stainless steels, Solution: A thicker chip (cut at an appropriately lower speed) can move the strain transformed area away from the cutting edge of the tool and allow it to break away cleanly. This requires, however, greater power and, thus, more deflection of

Paper 10-129.pdf, Page 11 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 12: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

the tool setup during metal removal. A thin chip taken at a high rate of speed can harden over its entire cross section, generate more heat and tool wear. High speed removal of thin cuts may be acceptable with ceramic composite tooling.

3. Difference: The high yield strength and the in-situ strain transformation result in very high tool-work interface temperatures. Solution: A tool material capable of withstanding high interface temperatures that is tough enough for interrupted cuts is in order. Aluminum Oxide tools with SiC whiskers have been shown to provide good results (even at higher surface speeds).

The casting process is the most direct, lowest energy process from metal ore to finished component. All ductile iron and ADI grades can be produced from up to 100% recycled materials. Properly designed castings can combine multiple part numbers into one, simplified design, reduce weight and improve the appearance and the functionality of the component. Castings can put the metal right where you need it. Casting processes allow us to cast holes and complex passages into parts that cannot be forged in. They allow for the ability to cast in threaded fittings, tubes, weld pads and various fasteners needed for subsequent attachment or function. The advent of highly accurate finite element analysis tools allows for freedom from preconceived engineering design notions (like perfect circles, and right angle corners). Today, the strain life fatigue coefficients and exponents exist for the commercial ADI grades and engineers can easily examine ADI in a proposed application before the first bit of tooling or prototypes are built; thus, increasing the accuracy of both the engineering and the cost models. When FEA modeling was first becoming practical, a North American automobile manufacturer had a problem. A new model of a popular, high performance vehicle was incorporating a new fuel tank design; displacing some of the space previously allowed for the rear suspension. The large, cast aluminum upper control arms slated for this application would not fit in the package. The suspension designer worked with a foundry and their casting designer to develop a new, light-weight ADI design using FEA optimization. The result was the configuration shown in Figure 16 that fit handily in the available space and provided the needed performance at a lower cost with virtually no weight penalty. Casting tooling is generally much lower in cost than forging tooling. With the use of cores, one can design holes or passageways in the as-cast component that could not be achieved with forging, welding or by assembling several pieces.

Fig. 16. These smaller, lighter-weight ADI upper control arms replaced the larger aluminum design that would not fit into the vehicle package. Figure 17 shows a case study where a stamped, welded and assembled steel suspension control arm was replaced with an ADI design. The per-piece price savings for ADI was 2%, but the tooling for the ductile iron castings was 54% lower in cost and the vehicle weight was reduced by 4 lbs (1.8kg).

Fig. 17. The stamped, welded and assembled steel control arm on the left was replaced with the ADI design on the right at a cost and weight savings. Castings can be cost effective, even in very small lot sizes. Manufacturers with in-house welding capabilities often make the mistake of assuming that for a part that is only 100 pieces per month, the welding together of three parts is more cost effective than buying castings. When one considers the production and inventorying of three pre-weld part numbers and their drawings along with the welding fixtures and gages that must be maintained to an ISO standard, the price is often much higher for the weldment. Since the costs are buried in the manufacturer’s overhead and not easily defined, they are

Paper 10-129.pdf, Page 12 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 13: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

typically miscalculated. With a casting, one’s ISO controlled pattern is stored at the casting supplier. If the customer needs 100 pieces, they need only to order them. Many casting suppliers (for a small, additional per-part fee) will even cast, machine and heat treat components in bulk for cost savings and then ship in sub-groups as the customer needs the parts; thus, eliminating inventory for the purchaser. Figure 18 shows a welded steel seed boot for a rangeland seeder and its one-piece ADI replacement. The ADI component is not only more visually appealing, it is 15% lower in mass and 65% lower in cost. The lead time to produce pieces went from six weeks with the steel weldment to 3 weeks with the ADI casting (including heat treatment).

(a) Welded steel seeder boot

(b) ADI seeder boot

Fig. 18. The multiple-piece welded steel seeder boot (a) was replaced with the one-piece ADI design (b) with significant cost, mass and time savings. Figure 19 shows a drive wheel for a rubber-tracked crawler vehicle. The one-piece ADI conversion replaced an 82 piece welded and bolted assembly at a 15% lower mass and with a cost reduction of over 50%. Figure 20 shows an ADI wheel hub for a Class 8 truck trailer. The ADI hub was designed to take maximum advantage of ADI’s high strength-to-weight ratio. It is 2% lighter than the aluminum hub that it replaced and lower in cost.

Fig. 19. This one-piece ADI drive wheel replaced an 82-piece welded and fastened assembly. For a given annual production volume, ADI is typically 20% lower in cost than a comparable steel component and over 30% lower in cost than an aluminum component. The design engineer is often buying strength. The lowest strength grade of ADI is about three times stronger than the highest strength aluminum and ADI’s density is only 2.4 times that of aluminum. This means that in certain applications, ADI can replace aluminum at equal or lower weight. With the cost per unit mass much lower for ADI than steel or aluminum, ADI exhibits a lot of strength for the money. Figure 21 shows the comparison of cost per unit of yield strength for various engineering materials.

Fig. 20. The ADI truck trailer hub (Left) is 2% lighter and lower in cost than the aluminum hub (Right) that it replaced.

Fig. 21. Relative cost per unit of yield strength for various material/process combinations.

Paper 10-129.pdf, Page 13 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 14: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SUMMARY/CONCLUSIONS ADI offers the designer an economical alternative to steel and aluminum castings, forgings and weldments. ADI’s high strength-to-weight ratio allows the designer to even replace aluminum sand castings and forgings at equal mass in applications with a minimum ADI wall thickness of 3mm. ADI’s bending and contact fatigue strength makes it superior to aluminum and competitive with steel at a similar hardness. ADI offers the mechanical designer a practical material choice at low cycle stress levels above 450 MPa. It is impossible to capture the entire design process and to address all the questions encountered in the design of mechanical components in a single paper. The authors have attempted to speak from a design perspective about a material that is new to most designers. The comparative relationships are insufficient for part design, but the references referred to below would lead the designer to the necessary documents and formulae to answer his/her specific questions to allow for designing with ADI. REFERENCES 1. ASTM A536-84(2009), Standard Specification for

Ductile Iron Castings, ASTM International, West Conshohocken, PA, www.astm.org.

2. SAE J434, Automotive Ductile (Nodular) Iron Castings, SAE International, Warrendale, PA, www.sae.org.

3. ISO 1083:2004, Spheroidal Graphite Cast Irons – Classification, ISO, Switzerland, www.iso.org or www.ansi.org.

4. DIN EN 1563-2005, Founding - Spheroidal Graphite Cast Irons, Berlin, Germany, www.din.de .

5. ASTM A897/A 897M-06, Standard Specification for Austempered Ductile Iron Castings, ASTM International, West Conshohocken, PA, www.astm.org.

6. SAE J2477:2004, Automotive Austempered Ductile (Nodular) Iron Castings (ADI), SAE International, Warrendale, PA, www.sae.org.

7. ISO 17804:2005, Founding Ausferritic Spheroidal Graphite Cast Irons – Classification, ISO, Switzerland, www.iso.org or www.ansi.org.

8. DIN EN 1564:2006-03, Founding – Austempered Ductile Cast Irons, Berlin, Germany, www.din.de .

9. AGMA 939-A07, Austempered Ductile Iron for Gears, American Gear Manufacturers Association, Alexandria, VA, www.agma.org.

10. ANSI/AGMA 2001-D04, Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth, American Gear

Manufacturers Association, Alexandria, VA, www.agma.org.

11. American Foundry Society Research: Strain-Life Fatigue Properties Database for Cast Iron, 2003, AFS, www.afsinc.org.

12. Gagne, M and Hayrynen, K.L., “Environmental Embrittlement of Ductile Iron”, Proceedings of the 8th International Symposium on Science and Processing of Cast Iron, Beijing, China, 2006, pp. 452-457.

13. Hayrynen, K.L., PhD, Keough, J.R., P.E., Kovacs, B.V., PhD, “Determination of Mechanical Properties in Various Ductile Irons after Subjecting Them to Long-Term Elevated Temperatures”; Research Project No. 28, 1999, Ductile Iron Society, North Olmsted, Ohio, USA; www.ductile.org .

FURTHER READING • PB89-190946, Austempered Ductile Iron (ADI)

Process Development Final Report, 1989, Gas Research Institute, www.ntis.gov or 800-553-6847.

• Project A4001, Austempered Ductile Iron Data Base, 1989, ASME Gear Research Institute, Naperville, IL.

• 1st International Conference on Austempered Ductile

Iron: Your Means to Improved Performance, Productivity and Cost, Rosemont, IL, American Foundry Society, individual papers from the conference at www.afsinc.org.

• 2nd International Conference on Austempered Ductile

Iron: Your Means to Improve Performance, Productivity and Cost, Ann Arbor, MI, American Foundry Society, individual papers from the conference at www.afsinc.org.

• 1991 World Conference on Austempered Ductile

Iron, Chicago, IL, American Foundry Society, individual papers from the conference at www.afsinc.org.

• Proceedings of the 2002 World Conference on ADI,

Conference on Austempered Ductile Iron (ADI) for Casting Producers, Suppliers and Design Engineers, Louisville, KY, on CD-ROM, www.afsinc.org.

• Ductile Iron Data for Design Engineers, revised

1998, Rio Tinto Iron & Titanium, Inc., Montreal, Quebec, www.ductile.org/didata.

• Iron Castings Engineering Handbook, 2003

American Foundry Society, www.afsinc.org.

• Kovacs, B.V., PhD and Keough, J., PE, “Physical Properties and Application of Austempered Gray

Paper 10-129.pdf, Page 14 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 15: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

Iron”, AFS Transactions, 1993, Vol. 101, Paper # 93-141, pp. 283-291.

• Metals Handbook Tenth Edition Volume 1,

Properties and Selection of Irons and Steels, 1990, ASM International, www.asminternational.org.

• Technical Library at www.appliedprocess.com.

ACKNOWLEDGMENTS The authors would like to thank the employees and customers of the AP Companies and our worldwide network of licensees for their contributions to the information and case studies referred to in this paper. Special thanks to Terry Lusk, Justin Lefevre, Smith Foundry, Dotson Company, Walther EMC, Benteler, Toro, Citation Corporation and Chrysler. DEFINITIONS/ABBREVIATIONS

In the comparative properties graphs the Key references to various “CF” materials represent carbon fiber materials.

There exists mixed convention regarding the capitalization of the various forms of the words “Austenite” and “Austemper”. The A is rightly capitalized as the pre-fix “Aus” is a formal derivation from the name of the metallic phase Austenite and its principal discoverer, Sir William Chandler Roberts-Austen (1843-1902), British metallurgist.

The same conundrum arises with the various conjugations of Bainite, the metallurgical mixture of phases named after its discoverer, Edgar Bain, and Martensite, a mixture of phases named after the German investigator Adolph Martens.

HBW is the convention for Brinell hardness taken from an indentation made from the ISO required tungsten (W) ball.

Paper 10-129.pdf, Page 15 of 15AFS Proceedings 2010 © American Foundry Society, Schaumburg, IL USA

Page 16: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

2002 World Conference on ADI

The Production of Austempered Ductile Iron (ADI)

Kathy L. Hayrynen Applied Process Technologies Division, Livonia, MI

ABSTRACT Austempered Ductile Iron (ADI) results from a specialty heat treatment of ductile cast iron. Strength improvements up to 100% (or more) in combination with excellent toughness can be realized by using this process. Successful production of ADI requires a cooperative effort between the foundry and heat treater. High quality ductile iron is the necessary raw material. The proper heat treatment will then yield the desired mechanical properties. INTRODUCTION After several decades of successful production of Austempered Ductile Iron, the myth that a special type of ductile iron is needed still persists. In fact, the only necessary ingredient for the production of ADI is high quality ductile iron with the appropriate alloy content for hardenability, if needed. This paper will review the austempering heat treat process and the foundry requirements that are necessary for the production of ADI. BACKGROUND The austempering process was first developed in the early 1930’s as a result of work that Bain, et al, was conducting on the isothermal transformation of steel. In the early 1940’s Flinn applied this heat treatment to cast iron, namely gray iron. In 1948 the invention of ductile iron was announced jointly by the British Cast Iron Research Association (BCIRA) and the International Nickel Company (INCO). By the 1950’s, both the material, ductile iron, and the austempering process had been developed. However, the technology to produced ADI on an industrial scale lagged behind. The 1970’s would arrive before highly efficient semi-continuous and batch austempering systems were developed and the process was commercially applied to ductile iron. By the 1990’s, ASTM A897-90 and ASTM A897M-90 Specifications for Austempered Ductile Iron Castings were published in the US while other specifications were developed worldwide. In addition, a new term to

describe the matrix microstructure of ADI as “ausferrite” was introduced. The five Grades of ADI according to ASTM A897/897M are listed in Table 1. Figures 1(a) and (b) show the ausferrite microstructure for Grades 1 and 5 ADI, respectively.

Table 1: ASTM A897/897M -02 Minimum Property

Specifications for ADI Castings

Grade Tensile

Strength (MPa/Ksi)

Yield Strength (MPa/Ksi)

Elong. (%)

Impact Energy (J/ft-lb)

Typical Hardness

(BHN)

1 850 / 125 550 / 80 10 100 / 75 269 – 321

2 1050 / 150 700 / 100 7 80 / 60 302 – 363

3 1200 / 175 850 / 125 4 60 / 45 341 – 444

4 1400 / 200 1100 / 155 1 35 / 25 366 – 477

5 1600 / 230 1300 / 185 N/A N/A 444 - 555

Figure 1a: Photomicrograph of Grade 1 ADI. Specimen was etched with 5% Nital.

Page 17: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

2002 World Conference on ADI

Figure 1b: Photomicrograph of Grade 5 ADI. Specimen was etched with 5% Nital.

THE AUSTEMPERING PROCESS Figure 2 contains a schematic of the austempering process. This process includes the following major steps:

1. Heating to the Austenitizing Temperature (A to B)

2. Austenitizing (B to C) 3. Cooling to the Austempering temperature (C

to D) 4. Isothermal heat treatment at the

Austempering temperature (D to E) 5. Cooling to room temperature (E to F)

Figure 2 : A schematic of the Austempering process. Austenitizing Temperature and Time The choice of austenitizing temperature is dependent on the chemical composition of the ductile iron. Figure 3 shows a schematic of an equilibrium diagram for a graphitic ductile iron.

UCT

LCT

Figure 3: A schematic of an equilibrium phase diagram of graphitic ductile iron. The symbols present represent austenite (γ), ferrite (α) and graphite (G). The Upper Critical Temperature (UCT) and Lower Critical Temperature (LCT) are labeled. The austenitizing temperature should be chosen so that the component is in the austenite + graphite (γ + G) phase field. Elements like Silicon raise the UCT while Manganese will lower it. If the austenitizing temperature is below the UCT or in the subcritical range (γ + α + G), then proeutectoid ferrite will be present in the final microstructure, resulting in a lower strength and hardness material. Once the ferrite forms, the only way to eliminate it is to reheat above the UCT. Figure 4 shows the microstructure of an austempered material that was austenitized below the UCT.

Figure 4: A photomicrograph of ADI that was austenitized below the Upper Critical Temperature (UCT). The light regions are Ferrite.

Page 18: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

2002 World Conference on ADI

The time at the austenitizing temperature is equally as important as the choice of temperature. The ductile iron components should be held for a time sufficient to create an austenite matrix that is saturated with carbon. This time is additionally affected by the alloy content of the ductile iron with heavily alloyed material taking longer to austenitize. Cooling to the Austempering Temperature Cooling from the austenitizing temperature to the austempering temperature (as shown from C to D in Figure 2) must be completed rapidly enough to avoid the formation of pearlite. If pearlite is formed, the strength, elongation and toughness will be reduced. Figure 5 shows a photomicrograph of Grade 2 ADI that contains pearlite.

Figure 5: Pearlite (dark constituent) in Ausferrite. The formation of pearlite can be caused by several things, most notably a lack of quench severity or a low hardenability for the effective section size. It is possible to increase the quench severity of molten salt quench bathes by making water additions. Oil quench equipment is limited to the production of Grade 5 ADI because of the quench temperatures necessary to produce Grades 4 and higher. The alloy content in ADI is necessary for hardenability purposes or the austemperability of the ductile iron. In general, section sizes greater than 19 mm or 0.75 inches require an alloy addition. Typically, a foundry will work closely with the heat treater to determine the optimum chemical composition of the ductile iron to be austempered. Figure 6 shows a schematic of how the alloying elements segregate in ductile iron during solidification.

Figure 6: A Schematic showing the Segregation of Alloying Elements in Ductile Iron during Solidification The alloying elements that are typically added for hardenability purposes include: Cu, Ni and Mo. Manganese additions are not recommended because of the tendency of Mn to segregate to the regions in between the graphite nodules. Manganese delays the austempering reaction, which can result in the formation of martensite due to the presence of low carbon austenite. Copper additions are often initially recommended because of price considerations. However, more is not necessarily better when Cu additions are considered. Levels in excess of 0.80 can create diffusion barriers around the graphite nodules and inhibit carbon diffusion during austenitizing. Nickel additions are made when the level of Cu has been maximized. Ni additions of up to 2 % are typically made. Beyond that, the price becomes an important consideration. Lastly, Molybdenum is a potent hardenability agent. Unfortunately, it segregates highly to the intercellular/interdendritic locations between the graphite nodules. Molybdenum is a strong carbide former. Figure 7 contains a photomicrograph of Molybdenum carbides that were present in ADI with a Mo addition. The formation of Mo carbides is undesirable, especially if a component is to be machined after heat treatment.

Page 19: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

2002 World Conference on ADI

Figure 7: Molybdenum carbides (white) in ADI. Recommendations for alloying ADI are summarized in Table 2. Table 2: Recommendations for Alloying ADI Recommended Limit

(wt pct) Manganese Max section > 13mm 0.35 max

Max section < 13 mm 0.60 max Copper 0.80 max – only as needed Nickel 2.00 max – only as needed Molybdenum 0.30 max – only as needed Choice of Austempering (Quench) Temperature and Time The choice of austempering temperature and time is dependent on the final properties desired. The typical temperature ranges utilized are 460 – 750°F (or 238 - 399°C). The lower grades (1 and 2) require temperature choices at the upper end of the range while the higher grades are produced at lower quench temperatures. Time at temperature is dependent on the choice of temperature as well as the alloy content. For example, Grade 1 ADI will transform faster than Grade 5 as the quench temperature is approximately 200°F (93°C) higher. The components are held for a sufficient time at temperature for ausferrite to form. Ausferrite consists of ferrite in a high carbon, stabilized austenite. If held for long time periods, the high carbon austenite will eventually undergo a transformation to bainite, the two phase ferrite and carbide (α. + Fe3C). In order for this transformation to occur, longer periods of time are typically needed – much longer than would be economically feasible for the production of ADI.

Once the ausferrite has been produced, the components are cooled to room temperature. The cooling rate will not affect the final microstructure as the carbon content of the austenite is high enough to lower the martensite start temperature to a temperature significantly below room temperature. FOUNDRY CONSIDERATIONS FOR THE PRODUCTION OF ADI The austempering process creates a product that is stronger than conventional grades of ductile iron. As a result, it is more sensitive to any defects that could be present in the base ductile iron. Austempering is NOT a cure for poor quality iron. Rather, the effects of the slightest defects on the mechanical properties of ductile iron become magnified as a result of austempering. Thus, the toughness of an ADI component can be severely compromised by the presence of non-metallic inclusions, carbides, shrink and dross even if their levels were acceptable for conventional ductile iron. There is no “one” optimum recipe for ductile iron that is to be austempered. However, high quality is imperative in all cases. Nodule Count and Nodularity The recommended minimums for nodule count and nodularity for ductile iron to be austempered are as follows: Nodule Count 100/mm2 ( with a uniform distribution) Nodularity 85% Nodule count is especially important when alloy additions are made. Low nodule counts lead to larger spacing between the graphite nodules and larger regions of segregation (Note Figure 6.). In the worst case scenario, these regions can become so heavily segregated that they do not fully transform during austempering, resulting in the formation of low carbon austenite or even martensite. Figure 8 shows regions of segregation that did not transform during austempering. Higher nodule counts will break up the segregated regions shown in Figure 8.

Page 20: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

2002 World Conference on ADI

Figure 8: Segregated regions (white) with a high Mn content in ADI. Casting Quality Castings to be austempered should be free of non-metallic inclusions, carbides, shrink and porosity. In order to achieve the property minimums in Table 1, the following levels should be maintained. Carbides + Nonmetallic inclusions - maximum 0.5% Porosity and/or Microshrinkage – maximum 1% Carbon Equivalent The Carbon Equivalent (CE = %C + 1/3 %Si) should be controlled to produce sound castings. General Guidelines are provided in Table 3. Table 3: Carbon Equivalent Guidelines for the Production of ADI

Section Size CE Range 0 – 0.5 inches ( 0 – 13 mm) 4.4 – 4.6 0.5 – 2 inches (13 – 51 mm) 4.3 – 4.6 Over 2 inches (51 mm) 4.3 – 4.5

Chemical Composition The chemical composition ranges for a component should initially be established between the foundry and the heat treater. The amount of alloy (if needed) will be a function of the alloy in the foundry’s base metal, the part configuration (section size and shape) and the austempering equipment that is used. Suggested chemistry targets along with typical control ranges are listed in Table 4.

Table 4: Suggested Targets and Typical Control Ranges for the Production of ADI

Element Suggested Target

Typical Control Range

Carbon – C 3.6% ± 0.20% Silicon – Si 2.5% ± 0.20% Magnesium – Mg (%S x 0.76)+0.025% ± 0.005% Manganese – Mn Max section > 13 mm Max section < 13 mm

0.35% maximum 0.60% maximum

± 0.05%

Copper – Cu 0.80% maximum (only as needed)

± 0.05%

Nickel – Ni 2.00% maximum (only as needed)

± 0.10%

Molybdenum - Mo 0.30% maximum (only as needed)

± 0.03%

Tin - Sn 0.02% maximum (only as needed)

±0.003%

Antimony – Sb 0.002% maximum (only as needed)

±0.0003%

Phosphorus – P 0.04% maximum Sulfur – S 0.02% maximum Oxygen – O 50 ppm maximum Chromium – Cr 0.10% maximum Titanium – Ti 0.040% maximum Vanadium – V 0.10% maximum Aluminum – Al 0.050% maximum Arsenic – As 0.020% maximum Bismuth – Bi 0.002% maximum Boron – B 0.0004% maximum Cadmium – Cd 0.005 maximum Lead – Pb 0.002% maximum Selenium – Se 0.030% maximum Tellurium – Te 0.003% maximum Once chemical composition ranges have been established between the foundry and the heat treater, it is important for the foundry to produce ductile iron within the established ranges. Wide variations in chemical composition can lead to variations in the pearlite/ferrite ratio in the as-cast ductile iron as well as a need to adjust the heat treatment parameters. The response or growth during austempering is a function of the prior microstructure and the austempering temperature. Figure 9 shows the linear dimensional change as a function of austempering temperature for ADI with prior microstructures of ferrite, pearlite and a ferrite/pearlite mix.

Page 21: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

2002 World Conference on ADI

Figure 9: Linear Dimensional Change as a function of Austempering Temperature for various prior microstructures.

4. Kovacs, B. V., “ADI – Fact and Fiction”, Modern Casting, March 1990, pp. 38-41.

Figure 9 shows that the growth is different for pearlite or ferrite. However, the growth is consistent from one heat treat lot to another if the chemical composition ranges are obeyed. End users use the consistent growth of ADI to their advantage. Components can be designed to be machined prior to heat treatment and then grow to size during austempering. SUMMARY The production of ADI is not a highly complicated process. Any foundry that works in conjunction with a heat treater can conceivably make ADI. However, there are important considerations in order to be successful. High quality ductile iron with the proper alloy content is the necessary ingredient. Remember that austempering is not the cure for poor quality as it will make bad iron even worse. Knowledgeable heat treaters will work with a foundry to establish the proper chemical composition of the ductile iron to be austempered. The proper choice of heat treatment parameters will then lead to the successful production of any grade of ADI. ACKNOWLEDGMENTS The author would like to thank the following individuals for their assistance in putting this paper together: Kristin Brandenberg, Terry Lusk, and John Keough. The support of the employees of Applied Process, Applied

Process Technologies Division, AP Westshore and AP Southridge are also noted. A special thank you to Dr. Karl Rundman and Dennis Moore for the introduction to metal castings and ADI. Their enthusiasm and encouragement over the past 15 years has been sincerely appreciated. Lastly, the author would like to acknowledge the late Dr. Bela Kovacs for the invaluable contributions he made to the ADI world and for being a great mentor and friend. REFERENCES 1. Hayrynen, K.L., “ADI: Another Avenue for Ductile Iron Foundries”, Modern Casting, August 1995, pp. 35-37. 2. Section IV, Ductile Iron Data for Design Engineers, published by Rio Tinto Iron & Titanium Inc, 1990. 3. Foundry Requirements for the Production of ADI – Internal Information, Applied Process Inc.

ADDITIONAL RESOURCES + Websites www.appliedprocess.comwww.ductile.org/didatawww.asminternational.orgwww.afsinc.orgwww.matweb.com

Page 22: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

Designation: A 897/A 897M – 03

Standard Specification forAustempered Ductile Iron Castings 1

This standard is issued under the fixed designation A 897/A 897M; the number immediately following the designation indicates the yearof original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval.A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers ductile iron castings that aresubsequently heat treated by an austempering process asdefined in 10.1.

1.2 The application of the austempering heat treatmentextends the range of properties achievable in ductile ironcastings.

1.3 No precise quantitative relationship can be stated be-tween the properties of the iron in various locations of the samecasting or between the properties of castings and those of a testspecimen cast from the same iron (see Appendix X1). How-ever, austempering heat treatment will tend to diminish anydifferences in mechanical properties.

1.4 The production of castings, machining (if required), andthe austempering heat treatments may be performed by differ-ent manufacturers, as covered in Section 15. The purchasershould establish by contract agreement, at the time of ordering,the responsibility of the various parties for meeting thespecification requirements.

1.5 The values stated in either inch-pound or SI units are tobe regarded separately as standard. Within the text, the SI unitsare shown in brackets [ ]. The values stated in each system arenot exact equivalents; therefore, each system shall be usedindependently of the other. Combining values from the twosystems may result in nonconformance with the specification.

2. Referenced Documents

2.1 ASTM Standards:2

A 247 Test Method for Evaluating the Microstructure ofGraphite in Iron Castings

A 370 Test Methods and Definitions for Mechanical Testingof Steel Products

A 732 Specification for Castings, Investment, Carbon andLow Alloy Steel for General Application, and Cobalt Alloy

for High Strength at Elevated TemperaturesA 834 Specification for Common Requirements for Iron

Castings for General Industrial UseE 8 Test Methods for Tension Testing of Metallic MaterialsE 10 Test Methods for Brinell Hardness of Metallic Mate-

rialsE 23 Test Methods for Notched Bar Impact Testing of

Metallic Materials2.2 Military Standard:MIL-STD-129 Marking for Shipment and Storage3

3. Ordering Information

3.1 Orders for material to this specification shall include thefollowing information:

3.1.1 ASTM designation, with year of issue,3.1.2 Grade of austempered ductile iron required (see Table

1 and Sections 6 and 7),3.1.3 Chemical composition requirements, if any (see Sec-

tion 4),3.1.4 Heat treated microstructure restrictions (see Section

10),3.1.5 Test coupon criteria (see Section 12),3.1.6 Lot size and tests per lot (see 12.6 and Section 15),3.1.7 Special requirements, if desired, including hardness,

radiographic soundness, magnetic particle inspection, pressuretightness, dimensions, or surface finish (see Section 9),

3.1.8 Certification, if required (see Section 16),3.1.9 Special preparation for delivery, if required (see Sec-

tion 17).

4. Chemical Composition

4.1 Although this specification has no specific chemicalrequirements, such requirements may be agreed upon betweenthe manufacturer, heat treater, and the purchaser.

5. Microstructure

5.1 The graphite component of the microstructure shallconsist of a minimum 80 % spheroidal graphite conforming toTypes I and II per Test Method A 247.

1 This specification is under the jurisdiction of ASTM Committee A04 on IronCastings and is the direct responsibility of Subcommittee A04.02 on Malleable andDuctile Iron Castings.

Current edition approved Dec. 1, 2003. Published January 2004. Originallyapproved in 1990. Last previous edition approved in 2002 as A 897 - 02.

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at [email protected]. ForAnnual Book of ASTMStandardsvolume information, refer to the standard’s Document Summary page onthe ASTM website.

3 Available from Standardization Documents, Order Desk, Building 4, Section D,700 Robbins Ave., Philadelphia, PA 19111-5098, Attn: NPODS.

1

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

Page 23: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

5.2 The matrix microstructure shall substantially consist ofausferrite (acicular ferrite and high carbon, stable austenite).

5.3 The cooling rate within some sections may not besufficient to avoid the formation of pearlite or other hightemperature transformation products. In some cases, the maxi-mum acceptable quantities of these microconstituents and thelocation(s) within the casting may be established by agreementbetween the manufacturer, heat treater, and the purchaser.

5.4 Martensite may be present in minor amounts in themicrostructures of Grades 200/155/02 [1400/1100/02] and230/185/01 [1600/1300/01]. Acceptable quantities of marten-site may be established by agreement between the manufac-turer, heat treater, and the purchaser.

5.5 The microstructure shall be substantially free of unde-sirable microconstituents, the details of which shall be agreedupon by the manufacturer, heat treater, and the purchaser.

5.6 The manufacturer, heat treater, and the purchaser mayagree upon special chemical compositions or processing re-quirements to limit the microconstituents described in 5.3, 5.4,and 5.5.

6. Mechanical Properties

6.1 Tensile property requirements include tensile strength,yield strength, and elongation and apply only after austemper-ing heat treatment.

6.2 The iron represented by the test specimens shall con-form to the requirements as presented in Table 1.

6.3 The yield strength shall be determined by the 0.2 %offset method (see Test Methods E 8).

7. Impact Requirements

7.1 The iron represented by the test specimens shall con-form to the impact properties presented in Table 1.

7.2 Impact energy requirements apply only after test mate-rial has been austempered. The impact test specimens must befinish ground to required dimensions after heat treatment.

8. Hardness

8.1 The area or areas on the castings where hardness is to bechecked shall be established by agreement between the manu-facturer and purchaser, or the manufacturer and the end user.

8.2 Brinell hardness shall be determined according to TestMethod E 10 after sufficient material has been removed fromthe casting surface to insure representative hardness readings.The 10 mm ball and 3000 kg load shall be used unlessotherwise specified and agreed upon.

9. Special Requirements

9.1 When specified in the contract or purchase order,castings shall meet special requirements as to hardness, chemi-cal composition, microstructure, pressure tightness, radio-graphic soundness, magnetic particle inspection, dimensions,and surface finish. Refer to Specification A 834 for a list ofcommon requirements for iron castings not specifically refer-enced elsewhere in this specification.

9.2 When specified in the contract or purchase order,castings shall meet special requirements prior to the austem-pering heat treatment operation.

10. Heat Treatment

10.1 Castings produced in accordance with this specifica-tion shall be heat treated by an austempering process consistingof heating the castings to a fully austenitic, homogeneouscondition, cooling (at a rate usually sufficient to avoid theformation of pearlite) to a temperature above the martensitestart temperature, and isothermally transforming the matrixstructure for a time sufficient to produce the desired properties.This process shall produce a microstructure that is substantiallyausferrite.

10.2 Upon agreement between the manufacturer and thepurchaser, tension test specimens described in Section 13 maybe machined prior to the austempering heat treatment. In thiscase, heat treatment shall be performed in an inert or carboncontrolled environment so as to prevent carburization, decar-burization, or scaling. Handling and fixturing must be such asto prevent test bar distortion (see X1.4).

10.3 Re-austempering of castings or any deviation from theestablished heat treating process is only permissable with theapproval of the casting purchaser.

TABLE 1 Mechanical Property Requirements of Grades

Inch-pound units Grade130/90/09

Grade150/110/07

Grade175/125/04

Grade200/155/02

Grade230/185/01

Tensile strength, min, ksi 130 150 175 200 230Yield strength, min, ksi 90 110 125 155 185Elongation in 2 in., min, % 9 7 4 2 1Impact energy, ft-lbA 75 60 45 25 15Typical hardness, HBW, kg/mm2 269–341 302–375 341–444 388–477 402–512

AUnnotched charpy bars tested at 72 6 7°F. The values in the table are a minimum for the average of the highest three test values of the four tested samples.

SI units Grade900/650/09

Grade1050/750/07

Grade1200/850/04

Grade1400/1100/02

Grade1600/1300/01

Tensile strength, min, MPa 900 1050 1200 1400 1600Yield strength, min, MPa 650 750 850 1100 1300Elongation in 50 mm, min, % 9 7 4 2 1Impact energy, JA 100 80 60 35 20Typical hardness, HBW, kg/mm2 269–341 302–375 341–444 388–477 402–512

A Unnotched charpy bars tested at 22 6 4°C. The values in the table are a minimum for the average of the highest three test values of the four tested samples.

A 897/A 897M – 03

2

Page 24: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

11. Workmanship, Finish, and Appearance

11.1 The surfaces of castings shall be clean and free ofadhering molding material, heat treatment oils or salts, cracks,hot tears, or other injurious defects such as slag and surfaceporosity. Dimensions shall conform to drawings or patternssupplied by the purchaser.

11.2 Castings shall not have chilled corners or center chill inareas to be machined.

11.3 Welding repair is not acceptable on austempered cast-ings.

12. Test Coupons

12.1 Separately cast test coupons from which the tensiontest and Charpy test specimens are machined shall be cast tothe size and shape shown in Fig. 1 or Fig. 2. A modified keelblock cast from the mold shown in Fig. 3 may be substitutedfor the 1-in. [25-mm] Y-block or the 1-in. [25-mm] keel block.The test coupons shall be cast in open molds made of suitablecore sand having a minimum wall thickness of 11⁄2 in. [38-mm]for the 1⁄2-in. [13-mm] and 1-in. [25-mm] sizes and 3 in.[76-mm] for the 3-in. [76-mm] size. The coupons shall be leftin the mold until they have cooled to a black color (900°F[480°C] or less). The size and type of coupon cast to representthe casting shall be at the option of the purchaser. In case nooption is expressed, the manufacturer shall make the choice.

12.2 When investment castings are made in accordance withthis specification, the manufacturer may use cast-to-size testspecimens that are either incorporated in the mold with thecastings or separately cast using the same type of mold and thesame thermal conditions that are used to produce the castings.The test specimens shall be made to the dimensions shown inFig. 1 of Specification A 732 or Fig. 5 of Test Methods andDefinitions A 370. The exact procedure to be used for produc-ing test specimens shall be agreed upon by the manufacturerand the purchaser.

12.3 When castings made in accordance with this specifi-cation are produced by nodularization directly in the mold, themanufacturer may use either separately cast test coupons or testspecimens cut from castings. If test bars are to be cut fromcastings, test bar location shall be agreed upon by the purchaserand the manufacturer and indicated on the casting drawing.When separately cast test coupons are used, selection shall beas outlined in 12.1 and shown in Figs. 1-6. Appendix X2provides guidelines for selection of coupons with mold coolingrates representative of various casting sections.

12.4 Test coupons shall be poured from the same ladle orheat as the castings they represent and, unless otherwise agreedupon by the manufacturer and the purchaser, shall be subject tothe same post inoculation and alloying practice.

12.5 Test coupons shall be heat treated with the castingsthey represent.

12.6 The number of test coupons and the number of testsrequired per order or lot size shall be established at the time ofordering. This agreement should include a definition of lot size.Lot size can be defined to include the entire order, a specifiedportion of that order, a specified manufacturing productionperiod, or a specified quantity of parts shipped to the purchaser.

12.7 If any test specimen shows obvious defects, anothermay be cut from the same test block or from another test blockrepresenting the same metal. Positions other than “A” or “B” inFig. 4 shall not be used. In those cases where removal of testbars from actual castings has been agreed upon (see 12.2 and12.3), a second test bar may be obtained from an alternatelocation of equivalent section or from a second castingprocessed in the same lot.FIG. 1 Keel Block for Test Coupons

“Y” Block Size

Dimensions

For Castings ofThickness Less

Than 1⁄2 in.[13 mm]

For Castings ofThickness 1⁄2

to 11⁄2 in. [13 to 38mm]

For Castings ofThickness of 11⁄2

in. [38 mm]and Over

in. [mm] in. [mm] in. [mm]

A 1⁄2 1 [25] 3 [75]B 15⁄8 21⁄8 5 [125]C 2 [50] 3 [75] 4 [100]D 4 [100] 6 [150] 8 [200]E 7 [175] 7 [175] 7 [175]

approx approx approxF 9⁄16 [14] 1 1⁄16 [27] 3 1⁄16 [78]G 7 1⁄8 [180] 7 1⁄8 [180] 7 1⁄8 [180]

approx approx approx

FIG. 2 Y-Blocks for Test Coupons

A 897/A 897M – 03

3

Page 25: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

13. Tension Test Specimens

13.1 The standard round tension test specimen with a 2-in.[50-mm] gage length shown in Fig. 5 shall be used, exceptwhen the1⁄2-in. [13-mm] Y-block coupon is used. In this case,either of the test specimens shown in Fig. 6 shall be satisfac-tory. Tension test specimens shall be machined only fromPositions A (preferred) or B in Fig. 4. The test bars may bemachined before or after heat treatment in accordance with10.2.

14. Impact Test Specimens

14.1 The unnotched Charpy impact strength shall be deter-mined according to Test Methods E 23 with the followingvariations: Specimens are to be prepared unnotched to dimen-sions in Fig. 9 of Test Methods E 23. Blanks from which testspecimens are machined shall be cut only from Positions A orB in Fig. 4. Test temperature shall be 726 7°F [22 6 4°C].Four specimens shall be tested, with the lowest impact energyvalue discarded and the remaining three values averaged. Theaverage impact energy shall meet the requirement of Table 1.

15. Responsibility for Quality and Inspection

15.1 At the time of an order, the purchaser should establishan agreement for quality and inspection requirements with the

manufacturers. The form of this agreement depends uponwhich of the conditions in 15.2 or 15.3 are determined to exist.

15.2 If all manufacturing operations are performed by asingle manufacturer, that manufacturer is responsible for per-formance of all quality and inspection requirements coveredherein.

15.3 If, at the time of ordering, the purchaser determinesthat more than one manufacturer will contribute to the casting,machining, and heat treatment operations, in any sequentialfashion, an agreement should be negotiated that defines andassigns individual responsibility for each specific quality andinspection requirement. This does not prevent an agreementwherein any one manufacturer in the chain of sequentialoperations can agree to assume full responsibility for all qualityand inspection requirements.

15.4 To avoid future disputes, the purchaser can require thatall companies in the manufacturing chain be identified.Changes shall not be made without approval of the purchaser.The manufacturer(s) may require the purchaser to providewritten agreement for any changes mutually agreed upon.

15.5 Unless specified to the contrary by the purchaser, anyof the manufacturers in the chain may use his or her own or anyother facilities for performance of the inspection requirements.Responsibility for meeting the specified properties remains

FIG. 3 Mold for Modified Keel Block

A 897/A 897M – 03

4

Page 26: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

with the parties defined in 15.2 or 15.3. This shall not preventthe purchaser from also performing any or all of the quality andinspection requirements.

16. Certification

16.1 Where required by contract, the manufacturer’s certi-fication shall be furnished to the purchaser stating that thematerial was manufactured, sampled, tested, and inspected inaccordance with the material specification and was found to

meet the requirements. The certification shall include theresults of all tests performed.

17. Preparation for Delivery

17.1 Unless otherwise specified in the contract or purchaseorder, cleaning, drying, preservation, and packaging of castingsshall be in accordance with the manufacturer’s commercialpractice. Packaging and marking shall be adequate to ensuresafe delivery by the carrier.

FIG. 4 Sectioning Procedure for Y-Blocks

FIG. 5 Standard Round Tension Test Specimen with 2-in. [50-mm] Gage Length

A 897/A 897M – 03

5

Page 27: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

17.2 Government Procurement—When specified in the con-tract or purchase order, marking for shipment shall be inaccordance with the requirements of MIL-STD-129.

APPENDIXES

(Nonmandatory Information)

X1. MECHANICAL PROPERTIES OF CASTINGS

X1.1 In order to achieve the required mechanical propertiesin castings, or test coupons, the iron must have a chemicalcomposition that provides sufficient hardenability to fullyrespond in the austempering heat treatment cycle. The responseto heat treatment is affected by the effective section size,graphite nodule count, and chemical composition. It alsodepends on the capabilities of the specific heat treater’sequipment. The heavier the effective section size and the moremassive the casting, the slower will be the cooling or quench-ing rate in the austempering cycle. This quenching rate mustexceed some critical value to attain the correct microstructure(high carbon austenite plus acicular ferrite).

X1.2 Published literature and commercial heat treaters aswell as many foundries can provide information on requiredalloy additions needed for specific parts, casting section sizes,or masses. Austempered Ductile Iron can be successfullyproduced from ductile iron castings with a wide range ofchemical compositions and configurations. There is no opti-mum recipe; however those produced to the following param-eters have been shown to yield excellent results.

X1.2.1 The castings should be free of non-metallic inclu-sions, carbides, shrink and dross. Proper purchasing, storageand use of charge materials will minimize the occurrence ofcarbides and gas defects. Proper molding control will minimizesurface defects and other sub-surface discontinuities. Thecastings should be properly gated and poured using consistentand effective treatment and inoculation techniques to yieldshrink free castings. Any of the aforementioned non-conforming conditions will reduce the toughness of an ADIcomponent, even if adequate for conventional ductile iron. Thefollowing should be met as a minimum: Nodule Count 100/mm2 and Nodularity 80%.

X1.2.2 The carbon equivalent (CE) can be approximatedby the relationship: CE = %C + 1/3 (%Si). It should becontrolled as follows in Table X1.1.

X1.3 Alloying elements such as Molybdenum, Copper,Nickel and additional Manganese above the base metal levelshould be added only when additional hardenability is requiredfor heavy sections. Increased hardenability is only required toavoid the formation of pearlite during quenching. The amountof alloying required (if any) will be a function of the alloy

FIG. 6 Examples of Small-Size Specimens Proportional toStandard 1⁄2-in. [13-mm] Round Specimen

A 897/A 897M – 03

6

Page 28: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

content in the base metal, the part configuration and theaustempering process used. The proper alloy compositionshould be determined jointly by the foundry and the heattreating source. Addition of alloying elements when not re-quired does not enchance the properties of ADI and merelyadds to the cost of the iron. Composition guidelines arerecommended in Table X1.2 and Table X1.3.

X1.3.1 Other nodulizing elements like beryllium, calcium,strontium, barium, yttrium, lanthanum and cerium should be

present only to the extent that they are used to replace Mg intreatment. The amount of residual Mg plus the amounts ofthese elements should not exceed 0.06%. Carbide formingelements (like Cr, Ti , V) tend to be additive in effect with Mnand/or Mo; thus, one should take note of this in alloy design toavoid the formation of carbides in the casting.

X1.3.2 The preceding guidelines are intended to be usefulparameters for production. Good ADI can, and is, beingproduced from ductile iron not meeting these criteria, however,

TABLE X1.1 Suggested Carbon Equivalent Ranges for VariousSection Sizes

Section Size CE Range

0 to 1⁄2 in. (0 to 13 mm) 4.4 to 4.61⁄2 to 2 in. (13 to 51 mm) 4.3 to 4.6Over 2 in. (51 mm) 4.3 to 4.5

TABLE X1.2 Suggested Targets and Control Ranges for Intentionally Added Elements

Element Recommended Range

CarbonCarbon should be controlled within the recommended range exceptwhen deviations are required to produce a defect-free casting. If toohigh levels of carbon are present, carbon flotation can occur andreduce the apparent strength levels of ADI.

3.60 % 6 0.20 %

SiliconSilicon is one of the most important elements in ADI because itpromotes graphite formation, decreases the solubility of carbon inaustenite, increases the eutectoid temperature and inhibits theformation of bainitic carbide. Excessively high levels of Si cansuppress ausferrite in localized areas by stabilizing ferrite.

2.50 % 6 0.20 %

MagnesiumMagnesium is added to create the conditions for graphite nodules toform. Excessively high levels will promote carbide formation whilelow levels promote nonspheroidal graphite.

(% S x 0.76) + 0.025 % 6 0.005 %

ManganeseManganese additions above that of the base metal composition arenot recommended because Mn segregates to the last to freezeregions of the casting and will retard the formation of ausferrite if thenodule count is not sufficiently high to break up the Mn segregatedregion. In section sizes up to 1⁄2 in. or 13 mm, Mn targets as high as0.60 % have been used due to high nodule counts. In section sizesover 1⁄2 in. (13 mm) or in the presence of Mo other carbide formers,the Mn target should be reduced to 0.35 % or less to minimize theformation of cell boundary carbides which may negatively affectcomponent machinability or ductility, or both.

0.35% 6 0.05 %

CopperCopper may be added to ADI to increase hardenability in additionsup to 0.80 %. Above this level, Cu creates a diffusion barrier aroundthe graphite nodules, thus inhibiting carbon mobility duringaustenitizing.

0.80 % maximum, only as needed 6 0.05 %

NickelNickel may be used to increase the hardenability of ductile iron inadditions up to 2.0 %. Because of the costs associated with the useof Ni, larger additions may be cost prohibitive.

2.0 % maximum, only as needed 6 0.10 %

MolybdenumMolybdenum is the most potent hardenability agent in ADI and maybe necessary in heavy section castings to prevent the formation ofpearlite. Both tensile strength and ductility decrease as the Mocontent increases beyond that required for hardenability. Thisdeterioration in properties is likely caused by the segregation of Moto cell boundaries and the formation of carbides. The level of Moshould be restricted to not more than 0.30 % in heavy sectioncastings.

0.30 % maximum (only as needed) 6 0.03 %

A 897/A 897M – 03

7

Page 29: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

these criteria represent sound, commercial practices known toproduce good results. They do not constitute a guarantee offinal properties.

X1.4 Machining of tension test specimens after austemper-ing may be difficult, particularly for the higher strength grades.For this reason, some manufacturers prefer to machine the testbars to size or near net size (with some final grindingallowances) before the austempering operation. (Warning—Achieving the required mechanical properties and austemperedmicrostructure in the smaller cross sections of a premachined

test bar does not ensure the correct response in the heaviersections of actual parts, as explained in X1.1. When prema-chined test bars are to be used, it is recommended that adequateaustempering be verified. This can be done by sectioning acasting, examining the microstructure in that section, and thencomparing the results with that of a premachined test bar thathas been austempered in the same furnace load. When inad-equate austempering response is identified, increased alloyingas discussed in X1.3 may be required.)

X2. Y-BLOCK SELECTION

X2.1 Table X2.1 provides guidelines for the selection ofY-blocks that have cooling rates that are representative ofequivalent shapes having the dimensions shown.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or [email protected] (e-mail); or through the ASTM website(www.astm.org).

TABLE X1.3 Suggested Targets and Control Ranges for Trace or Tramp Elements

Trace or Tramp Elements Suggested Target (or maximum) Typical Control Range

Sn Tin 0.02% maximum 6 0.003 %Sb Antimony 0.002% maximum 6 0.0003 %

P Phosphorus 0.04% maximumS Sulfur 0.02% maximum

O Oxygen 50 ppm maximumCr Chromium 0.10% maximumTi Titanium 0.040 % maximumV Vanadium 0.10% maximumAl Aluminium 0.050% maximumAs Arsenic 0.020% maximumBi Bismuth 0.002% maximum

B Boron 0.0004% maximumCd Cadmium 0.005% maximum

Pb Lead 0.002% maximumSe Selenium 0.030% maximumTe Tellurium 0.003% maximum

TABLE X2.1 Equivalent Geometric Shapes Corresponding to Y-Blocks A

Y-BlockSize, in. [mm]

Infinite PlateThickness, in.

[mm]

RoundDiameter,in. [mm]

CubeEdge, in.

[mm]

0.5 [13] 0.5 [13] 1.2 [30] 1.8 [46]1.0 [25] 0.9 [22] 1.8 [46] 2.8 [72]3.0 [76] 1.6 [40] 3.1 [80] 4.8 [120]

A For castings with cross sections that would require a Y-block greater than 3 in. [76mm], alloy requirements must be based upon experimental trials with test castingsor previous experience with similar parts. Test coupons should be selected upon agreement between the producer and the purchaser.

A 897/A 897M – 03

8

Page 30: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SURFACE VEHICLE STANDARD

Automotive Austempered Ductile (Nodular) Iron Castings (ADI)

SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.” SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright © 2004 SAE International All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada) Tel: 724-776-4970 (outside USA) Fax: 724-776-0790 Email: [email protected] SAE WEB ADDRESS: http://www.sae.org

® J2477

REV. MAY2004

Issued 2003-03 Revised 2004-05 Superseding J2477 MAR2003

1. Scope

This SAE Standard covers the mechanical and physical property requirements for Austempered Ductile Iron (ADI) castings used in automotive and allied industries. Specifically covered are: a. Hardness b. Tensile Strength c. Yield Strength d. Elongation e. Modulus of Elasticity f. Impact Energy g. Microstructure

In this document SI units are primary and in-lb units are derived. Appendix A provides general information and related resources on the microstructural, chemical and heat treatment requirements to meet the mechanical properties needed for ADI in particular service conditions and applications.

2. References

2.1 Applicable Publications

The following publications form a part of this specification to the extent specified herein.

2.1.1 ASTM PUBLICATIONS

Available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959. ASTM A 247—Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings ASTM A 536—Standard Specification for Ductile Iron Castings ASTM E 10—Standard Test Method for Brinell Hardness of Metallic Materials ASTM E 23—Standard Test Methods for Notched Bar Impact Testing of Metallic Materials ASTM E 111—Standard Test Method for Young’s Modulus, Tangent Modulus and Chord Modulus

Page 31: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

- 2 -

2.2 Related Publications

The following publications are provided for information purposes only and are not a required part of this specification.

2.2.1 ASM PUBLICATIONS

ATTN: MSC/Book Order, ASM International, PO Box 473, Novelty, OH 44072-9901. ASM Metals Handbook, Vol. 1 Properties and Selection. Iron and Steel. Ninth Edition, ASM International

1996 Materials Park, OH 44073-0002. ASM Specialty Handbook, Cast Irons. ASM International 1996 Materials Park, OH 44073-0002.

2.2.2 OTHER PUBLICATIONS 1st International Conference on Austempered Ductile Iron: Your Means to Improved Performance,

Productivity and Cost. American Society for Metals Highway/Off-Highway Vehicles Committee Materials systems and Design Division. April 2-4, 1984 Chicago, IL. ASM International, Materials Park, OH 44073-0002.

2nd International Conference on Austempered Ductile Iron: Your Means to Improved Performance, Productivity and Cost. Sponsored by ASME – Gear Research Institute, ASME – Design Division, AMAX, Inc. March 17-19, 1986, Ann Arbor, MI. ASME – Gear Research Institute c/o Pennsylvania State Univeristy, Applied Research Laboratory, P.O. Box 30, State College, PA 16804-0030.

www.ductile.org/didata Chapter IV- Austempered Ductile Iron (Ductile Iron Society (US) website)

3. Grades

The specified grades, hardness and mechanical properties are shown in Table 1.

TABLE 1—MINIMUM MECHANICAL PROPERTIES FOR AUSTEMPERED DUCTILE IRON

Grade

Hardness

HBN (dia. in mm) (MPa)

Tensile Strength

(1) (2) MPa

Tensile Strength

(1)(2) ksi

Yield Strength

(1)(2) MPa

Yield Stength

(1)(2) ksi

% ElongationElasticity

(1)(2)

Modulus ofElasticity

(1)(2)(3) GPa

Modulus of Elasticity

(1)(2)(3) psi

Impact

Energy(4)

Joules

Impact

Energy(4)

ft-lb AD 750 241-302 (3.90-3.50)

(2360-2960) 750 110 500 70 11 148 21.5 x 106 110 80

AD 900 269-341 (3.70-3.30) (2640-3340)

900 130 650 90 9 148 21.5 x 106 100 75

AD1050 302-375 (3.50-3.15) (2960 -3680)

1050 150 750 110 7 148 21.5 x 106 80 60

AD1200 341-444 (3.30-2.90) (3340-4350)

1200 175 850 125 4 148 21.5 x 106 60 45

AD1400 388-477 (3.10-2.80) (3800-4680)

1400 200 1100 155 2 148 21.5 x 106 35 25

AD1600 402-512 (3.05-2.70) (3940-5020)

1600 230 1300 185 1 148 21.5 x 106 20 15

1. Applied to equivalent thickness of up to 64 mm (2.5 in). For equivalent thickness greater than 64 mm (2.5 in), the mechanical properties will be mutually agreed upon by the manufacturer and the purchaser.

2. The property requirements in this standard are based on separately cast test bars. Casting properties and microstructure may vary due to chemistry, section size, cooling rates and other parameters. It is desired that the test bars be designed to reflect the properties of the castings they represent. The casting process for the test bars shall be agreed upon between the manufacturer and purchaser. Refer to ASTM A 536.

3. The Young’s Modulus (E) was determined by the procedure defined in ASTM E 111. 4. Values obtained using unnotched Charpy bars tested at 22 °C ± 2 °C (72 °F ± 4 °F). The values in the table are the average of the three highest of four tested

samples. For details of Charpy test refer to ASTM Impact Test (ASTM E 23).

Page 32: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

- 3 -

4. Hardness

4.1 The area or areas on the castings where hardness is to be checked shall be established by agreement between the manufacturer and purchaser.

4.2 The foundry shall exercise the necessary controls and inspection techniques to insure compliance with the specified hardness range for the application. Brinell hardness shall be determined according to ASTM E 10 Test for Brinell Hardness of Metallic Materials, after sufficient material has been removed from the casting surface to insure representative hardness readings. The 10 mm ball and 3000 kg load shall be used unless otherwise specified and agreed upon.

5. Heat treatment

5.1 Castings produced in accordance with this document shall be heat treated by an austempering process consisting of heating the castings to a fully austenitic condition, then holding for a time sufficient to saturate the austenite with carbon, then cooling (at a rate sufficient to avoid the formation of pearlite) to a temperature above the martensite start temperature (Ms), and isothermally transforming the matrix structure for a time sufficient to produce the desired properties. This process shall produce a microstructure that is substantially ausferrite (acicular ferrite and austenite).

5.1.1 The exception to the process outlined in 5.1 is for grade AD 750. Components processed to this grade may be austenitized between the upper and lower critical temperatures prior to austempering. ADI processed to this grade will exhibit a microstructure containing some pro-eutectoid ferrite with the balance being ausferrite.

5.2 Appropriate heat treatment for removal of residual stresses, or to improve machinability shall be specified by agreement between the manufacturer and the purchaser.

5.3 Re-austempering of components or any deviation from the established heat treating process is permissible only with the expressed approval of the casting purchaser.

6. Microstructure

6.1 The graphite component of the microstructure shall consist of at least 85% spheroidal graphite conforming to Types I and II per ASTM A 247.

6.2 The cooling rate within some sections may not be sufficient to avoid the formation of pearlite or other high temperature transformation products. In such cases, the maximum acceptable quantities of these microconstituents and the location(s) within the casting may be established by agreement between the heat treater, the manufacturer and the purchaser.

6.3 Minor amounts of martensite may be present in the microstructure of Grades 1400 and 1600. Acceptable quantities of martensite may be established by agreement between the heat treater, the manufacturer and the purchaser.

6.4 The microstructure shall be substantially free of undesirable microconstituents, the details of which are agreed upon between the heat treater, the manufacturer and the purchaser.

Page 33: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

- 4 -

7. Quality Assurance

It is the responsibility of the manufacturer to demonstrate process capability. The specimen(s) used to do so shall be of a configuration and from a location agreed upon between the manufacturer and the purchaser. Sampling plans shall be agreed upon between the heat treater, the manufacturer and the purchaser. The manufacturer shall employ adequate controls to ensure that the parts conform to the agreed upon requirements.

8. General

8.1 Castings furnished to this standard shall be representative of good foundry practice and shall conform to dimensions and tolerances specified on the casting drawing.

8.2 Minor surface discontinuities usually not associated with the structural functioning may occur in castings. These imperfections are often repairable; however, repairs should be made only in areas and by methods approved by the purchaser. Welding repair is not acceptable after Austempering.

8.3 Additional casting requirements, such as vendor identification, other casting information, and special testing, may be agreed upon by the purchaser and the supplier. These should appear as additional product requirements on the casting drawing.

9. Notes

9.1 Marginal Indicia

The change bar (l) located in the left margin is for the convenience of the user in locating areas where technical revisions have been made to the previous issue of the report. An (R) symbol to the left of the document title indicates a complete revision of the report.

PREPARED BY THE SAE METALS TECHNICAL COMMITTEE DIVISION 9— AUTOMOTIVE IRON AND STEEL CASTINGS

Page 34: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

- 5 -

APPENDIX A AUSTEMPERED DUCTILE (NODULAR) IRON

(A MATERIAL DESCRIPTION NOT A PART OF THE DOCUMENT)

A.1 Definition and Classification

Austempered Ductile Iron (ADI) is produced by heat-treating Ductile (Nodular) Iron using the austempering Process, (as exemplified in A.5), a specialized, isothermal heat treatment. When compared to conventional ductile iron, ADI can have over twice the strength for a given level of ductility. ADI can have fatigue strength comparable to that of cast and forged steels and that strength can be greatly enhanced by subsequent grinding, fillet rolling or shot peening. Although the first commercial application of ADI did not occur until 1972, the material has found applications in virtually every industrial market segment. Its principal attribute is its ability to replace steel forgings, castings and weldments at equal or lesser weight and at a reduced cost. It is also typically much less costly than aluminum and, with its high strength-to-weight ratio it has replaced cast aluminum parts at equal weight in some automotive applications.

The ausferrite matrix in ADI undergoes a strain transformation hardening when exposed to a high normal force. That effect makes machining of ADI challenging, but knowledge of this effect allows the machinist to adjust the feeds, speeds and tool angles to adequately compensate. This same strain transformation hardening is what gives ADI wear resistance better than its bulk hardness would indicate.

Other attributes of the material include, good noise dampening, fracture toughness and low temperature properties, and reasonable stiffness.

A.2 Suggested Foundry Requirements for Ductile Iron that is to be Austempered

ADI can be produced successfully from ductile iron castings with a wide range of chemistries and configurations. Although there is no optimum recipe for ADI castings, those produced to the following parameters have been shown to yield excellent results.

A.2.1 Casting Quality

The castings should be free of non-metallic inclusions, carbides, shrink and dross. Proper purchasing, storage and use of charge materials will minimize the occurrence of carbides and gas defects. Proper molding control will minimize surface defects and other sub-surface discontinuities. The castings should be properly gated and poured using consistent and effective treatment and inoculation techniques to yield shrink free castings. Any of the aforementioned non-conforming conditions will reduce the “toughness” of an ADI component (even if adequate for conventional ductile). The following are recommended as a minimum:

Nodule Count 100/mm2

Nodularity 85%

A.2.2 Carbon Equivalent

The carbon equivalent (CE) can be approximated by the relationship:

CE = %C + 1/3 (%Si). It should be controlled as follows in Table A1.

Page 35: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

- 6 -

TABLE A1—SUGGESTED CARBON EQUIVALENT RANGES FOR VARIOUS SECTION SIZES

Section Size CE Range 0-13 mm (0-1/2 in) 4.4 – 4.6

13-51 mm (½ in-2 in) 4.3 – 4.6 Over 51 mm (2 in) 4.3 – 4.5

A.2.3 Chemistry Control

Good ductile iron practice should prevail for ductile iron that is to be austempered. Alloying elements such as Mo, Cu and Ni should be added only when additional hardenability is required for heavier sections. This increased “hardenability” is required only to avoid the formation of pearlite during quenching. Ultimately the amount of alloying required, (if any), will be a function of the alloys in one’s base metal, the part configuration and the austempering process used. The proper alloy configuration should be determined jointly by the foundry and the heat-treating source. Addition of the aforementioned alloys when not required does not enhance the properties of ADI but merely adds to the cost of the iron. Composition guidelines are recommended below in Tables A2 and A3:

TABLE A2—SUGGESTED TARGETS AND CONTROL RANGES FOR INTENTIONALLY ADDED ELEMENTS

Intentionally Added Elements

Suggested Target

Typical Control Range

C Carbon 3.6% ±0.20% Si Silicon 2.5% ±0.20% Mg Magnesium (%S x 0.76) + 0.025% ±0.005% Mn Manganese(1) 0.30% ±0.05% Cu Copper 0.80% maximum (only as needed) ±0.05% Ni Nickel 2.00% maximum (only as needed) ±0.10% Mo Molybdenum 0.30% max. (only as needed) ±0.03% 1. Up to a section size of approximately 13 mm (0.51 in), Mn targets as high as 0.60% can be used

successfully. In section sizes over 13 mm (0.51 in) (or in the presence of Mo or other carbide formers) the Mn target should be reduced to 0.35% or less to minimize the formation of cell boundary carbides which may negatively affect component machinability and ductility.

TABLE A3—SUGGESTED MAXIMUMS AND CONTROL RANGES FOR TRACE AND TRAMP ELEMENTS

Trace or Tramp Elements

Suggested Target (or maximum)

Typical Control Range

Sn Tin 0.02% maximum ±0.003% Sb Antimony 0.002% maximum ±0.0003% P Phosphorus 0.04% maximum S Sulfur 0.02% maximum O Oxygen 50 ppm maximum Cr Chromium 0.10% maximum Ti Titanium 0.040% maximum V Vanadium 0.10% maximum Al Aluminum 0.050% maximum As Arsenic 0.020% maximum Bi Bismuth 0.002% maximum B Boron 0.0006 maximum Cd Cadmium 0.005% maximum Pb Lead 0.002% maximum Se Selenium 0.030% maximum Te Tellurium 0.020% maximum

Page 36: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

- 7 -

Other “nodulizing elements”, (such as, calcium, strontium, barium, yttrium, lanthanum and cerium), should be present only to the extent that they are used to replace Mg in nodulization. In any case, the amount of residual Mg plus the amounts of these elements should not exceed 0.06%. Carbide forming elements (such as Cr, Ti, V, etc.) tend to be additive in effect with Mn and/or Mo and one should be aware of this in alloy design to avoid the formation of carbides in the casting.

A.2.4 Prior Microstructure

The time required to saturate the matrix with carbon during austenitizing and the growth of the casting during austempering will be affected by the pearlite/ferrite ratio of the casting prior to heat treatment. A consistent pearlite/ferrite ratio is particularly important if the castings are machined prior to austempering. A consistent pearlite/ferrite ratio in the casting prior to austenitizing will result in consistent growth during austempering.

A.2.5 Thermal Behavior of ADI

The designer should be aware that the coefficient of thermal expansion for ADI can be 5 to 20% greater than that of steel or ductile iron (depending on the grade of ADI selected). This increased thermal expansion must be addressed in close tolerance designs that will see significant temperature fluctuations in service.

Furthermore, the ausferrite microstructure is generally stable to very low temperatures but, in elevated temperature service, will eventually exhibit a lowering of properties if continually operated at temperatures approaching the temperature at which the casting was austempered.

The preceding guidelines have been prepared as useful parameters for production. Good ADI can, and is, being produced from ductile iron not meeting these criteria, however, these criteria represent sound, commercial practices known to produce good results. They do not constitute a guarantee of final properties.

A.3 Microstructure

A.3.1 The microstructure of the various grades of ADI consists of spheroidal graphite in a matrix of carbon stabilized austenite and acicular ferrite – otherwise known as ausferrite. (See Figures A1 to A6).

A.3.2 The different grades of ADI are dependent upon the quench temperature of the heat treatment. The quench temperature affects the formation of the ausferrite matrix.

A.3.3 The following figures show typical microstructures of each grade of ADI.

Page 37: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

- 8 -

FIGURE A1—GRADE AD750 (TYPICAL MICROSTRUCTURE)

FIGURE A2—GRADE AD900 (TYPICAL MICROSTRUCTURE)

Page 38: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

- 9 -

FIGURE A3—GRADE AD1050 (TYPICAL MICROSTRUCTURE)

FIGURE A4—GRADE AD1200 (TYPICAL MICROSTRUCTURE)

Page 39: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

- 10 -

FIGURE A5—GRADE AD1400 (TYPICAL MICROSTRUCTURE)

FIGURE A6—GRADE AD1600 (TYPICAL MICROSTRUCTURE)

Page 40: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

- 11 -

A.4 Mechanical Properties

A.4.1 The mechanical properties are shown in Table 1. Since properties may vary with location on a given casting, the suitability of a particular material/process combination for an intended use is best determined by laboratory or service tests.

A.4.2 The mechanical properties are dependent on the Austempering process and may be marginally affected by section size.

A.4.3 For optimum mechanical properties, section size for unalloyed iron generally should not exceed 16 mm (0.63 in) to ensure a uniform, through hardened structure. Section sizes above 16 mm (0.63 in) may require additional alloying for through hardening. (Typical alloys added for increased hardenability include Cu, Ni and Mo.).

A.5 Heat Treatment Process

Figure A6 shows a typical austempering process. (The actual temperatures and times suitable for a specific application would have to be determined based on the chemical composition, the component configuration and the strength grade desired).

FIGURE A6—SCHEMATIC OF THE AUSTEMPERING PROCESS

A.5.1 A-B

Heat to appropriate austenitizing temperature.

A.5.2 B-C

Hold to saturate the austenite with carbon.

Page 41: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

- 12 -

A.5.3 C-D

Quench rapidly enough to avoid the formation of pearlite, to a temperature above the martensite start temperature (Ms).

A.5.4 D-E

Austemper for a time sufficient to produce the desired ausferrite properties.

A.5.5 E-F

Cool to room temperature.

A.6 Typical Applications

A.6.1 AD750 is a more readily machinable grade of ADI. It has tensile and fatigue strengths that are slightly lower than that of grade AD900, but may be an economical alternative for parts that require extensive machining AFTER austempering.

A.6.2 AD900 is used in moderately stressed parts requiring high ductility and bending fatigue strength, and good machinability. AD900 also has very good low temperature properties.

A.6.3 AD1050 is used for moderately stressed parts requiring high ductility and bending fatigue strength, and good machinability. AD1050 has the best low temperature properties of all the grades.

A.6.4 AD1200 is used for a combination of fatigue strength, impact strength and wear resistance.

A.6.5 AD1400 is used where high strength and/or improved wear resistance are required.

A.6.6 AD1600 is used where high yield and contact strength, and/or improved wear resistance are required.

Page 42: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

Rationale

J2477 has been revised to include an additional ADI grade.

Relationship of SAE Standard to ISO Standard

Not applicable.

Application

This SAE Standard covers the mechanical and physical property requirements for Austempered Ductile Iron (ADI) castings used in automotive and allied industries. Specifically covered are: a. Hardness b. Tensile Strength c. Yield Strength d. Elongation e. Modulus of Elasticity f. Impact Energy g. Microstructure

In this document SI units are primary and in-lb units are derived. Appendix A provides general information and related resources on the microstructural, chemical and heat treatment requirements to meet the mechanical properties needed for ADI in particular service conditions and applications.

Reference Section

ASTM A 247—Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings

ASTM A 536—Standard Specification for Ductile Iron Castings

ASTM E 10—Standard Test Method for Brinell Hardness of Metallic Materials

ASTM E 23—Standard Test Methods for Notched Bar Impact Testing of Metallic Materials

ASTM E 111—Standard Test Method for Young’s Modulus, Tangent Modulus and Chord Modulus

ASM Metals Handbook, Vol. 1 Properties and Specifications. Iron and Steel. Ninth Edition, ASM International 1996 Materials Park, OH 44073-0002.

ASM Specialty Handbook, Cast Irons. ASM International 1996 Materials Park, OH 44073-0002.

1st International Conference on Austempered Ductile Iron: Your Means to Improved Performance, Productivity and Cost. American Society for Metals Highway/Off-Highway Vehicles Committee Materials systems and Design Division. April 2-4, 1984 Chicago, IL

Page 43: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

SAE J2477 Revised MAY2004

2nd International Conference on Austempered Ductile Iron: Your Means to Improved Performance, Productivity and Cost. Sponsored by ASME – Gear Research Institute, ASME – Design Division, AMAX, Inc. March 17-19, 1986, Ann Arbor, MI

www.ductile.org/didata Chapter IV- Austempered Ductile Iron

Developed by the SAE Metals Technical Committee Division 9—Automotive Iron and Steel Castings

Page 44: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 45: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 46: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 47: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 48: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 49: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 50: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 51: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 52: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 53: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 54: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 55: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 56: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 57: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 58: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 59: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 60: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 61: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 62: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 63: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 64: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 65: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 66: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 67: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 68: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 69: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 70: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 71: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 72: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 73: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 74: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 75: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 76: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 77: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 78: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 79: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 80: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 81: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K
Page 82: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

��������������������� ���

���������������������������������������

����22'343'"3

���� �����

������������������������������������������������� ���!���"

��������#������� �����$��

8 ��+�� �9���%����$����!��� �+�-� ��!��$�����$��� ��:�������,���� ����"6#7;<3""

8 �+�����98 �$������%����$�=����>� ��!��$���!�?� @+�-:(���� ���--����+����"6#7;<3""

����$0�%&������"6#7;<33#D3E

���

�����$��%�� �E5����$��

Page 83: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

DIN EN 1564:2012-01

2

Nationales Vorwort

Diese Europäische Norm (EN 1564:2011) wurde vom Technischen Komitee CEN/TC 190, Arbeitsgruppe 7 �Gusseisen mit Kugelgraphit� erarbeitet, dessen Sekretariat vom AFNOR (Frankreich) gehalten wird.

Für die deutsche Mitarbeit ist der Arbeitsausschuss NA 036-00-01 AA �Gusseisenwerkstoffe� des Normenaus-schusses Gießereiwesen (GINA) verantwortlich.

Änderungen

Gegenüber DIN EN 1564:2006-03 wurden folgende Änderungen vorgenommen:

a) im Gruppentitel �Bainitisches Gusseisen� ersetzt durch �Ausferritisches Gusseisen mit Kugelgraphit�;

b) unter Abschnitt 3, weitere Begriffe aufgenommen;

c) Werkstoff-Nummern umgestellt nach DIN EN 1560;

d) in 7.2, Tabelle 1:

1) die geforderten mechanischen Mindesteigenschaften gelten für mehrere Typen von gegossenen Pro-bestücken (Gussproben) und sind nun für drei Bereiche der maßgebenden Wanddicke angegeben;

2) die geforderten Mindestwerte für die Dehnung wurden für Sorten mit einer Mindestzugfestigkeit bis zu 1 200 MPa erhöht;

3) die Sorte EN-GJS-1000-5 wurde durch die beiden Sorten EN-GJS-900-8 und EN-GJS-1050-6 ersetzt.

e) Anhang A, um zwei neue verschleißbeständige Sorten mit ihrer definierten Härte ergänzt;

f) folgende Anhänge neu aufgenommen:

1) Anhang B Gegenüberstellung der Werkstoffbezeichnungen von ausferritischem Gusseisen mit Kugelgraphit nach EN 1560 und ISO/TR 15931;

2) Anhang C, Richtwerte für mechanische Eigenschaften, die an Proben gemessen werden, die durch mechanische Bearbeitung einem Gussstück entnommen wurden;

3) Anhang D, Ergänzung des informativen Anhangs E, in dem das Verfahren zur Bestimmung des Härtebereichs beschrieben ist.

4) Anhang F, der Informationen zur Nodularität enthält;

5) Anhang G, der die Probenlage für Gussproben enthält;

6) Anhang H, der Einzelheiten zu und Anforderungen an den Kerbschlagbiegeversuch an ungekerbten Proben enthält;

7) Anhang I, der zusätzliche Angaben zu mechanischen und physikalischen Eigenschaften enthält;

8) Anhang J, der Informationen zur Bearbeitbarkeit von ausferritischem Gusseisen mit Kugelgraphit enthält;

9) Anhang K, der wesentliche technische Änderungen zwischen dieser Europäischen Norm und der vorherigen Ausgabe enthält;

g) Literaturhinweise sind kein Anhang mehr und an das Ende der Norm verschoben.

Frühere Ausgaben

DIN EN 1564: 1997-08, 2006-03

Page 84: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EUROPÄISCHE NORM

EUROPEAN STANDARD

NORME EUROPÉENNE

EN 1564

November 2011

ICS 77.080.10 Ersatz für EN 1564:1997

Deutsche Fassung

Gießereiwesen � Ausferritisches Gusseisen mit Kugelgraphit

Founding � Ausferritic spheroidal graphite cast irons

Fonderie � Fontes ausferritiques à graphite sphéroïdal

Diese Europäische Norm wurde vom CEN am 24. September 2011 angenommen. Die CEN-Mitglieder sind gehalten, die CEN/CENELEC-Geschäftsordnung zu erfüllen, in der die Bedingungen festgelegt sind, unter denen dieser Europäischen Norm ohne jede Änderung der Status einer nationalen Norm zu geben ist. Auf dem letzten Stand befindliche Listen dieser nationalen Normen mit ihren bibliographischen Angaben sind beim Management-Zentrum des CEN-CENELEC oder bei jedem CEN-Mitglied auf Anfrage erhältlich. Diese Europäische Norm besteht in drei offiziellen Fassungen (Deutsch, Englisch, Französisch). Eine Fassung in einer anderen Sprache, die von einem CEN-Mitglied in eigener Verantwortung durch Übersetzung in seine Landessprache gemacht und dem Management-Zentrum mitgeteilt worden ist, hat den gleichen Status wie die offiziellen Fassungen. CEN-Mitglieder sind die nationalen Normungsinstitute von Belgien, Bulgarien, Dänemark, Deutschland, Estland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Kroatien, Lettland, Litauen, Luxemburg, Malta, den Niederlanden, Norwegen, Österreich, Polen, Portugal, Rumänien, Schweden, der Schweiz, der Slowakei, Slowenien, Spanien, der Tschechischen Republik, Ungarn, dem Vereinigten Königreich und Zypern.

EUR OP ÄIS C HES KOM ITEE FÜR NOR M UNG

EUROPEAN COMMITTEE FOR STANDARDIZATION

C O M I T É E U R O P É E N D E N O R M A LI S A T I O N

Management-Zentrum: Avenue Marnix 17, B-1000 Brüssel

© 2011 CEN Alle Rechte der Verwertung, gleich in welcher Form und in welchem Verfahren, sind weltweit den nationalen Mitgliedern von CEN vorbehalten.

Ref. Nr. EN 1564:2011 D

Page 85: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

2

Inhalt

Seite

Vorwort ................................................................................................................................................................4

Einleitung .............................................................................................................................................................5

1 Anwendungsbereich .............................................................................................................................6

2 Normative Verweisungen ......................................................................................................................6

3 Begriffe ...................................................................................................................................................6

4 Bezeichnung ...........................................................................................................................................7

5 Bestellangaben ......................................................................................................................................7

6 Herstellung .............................................................................................................................................8

7 Anforderungen .......................................................................................................................................8

7.1 Allgemeines ............................................................................................................................................8

7.2 Aus Probestücken durch mechanische Bearbeitung hergestellte Proben .....................................8

7.2.1 Allgemeines ............................................................................................................................................8

7.2.2 Schlagenergie ........................................................................................................................................8

7.3 Proben, die aus einem Gussstück entnommenen Probestücken durch mechanische Bearbeitung hergestellt wurden ...........................................................................................................8

7.4 Härte ..................................................................................................................................................... 10

7.5 Graphitausbildung .............................................................................................................................. 10

7.6 Gefügegrundmasse ............................................................................................................................ 10

8 Probenahme ........................................................................................................................................ 11

8.1 Allgemeines ......................................................................................................................................... 11

8.2 Probestücke ........................................................................................................................................ 11

8.2.1 Größe der Probestücke ...................................................................................................................... 11

8.2.2 Häufigkeit und Anzahl von Prüfungen ............................................................................................. 12

8.2.3 Getrennt gegossene Probestücke .................................................................................................... 12

8.2.4 Parallel gegossene Probestücke ....................................................................................................... 12

8.2.5 Angegossene Probestücke ................................................................................................................ 12

8.2.6 Aus Probestücken durch mechanische Bearbeitung entnommene Proben ................................ 12

8.3 Aus dem Gussstück entnommene Probestücke ............................................................................. 13

9 Prüfverfahren ...................................................................................................................................... 17

9.1 Zugversuch .......................................................................................................................................... 17

9.2 Schlagbiegeversuch ........................................................................................................................... 18

9.3 Härteprüfung ....................................................................................................................................... 19

9.4 Untersuchung der Graphitausbildung und Gefügegrundmasse ................................................... 19

10 Wiederholungsprüfungen .................................................................................................................. 19

10.1 Notwendigkeit von Wiederholungsprüfungen ................................................................................. 19

10.2 Gültigkeit von Prüfungen ................................................................................................................... 20

10.3 Nichtübereinstimmende Prüfergebnisse ......................................................................................... 20

10.4 Wärmebehandlung von Probestücken und Gussstücken .............................................................. 20

11 Prüfbescheinigung ............................................................................................................................. 20

Anhang A (normativ) Verschleißbeständige Sorten von ausferritischem Gusseisen mit Kugelgraphit ........................................................................................................................................ 21

Anhang B (informativ) Gegenüberstellung der Werkstoffbezeichnungen nach EN 1560 und ISO/TR 15931 [2] [7] von ausferritischem Gusseisen mit Kugelgraphit ........................................ 23

Anhang C (informativ) Richtwerte für die Zugfestigkeit und Dehnung für Proben, die durch mechanische Bearbeitung aus Probestücken hergestellt und die einem Gussstück entnommen wurden ............................................................................................................................ 24

DIN EN 1564:2012-01

Page 86: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

3

Seite

Anhang D (informativ) Richtwerte für die Brinellhärte .................................................................................. 25

Anhang E (informativ) Bestimmung des Härtebereichs ............................................................................... 26

Anhang F (informativ) Nodularität ................................................................................................................... 27

Anhang G (normativ) Probenlage für Gussproben ....................................................................................... 28

Anhang H (informativ) Schlagbiegeversuch an ungekerbten Proben ......................................................... 29

Anhang I (informativ) Zusätzliche Angaben zu mechanischen und physikalischen Eigenschaften ....... 31

Anhang J (informativ) Bearbeitbarkeit von ausferritischem Gusseisen mit Kugelgraphit ....................... 33

Anhang K (informativ) Wesentliche technische Änderungen zwischen dieser Europäischen Norm und der vorherigen Ausgabe ............................................................................................................. 35

Anhang ZA (informativ) Zusammenhang zwischen dieser Europäischen Norm und den grundlegenden Anforderungen der EU-Richtlinie 97/23/EG ........................................................... 36

Literaturhinweise .............................................................................................................................................. 37

DIN EN 1564:2012-01

Page 87: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

4

Vorwort

Dieses Dokument (EN 1564:2011) wurde vom Technischen Komitee CEN/TC 190 �Gießereiwesen� erarbeitet, dessen Sekretariat vom DIN gehalten wird.

Diese Europäische Norm muss den Status einer nationalen Norm erhalten, entweder durch Veröffentlichung eines identischen Textes oder durch Anerkennung bis Mai 2012, und etwaige entgegenstehende nationale Normen müssen bis Mai 2012 zurückgezogen werden.

Dieses Dokument ersetzt EN 1564:1997.

Im Rahmen seines Arbeitsprogramms hat das Technische Komitee CEN/TC 190 die CEN/TC 190/WG 7 �Gusseisen mit Kugelgraphit� beauftragt, die EN 1564:1997 zu überarbeiten:

Dieses Dokument wurde unter einem Mandat erarbeitet, das die Europäische Kommission und die Europäische Freihandelszone dem CEN erteilt haben, und unterstützt grundlegende Anforderungen der EU-Richtlinie(n).

Zum Zusammenhang mit der EU-Richtlinie 97/23/EG, siehe informativen Anhang ZA, der Bestandteil dieses Dokuments ist.

Es wird auf die Möglichkeit hingewiesen, dass einige Texte dieses Dokuments Patentrechte berühren können. CEN [und/oder CENELEC] sind nicht dafür verantwortlich, einige oder alle diesbezüglichen Patentrechte zu identifizieren.

Anhang K enthält Einzelheiten zu wesentlichen technischen Änderungen zwischen dieser Europäischen Norm und der vorherigen Ausgabe.

Entsprechend der CEN/CENELEC-Geschäftsordnung sind die nationalen Normungsinstitute der folgenden Länder gehalten, diese Europäische Norm zu übernehmen: Belgien, Bulgarien, Dänemark, Deutschland, Estland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Kroatien, Lettland, Litauen, Luxemburg, Malta, Niederlande, Norwegen, Österreich, Polen, Portugal, Rumänien, Schweden, Schweiz, Slowakei, Slowenien, Spanien, Tschechische Republik, Ungarn, Vereinigtes Königreich und Zypern.

DIN EN 1564:2012-01

Page 88: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

5

Einleitung

Ausferritisches Gusseisen mit Kugelgraphit ist eine auf Eisen, Kohlenstoff und Silicium basierende Guss-legierung, wobei der Kohlenstoff vorwiegend in der Form von Kugelgraphit-Partikeln vorliegt.

ANMERKUNG 1 Ausferritisches Gusseisen mit Kugelgraphit wird auch als bainitisches Gusseisen (ADI, en: austempered ductile iron) bezeichnet.

Im Vergleich mit den Gusseisen mit Kugelgraphit, wie in EN 1563 [1] festgelegt, weist dieser Werkstoff als Ergebnis der ausferritischen Gefügegrundmasse höhere Festigkeits- und Zähigkeitseigenschaften auf.

Diese Europäische Norm klassifiziert ausferritische Gusseisen mit Kugelgraphit nach den mechanischen Eigenschaften des Werkstoffs.

Die mechanischen Eigenschaften von ausferritischem Gusseisen mit Kugelgraphit sind von der Graphit- und der Gefügegrundmasse abhängig.

Das erforderliche Gefüge wird durch die Wahl der geeigneten Zusammensetzung und durch die nachfolgenden Prozessschritte erhalten.

Die mechanischen Eigenschaften des Werkstoffs können an mechanisch bearbeiteten Proben bestimmt werden, die aus gegossenen oder einem Gussstück entnommenen Probestücken hergestellt wurden.

Fünf Sorten von ausferritischem Gusseisen mit Kugelgraphit werden anhand der mechanischen Eigen-schaften definiert, die an Proben bestimmt werden, die aus Probestücken durch mechanische Bearbeitung hergestellt wurden. Falls für diese Sorten die Härte eine Anforderung des Käufers darstellt, da sie für seinen Anwendungszweck wichtig ist, sind in Anhang C Richtwerte für die Härte enthalten.

In Anhang A sind zwei Sorten von ausferritischem Gusseisen mit Kugelgraphit entsprechend ihrer Härte festgelegt. Diese Gusseisen werden in Anwendungen eingesetzt, die eine große Verschleißbeständigkeit erfordern (z. B. Bergbau, Erdbau).

In dieser Norm wird ein neues Bezeichnungssystem mit Nummern, wie in EN 1560 [2] festgelegt, angewendet.

ANMERKUNG 2 Dieses Bezeichnungssystem mit Nummern basiert auf den Prinzipien und der Struktur, wie sie in EN 10027-2 [3] dargelegt sind und entspricht damit dem Europäischen Nummernsystem für Stahl und andere Werkstoffe.

Einige ausferritische Gusseisen mit Kugelgraphit können für Druckgeräte verwendet werden.

Die zulässigen Werkstoffsorten von ausferritischem Gusseisen mit Kugelgraphit für Druckanwendungen und die Konditionen für ihren Gebrauch, sind in speziellen Produkt- oder Anwendungs-Normen angegeben.

Für die Gestaltung von Druckgeräten gelten besondere Konstruktionsrichtlinien.

Anhang ZA enthält Informationen bezüglich der Übereinstimmung von zulässigen ausferritischen Gusseisen-Sorten mit Kugelgraphit, mit der Druckgeräte-Richtlinie 97/23/EG.

DIN EN 1564:2012-01

Page 89: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

6

1 Anwendungsbereich

Diese Europäische Norm definiert die Sorten und die entsprechenden Eigenschaften von ausferritischem Gusseisen mit Kugelgraphit.

Diese Europäische Norm legt mittels einer auf mechanischen Eigenschaften basierenden Einteilung fünf Sorten von ausferritischem Gusseisen mit Kugelgraphit fest, wobei diese Eigenschaften an Proben bestimmt werden, die durch mechanische Bearbeitung aus Probestücken gewonnen wurden.

Diese Europäische Norm legt außerdem zwei Sorten mittels einer Einteilung nach der Härte fest.

Diese Europäische Norm enthält keine technischen Lieferbedingungen für Gussstücke aus Gusseisen, siehe EN 1559-1 [4] und EN 1559-3 [5].

ANMERKUNG Die im Anhang A aufgeführten Sorten sind nicht für Druckgeräte-Anwendungen bestimmt.

2 Normative Verweisungen

Die folgenden zitierten Dokumente sind für die Anwendung dieses Dokuments erforderlich. Bei datierten Verweisungen gilt nur die in Bezug genommene Ausgabe. Bei undatierten Verweisungen gilt die letzte Ausgabe des in Bezug genommenen Dokuments (einschließlich aller Änderungen).

EN 764-5:2002, Druckgeräte � Teil 5: Prüfbescheinigungen für metallische Werkstoffe und Übereinstimmung mit der Werkstoffspezifikation

EN 10204:2004, Metallische Erzeugnisse � Arten von Prüfbescheinigungen

EN ISO 148-1:2010, Metallische Werkstoffe � Kerbschlagbiegeversuch nach Charpy � Teil 1: Prüfverfahren (ISO 148-1:2009)

EN ISO 945-1:2008, Mikrostruktur von Gusseisen � Teil 1: Graphitklassifizierung durch visuelle Auswertung (ISO 945-1:2008)

EN ISO 6506-1, Metallische Werkstoffe � Härteprüfung nach Brinell � Teil 1: Prüfverfahren (ISO 6506-1:2005)

EN ISO 6892-1:2009, Metallische Werkstoffe � Zugversuch � Teil 1: Prüfverfahren bei Raumtemperatur (ISO 6892-1:2009)

3 Begriffe

Für die Anwendung dieses Dokuments gelten die folgenden Begriffe.

3.1 ausferritisches Gusseisen mit Kugelgraphit auf Eisen basierender Gusswerkstoff, bei dem der Kohlenstoff überwiegend in Form von kugeligen Partikeln, mit einer ausferritischen Gefügegrundmasse vorliegt

ANMERKUNG Üblicherweise wird diese ausferritische Gefügegrundmasse durch eine ausferritisierende Wärme-behandlung erhalten.

3.2 kugelgraphiterzeugende Behandlung Vorgang, bei dem das flüssige Eisen mit einer Substanz versetzt wird, um bei der Erstarrung Graphit in über-wiegend kugeliger (sphärolitischer) Form herzustellen

ANMERKUNG Der Behandlung folgt häufig eine zweite Behandlung, die Impfung genannt wird.

DIN EN 1564:2012-01

Page 90: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

7

3.3 ausferritisierende Wärmebehandlung von Gusseisen mit Kugelgraphit Verfahren, bei dem die Gussstücke über die AC1 -Temperatur erwärmt und eine ausreichende Zeit bei dieser Temperatur gehalten werden, um den Kohlenstoffgehalt des Austenits zu erhöhen, gefolgt von einer Abkühlung mit einer Geschwindigkeit und bis zu einer Temperatur (oberhalb der Martensit-Start-Temperatur), die ausreicht, um die Bildung von Perlit zu verhindern und um die Gefügegrundmasse so einzustellen, dass die gewünschten Eigenschaften erzeugt werden

ANMERKUNG Durch dieses Verfahren wird ein Grundgefüge erzeugt, das überwiegend aus Ferrit und Austenit besteht. Dieses Grundgefüge wird als Ausferrit bezeichnet.

3.4 Probestück repräsentative Materialmenge des Gusswerkstoffs, einschließlich getrennt gegossener Probestücke, parallel gegossener Probestücke und angegossener Probestücke

3.5 getrennt gegossenes Probestück Probestück, das in einer separaten Sandform zur selben Zeit wie die Gussstücke und unter repräsentativen Fertigungsbedingungen gegossen wird

3.6 parallel gegossenes Probestück Probestück, das in einer Form neben dem Gussstück mit einem gemeinsamen Eingusssystem gegossen wird

3.7 angegossenes Probestück Probestück, das unmittelbar mit dem Gussstück verbunden ist

3.8 maßgebende Wanddicke kennzeichnende Wanddicke des Gussstücks, festgelegt für die Bestimmung der Größe der Probestücke für die die mechanischen Kennwerte gelten

4 Bezeichnung

Der Werkstoff muss entweder durch das Werkstoffkurzzeichen oder durch die Werkstoffnummer bezeichnet werden, wie in den Tabellen 1, 2 oder A.1 angegeben.

Wenn es sich um aus dem Gussstück entnommene Probestücke handelt, ist der Buchstabe C am Ende der Bezeichnung mit Werkstoffkurzzeichen anzufügen, siehe EN 1560.

ANMERKUNG Anhang B enthält eine Gegenüberstellung der Sortenbezeichnungen der EN 1564 und der Sorten aus der ISO-Norm für ausferritisches Gusseisen mit Kugelgraphit ISO 17804:2005 [6].

5 Bestellangaben

Folgende Angaben müssen vom Käufer gemacht werden:

a) die Nummer dieser Europäischen Norm;

b) die Bezeichnung des Werkstoffs;

c) die maßgebende Wanddicke des Gussstücks;

d) jegliche speziellen Anforderungen.

Sämtliche Anforderungen müssen zwischen dem Hersteller und dem Käufer bis zum Zeitpunkt der Annahme der Bestellung vereinbart werden, z. B. technische Lieferbedingungen nach EN 1559-1 und EN 1559-3.

DIN EN 1564:2012-01

Page 91: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

8

6 Herstellung

Wenn vom Käufer nicht anders festgelegt, ist das Verfahren zur Herstellung von ausferritischem Gusseisen mit Kugelgraphit und der erforderlichen Wärmebehandlung, um die festgelegten mechanischen Eigenschaften und Mikrostruktur zu erhalten, dem Ermessen des Herstellers zu überlassen.

Der Hersteller muss sicherstellen dass, die in der Bestellung festgelegte Werkstoffsorte, die in dieser Norm festgelegten Anforderungen erfüllt.

Sämtliche Anforderungen müssen zwischen dem Hersteller und dem Käufer bis zum Zeitpunkt der Annahme der Bestellung vereinbart werden.

7 Anforderungen

7.1 Allgemeines

Die Merkmalswerte gelten für ausferritische Gusseisen mit Kugelgraphit, die in Sandformen oder Formen mit vergleichbarem Wärmeverhalten gegossen werden. Aufgrund von in der Bestellung zu vereinbarenden Änderungen können sie auch für Gussstücke gelten, die durch alternative Verfahren hergestellt wurden.

Die Werkstoffbezeichnung basiert auf den Mindestwerten der mechanischen Eigenschaften, die mit einem gegossenen Probestück der Dicke oder dem Durchmesser von 25 mm erreicht wurden. Die Bezeichnung ist unabhängig von der Art des gegossenen Probestückes.

Die mechanischen Eigenschaften sind abhängig von der Wanddicke, wie in Tabelle 1 dargestellt.

ANMERKUNG Zugversuche erfordern fehlerfreie Proben, um eine rein einachsige Beanspruchung während der Prüfung sicherzustellen.

7.2 Aus Probestücken durch mechanische Bearbeitung hergestellte Proben

7.2.1 Allgemeines

Die mechanischen Eigenschaften der Proben von ausferritischem Gusseisen mit Kugelgraphit müssen den Festlegungen in Tabelle 1 und, sofern zutreffend, den in 7.2.2 angegebenen Anforderungen entsprechen.

7.2.2 Schlagenergie

Die in Tabelle 2 angegebenen Werte für die Schlagenergie bei Raumtemperatur sind, sofern zutreffend, nur dann zu bestimmen, wenn dies zum Zeitpunkt der Annahme der Bestellung durch den Käufer festgelegt wurde.

7.3 Proben, die aus einem Gussstück entnommenen Probestücken durch mechanische Bearbeitung hergestellt wurden

Zwischen Hersteller und Käufer sind, falls zutreffend, zu vereinbaren:

die Stelle(n) an einem Gussstück, an der (denen) das (die) Probestück(e) zu entnehmen ist (sind);

die zu messenden mechanischen Eigenschaften;

die Mindestwerte oder der zulässige Wertebereich für diese mechanischen Eigenschaften (für nähere Angaben siehe Anhang C).

ANMERKUNG 1 Die Eigenschaften von Gussstücken sind aufgrund der Komplexität der Gussstücke und ihrer unterschiedlichen Wanddicke nicht einheitlich.

ANMERKUNG 2 Die mechanischen Eigenschaften von Proben, die einem Gussstück entnommen wurden, werden nicht nur durch Werkstoffeigenschaften beeinflusst (Gegenstand dieser Norm), sondern auch durch lokale Abweichungen vom einwandfreien Zustand eines Gusstückes (nicht Gegenstand dieser Norm).

DIN EN 1564:2012-01

Page 92: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

9

Tabelle 1 � Mechanische Eigenschaften, gemessen an Proben, die aus Probestücken durch mechanische Bearbeitung hergestellt wurden

Werkstoffbezeichnung Maßgebende Wanddicke a

0,2 %-Dehngrenze Zugfestigkeit Dehnung

t Rp0,2 Rm A

mm MPa MPa %

Kurzzeichen Nummer min. min. min.

EN-GJS-800-10

EN-GJS-800-10-RT

5.3400

5.3401

t 30

500

800 10

30 < t 60 750 6

60 < t 100 720 5

EN-GJS-900-8 5.3402

t 30

600

900 8

30 < t 60 850 5

60 < t 100 820 4

EN-GJS-1050-6 5.3403

t 30

700

1 050 6

30 < t 60 1 000 4

60 < t 100 970 3

EN-GJS-1200-3 5.3404

t 30

850

1 200 3

30 < t 60 1 170 2

60 < t 100 1 140 1

EN-GJS-1400-1 5.3405

t 30

1 100

1 400 1

30 < t 60 Zwischen Hersteller und Käufer zu vereinbaren 60 < t 100

ANMERKUNG 1 Die maßgebende Wanddicke hat keinen Einfluss auf die Mindest-0,2 %-Dehngrenze, vorausgesetzt die Wärmebehandlungs-Parameter und die chemische Zusammensetzung sind auf die maßgebende Wanddicke abge-stimmt.

ANMERKUNG 2 Richtwerte für die Brinellhärte dieser Sorten sind im Anhang D angegeben.

a Bei maßgebenden Wanddicken von mehr als 100 mm müssen Hersteller und Käufer die Art und die Größe des Probestücks und die zu erreichenden Mindestwerte vereinbaren.

DIN EN 1564:2012-01

Page 93: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

10

Tabelle 2 � Mindestwerte für die Schlagenergie, gemessen an V-förmig gekerbten Proben, die aus Probestücken durch mechanische Bearbeitung hergestellt wurden

Werkstoffbezeichnung Maßgebende Wanddicke a

Schlagenergie bei Raumtemperatur 23 °C 5 °C

Kurzzeichen Nummer

t Mittelwert

aus 3 Prüfungen Einzelwert

mm J min.

J min.

EN-GJS-800-10-RT 5.3401

t 30 10 9

30 < t 60 9 8

60 < t 100 8 7

a Bei maßgebenden Wanddicken von mehr als 100 mm müssen Hersteller und Käufer die Art und die Größe des Probestücks und die zu erreichenden Mindestwerte vereinbaren.

7.4 Härte

Die Brinellhärte und deren Wertebereich für die in Tabelle 1 aufgeführten Sorten ist nur dann zu bestimmen, wenn es zwischen dem Hersteller und dem Käufer zum Zeitpunkt der Annahme der Bestellung vereinbart wurde.

Angaben zur Härte, für die in Tabelle 1 gelisteten fünf Sorten, sind im Anhang D und Anhang E enthalten.

Für die beiden Sorten, die über die Eigenschaften der Härte festgelegt sind, gilt Anhang A.

7.5 Graphitausbildung

Die Graphitausbildung muss hauptsächlich der Form V und VI nach EN ISO 945-1, entsprechen. Eine genauere Bestimmung kann bis zum Zeitpunkt der Annahme der Bestellung vereinbart werden.

ANMERKUNG In Anhang F sind weitere Informationen zur Nodularität enthalten.

7.6 Gefügegrundmasse

Die Gefügegrundmasse der verschiedenen Sorten von ausferritischem Gusseisen mit Kugelgraphit besteht überwiegend aus Austenit und Ferrit � auch als Ausferrit bezeichnet. Andere Matrixbestandteile (z. B. Martensit, Bainit, Carbide) müssen minimiert werden und können in einem Grad vorliegen, der die in Tabelle 1 und Tabelle 2 angegebenen geforderten mechanischen Eigenschaften nicht beeinflusst. Für die in Anhang A angegebenen verschleißbeständigen Sorten können andere Matrixbestandteile von Vorteil sein.

Die Abkühlgeschwindigkeit kann in einigen Abschnitten nicht ausreichend sein, um die Bildung von Perlit oder anderen, bei hohen Temperaturen entstehenden Umwandlungsgefügen zu verhindern. In derartigen Fällen dürfen die höchstens zulässigen Mengen dieser Gefügebestandteile, die Stellen innerhalb des Gussstücks und die mechanischen Eigenschaften an diesen Stellen zwischen Hersteller und Käufer vereinbart werden.

DIN EN 1564:2012-01

Page 94: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

11

8 Probenahme

8.1 Allgemeines

Die Probestücke sind aus demselben Werkstoff herzustellen, der für die Herstellung der Gussstücke verwendet wird, für die sie repräsentativ sind.

In Abhängigkeit von der Masse und Wanddicke des Gussstücks können verschiedene Arten von Probe-stücken (getrennt gegossene Probestücke, angegossene Probestücke, parallel gegossene Probestücke, aus einem Gussstück entnommene Probestücke) verwendet werden.

Falls der Typ der Probe relevant ist, sollte dies zwischen dem Hersteller und dem Käufer vereinbart werden. Falls nicht anders vereinbart, ist die Auswahl dem Ermessen des Herstellers überlassen.

Wenn die Masse des Gussstücks 2 000 kg überschreitet und dessen maßgebende Wanddicke mehr als 60 mm beträgt, sollten vorzugsweise angegossene oder parallel gegossene Probestücke verwendet werden; die Maße und die Lage des Probestücks müssen zwischen Hersteller und Käufer zum Zeitpunkt der Annahme der Bestellung vereinbart werden.

Wenn die kugelgraphiterzeugende Behandlung in der Form erfolgt (Inmold-Verfahren), sollten getrennt gegossene Probestücke vermieden werden.

Sämtliche Probestücke müssen angemessen gekennzeichnet werden, um vollständige Rückverfolgbarkeit auf die Gussstücke, die sie repräsentieren, sicherzustellen.

Die Probestücke müssen die gleiche Wärmebehandlung durchlaufen haben, wie die Gussstücke die sie repräsentieren.

Die Proben für den Zugversuch und den Schlagbiegeversuch müssen nach der Wärmebehandlung aus den Probestücken durch mechanische Bearbeitung entnommen werden.

8.2 Probestücke

8.2.1 Größe der Probestücke

Die Größe des Probestücks muss mit der maßgebenden Wanddicke des Gussstücks übereinstimmen, wie in Tabelle 3 dargestellt.

Wenn andere Größen verwendet werden, muss dies zwischen dem Hersteller und dem Käufer vereinbart werden.

Tabelle 3 � Typen und Größe von Probestücken und Größe von Proben für den Zugversuch im Verhältnis zur maßgebenden Wanddicke des Gussstücks

Maßgebende Wanddicke Typ des Probestücks

Bevorzugter Durchmesser der Zugversuchs-Probe a

Möglichkeit 1 Möglichkeit 2 Möglichkeit 3 angegossen

t U-Probe Y-Probe Rundstab d

mm (siehe Bild 1) (siehe Bild 2) (siehe Bild 3) (siehe Bild 4) mm

t 12,5 � I Typen b, c A 7

(Möglichkeit 3: 14 mm)

12,5 < t 30 � II Typen a, b, c B 14

30 < t 60 b III � C 14

60 < t 100 � IV � D 14

a Zwischen dem Hersteller und dem Käufer dürfen andere Durchmesser, in Übereinstimmung mit Bild 5, vereinbart werden. b Die Abkühlgeschwindigkeit dieses gegossenen Probestücks entspricht der eines Stücks mit 40 mm Wanddicke.

DIN EN 1564:2012-01

Page 95: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

12

8.2.2 Häufigkeit und Anzahl von Prüfungen

Für den Werkstoff repräsentative Probestücke sind in einer Häufigkeit herzustellen, die mit dem Qualitäts-sicherungssystem des Herstellers während der Fertigung übereinstimmen oder mit dem Käufer vereinbart wurden.

Gibt es keine fertigungsbegleitende Qualitätssicherung oder keine andere Vereinbarung zwischen Hersteller und Käufer, dann muss mindestens ein gegossenes Probestück für den Zugversuch hergestellt werden, um die Werkstoffsorte zu bestätigen. Die Häufigkeit ist zwischen Hersteller und Käufer bis zum Zeitpunkt der Annahme der Bestellung zu vereinbaren.

Wenn Schlagbiegeprüfungen erforderlich sind, dann sind Probestücke in einer Häufigkeit herzustellen, die zwischen dem Hersteller und dem Käufer zu vereinbaren ist.

8.2.3 Getrennt gegossene Probestücke

Die Probestücke sind getrennt in Sandformen sowie unter repräsentativen Fertigungsbedingungen zu gießen.

Die zum Guss der getrennt gegossenen Probestücke verwendeten Formen müssen ein thermisches Verhalten aufweisen, das dem Formwerkstoff entspricht, der für den Guss der Gussstücke verwendet wird.

Die Probestücke müssen den Anforderungen der Bilder 1, 2 oder 3 entsprechen.

Die Probestücke sind bei der gleichen Temperatur aus der Form zu entnehmen wie die Gussstücke.

8.2.4 Parallel gegossene Probestücke

Parallel gegossene Probestücke sind für die gleichzeitig gegossenen Gussstücke sowie für sämtliche anderen Gussstücke mit derselben maßgebenden Wanddicke repräsentativ, die aus derselben Prüfeinheit stammen.

Bestehen Anforderungen an die mechanische Eigenschaften für eine Serie von Gussstücken, die zur gleichen Prüfeinheit gehören, muss ein oder mehrere parallel gegossene(s) Probestück(e) mit der letzten gefüllten Form gegossen werden.

Die Probestücke müssen den Anforderungen der Bilder 1, 2 oder 3 entsprechen.

8.2.5 Angegossene Probestücke

Angegossene Probestücke sind repräsentativ für die Gussstücke, an denen sie angegossen sind, und auch für alle weiteren Gussstücke mit einer ähnlichen maßgebenden Wanddicke aus der gleichen Prüfeinheit.

Bestehen Anforderungen an die mechanische Eigenschaften für eine Serie von Gussstücken, die zur gleichen Prüfeinheit gehören, muss ein oder mehrere angegossene(s) Probestück(e) mit der letzten gefüllten Form gegossen werden.

Das Probestück muss eine Form nach Bild 4 und die darin dargestellten Maße aufweisen.

Die Lageanordnung des angegossenen Probestücks ist zum Zeitpunkt der Annahme der Bestellung zwischen Hersteller und Käufer zu vereinbaren, wobei die Form des Gussstücks und das Gießsystem zu berück-sichtigen sind, um ungünstige Einflüsse auf die Eigenschaften des angrenzenden Materials zu vermeiden.

8.2.6 Aus Probestücken durch mechanische Bearbeitung entnommene Proben

Die in Bild 5 dargestellte Probe für den Zugversuch sowie, sofern zutreffend, die in Bild 6 dargestellte Probe für den Kerbschlagbiegeversuch sind einem Probestück durch mechanische Bearbeitung zu entnehmen, wie in Bild 3 oder im schraffierten Teil der Bilder 1, 2 oder 4 dargestellt.

Die Probenlage muss Anhang G entsprechen.

Sofern nichts anderes festgelegt wurde, ist für die Probe der bevorzugte Durchmesser zu verwenden.

DIN EN 1564:2012-01

Page 96: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

13

8.3 Aus dem Gussstück entnommene Probestücke

Zusätzlich zu den Anforderungen an den Werkstoff dürfen der Hersteller und der Käufer Eigenschaften vereinbaren, die an festgelegten Stellen im Gussstück gefordert werden (für weitere Informationen siehe Anhang C). Diese Eigenschaften müssen durch Prüfung von Proben bestimmt werden, die durch mechanische Bearbeitung aus Probestücken hergestellt wurden, die an diesen festgelegten Stellen aus dem Gussstück entnommenen wurden.

Der Hersteller und der Käufer müssen die Maße dieser Proben vereinbaren.

Falls vom Käufer keine Angaben gemacht werden, darf der Hersteller die Stellen, an denen Probestücke entnommen werden, sowie die Maße der Proben wählen.

Die Mittellinie der Probe, sollte an einem Punkt auf der halben Strecke zwischen der Oberfläche und dem Zentrum der Wanddicke liegen.

ANMERKUNG 1 Wenn im Probendurchmesser auch Zonen der letzten Erstarrung des Gussstückes enthalten sind, können die Mindest-Richtwerte für die Dehnung unterschritten werden.

ANMERKUNG 2 Bei großen Einzelgussstücken dürfen an vereinbarten Stellen im Gussstück, die anzugeben sind, hohlgebohrte Probestücke entnommen werden.

Maße in Millimeter

Legende

a Zur Information. b Die Länge z muss so gewählt werden, dass eine Probe mit den in Bild 5 dargestellten Maßen aus dem Probestück

durch mechanische Bearbeitung entnommen werden kann.

Die Mindestdicke der Sandform um die Probestücke muss 40 mm betragen.

Bild 1 � Getrennt oder parallel gegossene Probestücke � Möglichkeit 1: U-Probe

DIN EN 1564:2012-01

Page 97: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

14

Maße in Millimeter

Maß Typ

I II III IV

u 12,5 25 50 75

v 40 55 100 125

x 25 40 50 65

y a 135 140 150 175

z b In Abhängigkeit von der Länge der Probe

a Nur informativ

b z muss so gewählt werden, dass eine Probe mit den in Bild 5 dargestellten Maßen aus dem Probestück durch mechanische Bearbeitung hergestellt werden kann.

Die Mindestdicke der Sandform um die Probestücke muss:

40 mm bei Typ I und Typ II;

80 mm bei Typ III und Typ IV.

betragen.

Bild 2 � Getrennt oder parallel gegossene Probestücke � Möglichkeit 2: Y-Probe

DIN EN 1564:2012-01

Page 98: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

15

Typ a

Typ b

Typ c

Maße in Millimeter

Typ A B D H Hb Lf Ln Lt W

a 4,5 5,5 25 50 � Lt 20 Lt 50

a

100

b 4,5 5,5 25 50 � Lt 20 Lt 50 50

c 4,0 5,0 25 35 15 Lt 20 Lt 50 50

a Lt muss so gewählt werden, dass eine Probe mit den in Bild 5 dargestellten Maßen aus dem Probestück durch mechanische

Bearbeitung hergestellt werden kann.

Die Mindestdicke der Sandform um die Probestücke muss 40 mm betragen.

Bild 3 � Getrennt oder parallel gegossene Probestücke � Möglichkeit 3: Rundstab

DIN EN 1564:2012-01

Page 99: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

16

Legende

1 Gussstück

Maße in Millimeter

Typ Maßgebende Wanddicke a b c h Lt

t max. min.

A t 12,5 15 11 7,5 20 bis 30

a B 12,5 < t 30 25 19 12,5 30 bis 40

C 30 < t 60 40 30 20 40 bis 65

D 60 < t 100 70 52,5 35 65 bis 105

a Lt muss so gewählt werden, dass eine Probe mit den in Bild 5 dargestellten Maßen aus dem Probestück durch mechanische

Bearbeitung hergestellt werden kann.

Die Mindestdicke der Sandform um die Probestücke muss:

40 mm bei Typ A und Typ B;

80 mm bei Typ C und Typ D.

betragen.

Werden kleinere Maße vereinbart, dann gelten die folgenden Relationen:

b = 0,75 a

c = 0,5 a

Bild 4 � Angegossene Probestücke

DIN EN 1564:2012-01

Page 100: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

17

9 Prüfverfahren

9.1 Zugversuch

Der Zugversuch ist nach EN ISO 6892-1:2009, durchzuführen.

Der bevorzugte Probendurchmesser beträgt 14 mm, jedoch darf aus technischen Gründen und bei Proben, die aus dem Gussstück entnommenen Probestücken durch mechanische Bearbeitung gewonnen werden, eine Probe mit einem anderen Durchmesser verwendet werden (siehe Bild 5).

In allen Fällen muss die Anfangsmesslänge der Probe folgender Gleichung entsprechen:

dSL 55,65 oo

Dabei ist

Lo die Anfangsmesslänge;

So der Anfangsquerschnitt der Probe;

d der Durchmesser der Probe in der Versuchslänge.

Falls die vorgenannte Gleichung für Lo nicht anwendbar ist, müssen Hersteller und Käufer über die Maße der herzustellenden Probe eine Vereinbarung treffen. Eine Probe mit einer anderen Anfangsmesslänge darf zwischen Hersteller und Käufer vereinbart werden.

DIN EN 1564:2012-01

Page 101: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

18

Maße in Millimeter

d Lo Lc

min.

5 25 30

7 35 42

10 50 60

14 a 70 84

20 100 120

a Vorzugsmaß für Probenstückdurchmesser 25 mm.

Dabei ist

Lo die Anfangsmesslänge, d. h. Lo = 5 d;

d der Durchmesser der Probe in der Versuchslänge;

Lc die Versuchslänge; Lc > Lo (grundsätzlich Lc Lo d);

Lt die Gesamtlänge der Probe, die von Lc abhängt.

r der Übergangsradius, welcher min. 4 mm betragen muss.

ANMERKUNG Die Methode, die Enden der Probe einzuspannen, und ihre Länge lt dürfen zwischen Hersteller und Käufer vereinbart werden.

Bild 5 � Zugprobe

9.2 Schlagbiegeversuch

Der Schlagbiegeversuch ist an drei Charpy-Proben (V-Kerb) (siehe Bild 6) nach EN ISO 148-1:2010 durch-zuführen, wobei eine Prüfeinrichtung mit einem ausreichenden Arbeitsvermögen zu verwenden ist, um die Eigenschaften korrekt zu bestimmen.

DIN EN 1564:2012-01

Page 102: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

19

Maße in Millimeter

Bild 6 � Charpy-Probe (V-Kerb)

9.3 Härteprüfung

Die Härte ist als Brinellhärte nach EN ISO 6506-1 zu bestimmen.

Es dürfen alternative Härteprüfungen und die entsprechenden geforderten Härtewerte vereinbart werden.

Die Prüfung muss an der Probe oder an einer oder mehreren Stellen am Gussstück durchgeführt werden, nachdem die Prüffläche entsprechend der Vereinbarung zwischen Hersteller und Käufer vorbereitet wurde.

Falls die Messpunkte nicht vereinbart wurden, sind sie vom Hersteller zu wählen.

Falls es nicht möglich ist, die Härteprüfung am Gussstück durchzuführen, darf aufgrund einer Vereinbarung zwischen Hersteller und Käufer die Härteprüfung an einem am Gussstück selbst angegossenen Probestück durchgeführt werden.

9.4 Untersuchung der Graphitausbildung und Gefügegrundmasse

Die Graphitausbildung und Gefügegrundmasse muss durch eine metallographische Untersuchung bestätigt werden.

Zerstörungsfreie Verfahren können ebenfalls Auskunft über die Graphitausbildung geben.

Ein indirektes Verfahren um zu ermitteln, ob nach der Wärmebehandlung das erforderliche Grundgefüge erzielt wurde, stellt der Schlagbiegeversuch an ungekerbten Charpy-Proben dar.

In Anhang H sind zu erzielende Mindestwerte für die Schlagenergie und Einzelheiten zum Charpy- Schlagbiegeversuch an ungekerbten Proben angegeben.

Im Falle von Meinungsverschiedenheiten, haben die Ergebnisse der mikroskopischen Untersuchung Vorrang.

10 Wiederholungsprüfungen

10.1 Notwendigkeit von Wiederholungsprüfungen

Wiederholungsprüfungen sind durchzuführen, falls eine Prüfung ungültig ist.

Die Durchführung von Wiederholungsprüfungen ist zulässig, wenn ein Prüfergebnis der Anforderung an die mechanischen Eigenschaften bei der festgelegten Sorte nicht genügt.

DIN EN 1564:2012-01

Page 103: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

20

10.2 Gültigkeit von Prüfungen

Eine Prüfung ist ungültig bei:

a) einer fehlerhafter Montage der Probe oder Fehler beim Betrieb der Prüfmaschine;

b) einer unbrauchbarer Probe durch fehlerhaftes Gießen oder fehlerhafte mechanisch Bearbeitung;

c) einem Bruch der Zugprobe außerhalb der Versuchslänge;

d) einem Gussfehler in der Probe, der nach einem Bruch sichtbar wird.

In den oben genannten Fällen muss eine neue Probe aus demselben Probestück oder einem gleichzeitig gegossenen Zweitprobestück entnommen werden, das dieselbe Wärmebehandlung durchlaufen hat, um diese ungültigen Prüfergebnisse zu ersetzen.

10.3 Nichtübereinstimmende Prüfergebnisse

Ergibt sich bei einem der Versuche ein Ergebnis, das den festgelegten Anforderungen aus anderen als in 10.2 angegebenen Gründen nicht entspricht, muss der Hersteller die Möglichkeit haben, Wiederholungsprüfungen durchzuführen.

Wenn der Hersteller Wiederholungsprüfungen durchführt, müssen für jede nicht bestandene Prüfung zwei Wiederholungsprüfungen durchgeführt werden.

Wenn bei beiden Wiederholungsprüfungen Ergebnisse erzielt werden, die den festgelegten Anforderungen entsprechen, ist der Werkstoff als mit der vorliegenden Europäischen Norm übereinstimmend anzusehen.

Wenn bei einer oder beiden Wiederholungsprüfungen Ergebnisse erzielt werden, die den festgelegten Anforderungen nicht genügen, so ist der Werkstoff als mit der vorliegenden Europäischen Norm nicht konform anzusehen.

10.4 Wärmebehandlung von Probestücken und Gussstücken

Im Falle von Gussstücken, die einer Wärmebehandlung unterzogen wurden und bei denen die Prüfergebnisse ungültig oder nicht zufriedenstellend waren, muss es dem Hersteller erlaubt sein, die Gussstücke und die sie repräsentierenden Probestücke einer erneuten Wärmebehandlung zu unterziehen. In diesem Fall müssen die Probestücke die gleiche Anzahl an Wärmebehandlungen erhalten wie die Gussstücke.

Wenn die Ergebnisse der Prüfungen, die an den Proben erfolgten, die durch mechanische Bearbeitung aus erneut wärmebehandelten Probestücken hergestellt wurden, zufriedenstellend sind, dann sind die erneut wärmebehandelten Gussstücke als mit den in der vorliegenden Europäischen Norm festgelegten Anforde-rungen konform anzusehen.

11 Prüfbescheinigung

Wenn vom Käufer verlangt und dies mit dem Hersteller vereinbart wurde, muss der Hersteller für die Produkte die entsprechende Prüfbescheinigung nach EN 10204:2004 ausstellen.

Beim Bestellen von Produkten für die Verwendung für Druckgeräte hat der Hersteller der Geräte die Verpflichtung, die zutreffende Prüfbescheinigung nach den geeigneten Produkt- oder Anwendungs-Norm(en), EN 764-5:2002 und EN 10204:2004 anzufordern.

Der Werkstoffhersteller ist verantwortlich für Bestätigung der Konformität mit den Festlegungen des bestellten Werkstoffs.

DIN EN 1564:2012-01

Page 104: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

21

Anhang A (normativ)

Verschleißbeständige Sorten von ausferritischem Gusseisen mit

Kugelgraphit

A.1 Allgemeines

In diesem Anhang sind die Sorten von verschleißbeständigem ausferritischem Gusseisen mit Kugelgraphit festgelegt.

Die Sorten sind auf Basis der Härte definiert.

A.2 Anforderungen

Die Brinellhärte für die unterschiedlichen Sorten muss den Festlegungen in Tabelle A.1 entsprechen. In Tabelle A.1 sind auch weitere Eigenschaften zu Informationszwecken angegeben.

Hersteller und Käufer dürfen die maximale Brinellhärte vereinbaren.

Tabelle A.1 � Verschleißbeständiges ausferritisches Gusseisen mit Kugelgraphit

Werkstoffbezeichnung Brinellhärte Andere Eigenschaften

(nur informativ)

HBW Rp0,2 Rm A

Kurzzeichen Nummer min. MPa MPa %

EN-GJS-HB400 5.3406 400 1 100 1 400 1

EN-GJS-HB450 5.3407 450 1 300 1 600 �

A.3 Probenahme

Sofern vom Käufer zum Zeitpunkt der Annahme der Bestellung nicht anders festgelegt, müssen die Anzahl und Häufigkeit der Brinell-Härteprüfungen dem Qualitätssicherungssystem des Herstellers entsprechen.

Falls es nicht möglich ist, die Härteprüfung am Gussstück durchzuführen, darf aufgrund einer Vereinbarung zwischen Hersteller und Käufer die Härteprüfung an einem Probestück durchgeführt werden, das am Gussstück selbst angegossen und mit diesem wärmebehandelt wurde.

DIN EN 1564:2012-01

Page 105: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

22

A.4 Härteprüfung

Die Brinell-Härteprüfung ist nach EN ISO 6506-1 durchzuführen.

ANMERKUNG 1 Die nach einem bestimmten Prüfverfahren festgestellte Härte ist nicht unbedingt vergleichbar mit der Härte, die nach anderen Prüfverfahren ermittelt wurde. Eine Umwandlung der Härtewerte aus anderen Prüfverfahren kann nach Vereinbarung zwischen Hersteller und Käufer durchgeführt werden.

Jede Brinell-Härteprüfung muss an einem Gussstück an den zwischen Hersteller und Käufer vereinbarten Stellen oder an einem an das Gussstück selbst angegossenen Probestück durchgeführt werden.

Sofern vom Käufer nicht anders festgelegt, müssen die Maße und die Anordnung des angegossenen Probestückes der Wahl des Herstellers überlassen bleiben.

ANMERKUNG 2 Ein angegossenes Probestück kann verwendet werden, wenn aufgrund der Größe des Gussstücks oder der Anzahl der zu prüfenden Gussstücke die direkte Prüfung an den Gussstücken nicht durchführbar ist.

Muss die Prüfung an einem angegossenen Probestück durchgeführt werden, dann darf dieser erst vom Guss-stück entfernt werden, wenn die Wärmebehandlung durchgeführt wurde.

Wenn Gussstücke zu groß sind oder ihre Prüfung in einem herkömmlichen Härte-Prüfgerät zu schwierig ist oder falls eine On-line-Prüfung einer großen Anzahl von Gussstücken erforderlich ist, dann darf eine tragbare Härte-Prüfeinrichtung verwendet werden.

Bei Verwendung von tragbaren Härte-Prüfeinrichtungen muss auf entsprechend kalibrierte Prüfblöcke Bezug genommen werden.

A.5 Wiederholungsprüfungen

Wiederholungsprüfungen müssen zugelassen und unter denselben Bedingungen durchgeführt werden, wie in Abschnitt 10 festgelegt.

DIN EN 1564:2012-01

Page 106: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

23

Anhang B (informativ)

Gegenüberstellung der Werkstoffbezeichnungen nach EN 1560 und ISO/TR 15931 [2] [7] von ausferritischem Gusseisen mit Kugelgraphit

In diesem informativen Anhang sind die Werkstoffbezeichnungen der genormten Sorten von ausferritischem Gusseisen mit Kugelgraphit nach den Bezeichnungssystemen der ISO und der EN gegenübergestellt.

Tabelle B.1 � Werkstoffbezeichnungen von ausferritischem Gusseisen mit Kugelgraphit � Klassifizierung nach den mechanischen Eigenschaften, die an Proben gemessen wurden, die durch

mechanische Bearbeitung aus Probestücken hergestellt wurden

EN 1564:2011 � Tabelle 1 ISO 17804:2005 � Tabelle 1

Kurzzeichen Nummer Bezeichnung

EN-GJS-800-10 5.3400 ISO 17804/JS/800-10

EN-GJS-800-10-RT 5.3401 ISO 17804/JS/800-10-RT

EN-GJS-900-8 5.3402 ISO 17804/JS/900-8

EN-GJS-1050-6 5.3403 ISO 17804/JS/1050-6

EN-GJS-1200-3 5.3404 ISO 17804/JS/1200-3

EN-GJS-1400-1 5.3405 a ISO 17804/JS/1400-1

a Die Nummern-Bezeichnung für diese Sorte lautete in der vorherigen Ausgabe dieser Norm: EN-JS1130.

Tabelle B.2 � Werkstoffbezeichnungen von verschleißbeständigen Sorten von ausferritischem Gusseisen mit Kugelgraphit � Klassifizierung nach der Härte

EN 1564:2011 � Tabelle A.1 ISO 17804:2005 � Tabelle A.1

Kurzzeichen Nummer Bezeichnung

EN-GJS-HB400 5.3406 ISO 17804/JS/HBW400

EN-GJS-HB450 5.3407 ISO 17804/JS/HBW450

DIN EN 1564:2012-01

Page 107: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

24

Anhang C (informativ)

Richtwerte für die Zugfestigkeit und Dehnung für Proben, die durch

mechanische Bearbeitung aus Probestücken hergestellt und die einem Gussstück entnommen wurden

Tabelle C.1 � Richtwerte für die Zugfestigkeit und Dehnung für Proben, die durch mechanische Bearbeitung aus Probestücken hergestellt und die einem Gussstück entnommen wurden

Werkstoff-bezeichnung

0,2 %-Dehn-grenze

Zugfestigkeit Dehnung

Rp0,2 Rm A

MPa MPa %

min. min. min.

Maßgebende Wanddicke in Millimeter

t 30 30 < t 60 60 < t 100 t 30 30 < t 60 60 < t 100

EN-GJS-800-10C

EN-GJS-800-10-C-RT

500 780 740 710 8 5 4

EN-GJS-900-8C 600 880 830 800 7 4 3

EN-GJS-1050-6C 700 1 020 970 940 5 3 2

EN-GJS-1200-3C 850 1 170 1 140 1 110 2 1 1

EN-GJS-1400-1C 1 100 1 360 Ist zwischen Hersteller und Käufer zu vereinbaren.

DIN EN 1564:2012-01

Page 108: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

25

Anhang D (informativ)

Richtwerte für die Brinellhärte

Tabelle D.1 � Richtwerte für die Brinellhärte

Werkstoffbezeichnung Brinellhärte-Bereich

HBW

EN-GJS-800-10, EN-GJS-800-10-RT

250 bis 310

EN-GJS-900-8 280 bis 340

EN-GJS-1050-6 320 bis 380

EN-GJS-1200-3 340 bis 420

EN-GJS-1400-1 380 bis 480

Wenn nötig oder für die Bearbeitbarkeit erforderlich und zwischen Hersteller und Käufer vereinbart, darf an der vereinbarten Stelle am Gussstück ein engerer Härtebereich verwendet werden.

Für die Sorten EN-GJS-800-10 und EN-GJS-800-10-RT ist ein Bereich zwischen 30 HBW und 40 HBW allgemein annehmbar. Bei steigender Zugfestigkeit und Härte können größere Bereiche erforderlich sein.

DIN EN 1564:2012-01

Page 109: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

26

Anhang E (informativ)

Bestimmung des Härtebereichs

E.1 Allgemeines

Das folgende Verfahren kann zur Bestimmung des Härtebereichs für ein bestimmtes Gießverfahren verwendet werden, das in der Lage ist, die Anforderungen an die in Tabelle 1 festgelegten Eigenschaften einer Werkstoffsorte bezüglich der Zugfestigkeit zu erfüllen. Das Verfahren eignet sich am ehesten für die Serienfertigung von Gussstücken.

E.2 Verfahren

E.2.1 Es ist die erforderliche Werkstoffsorte aus Tabelle 1 auszuwählen.

E.2.2 Es ist der Typ des zu verwendenden Probestücks nach Tabelle 3 auszuwählen.

E.2.3 Es sind die Probestücke zu verwenden, die den festgelegten Härtebereich für die festgelegte Sorte abdecken, wie in Tabelle D.1 dargestellt.

E.2.4 Für jede Probe und für die zugehörigen Gussstücke sind die Zugfestigkeit, die 0,2 %-Dehngrenze, die Dehnung und die Brinellhärte an den vereinbarten Stellen zu bestimmen. Die Härtewerte sind auf die nächsten 10 HBW zu runden. Es sind so viele Prüfungen durchzuführen, wie zur Ermittlung der zwischen Hersteller und Käufer vereinbart Mindestanzahl für jeden HBW-Wert oder zum Erreichen des statistischen Vertrauensgrads erforderlich sind.

E.2.5 In Histogrammen sind die Zugfestigkeit, die 0,2 %-Dehngrenze, die Dehnung gegenüber der Härte der Gussstücke und/oder Proben graphisch darzustellen, mit HBW als unabhängiger Variablen.

E.2.6 Für jeden HBW-Wert ist der Mindestwert für jede Zugeigenschaft als Prozessfähigkeits-Indikator zu übernehmen.

E.2.7 Die Mindesthärte für Gussstücke und/oder Proben ist als der HBW-Mindestwert festzulegen, für den die in Tabelle 1 angegebenen Anforderungen an die Zugfestigkeit und die 0,2 %-Dehngrenze für die festgelegte Sorte erfüllt werden.

E.2.8 Es ist die maximale Härte für Gussstücke und/oder Proben festzulegen; ein Bereich zwischen 30 HBW und 40 HBW ist für die Sorten EN-GJS-800-10 und EN-GJS-800-10-RT allgemein annehmbar. Bei steigender Zugfestigkeit und Härte können größere Bereiche erforderlich sein.

E.2.9 Um zu bestimmen, ob der erforderlichen Mindestdehnung nach Tabelle 1 durch die in E.2.8 fest-gelegten maximale Härte entsprochen wird, ist der in E.2.5 aufgezeichnete Graph zu verwenden.

Wenn der erforderlichen Mindestdehnung nicht entsprochen wird, gibt es drei Möglichkeiten:

diese maximale Härte ist beizubehalten und eine niedrigere Mindestdehnung festzulegen;

es ist eine geringe maximale Härte festzulegen und ein engerer Härtebereich;

es ist eine geringere minimale und maximale Härte festzulegen. In diesem Fall sollte eine geringere Zug-festigkeit und eine geringere 0,2 %-Dehngrenze festgelegt werden.

Die gewählte Möglichkeit sollte zwischen Hersteller und Käufer vereinbart werden.

E.2.10 Wenn der erforderlichen Mindestdehnung entsprochen wird, darf zwischen Hersteller und Käufer eine größere Mindestdehnung für die festgelegte Sorte vereinbart werden.

DIN EN 1564:2012-01

Page 110: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

27

Anhang F (informativ)

Nodularität

Die Nodularität von Gusseisen mit Kugelgraphit ist als Prozentsatz von Graphitpartikeln definiert, die eine kugelförmige oder nodulare Gestalt aufweisen (Formen V und VI von EN ISO 945-1).

Während die Anzahl der Partikel durch 100-fache Vergrößerung erfasst wird, sollte die Bestimmung der Form und des Prozentsatzes mit einer Vergrößerung erfolgen, mittels derer die Graphitpartikel annähernd in der Größe von EN ISO 945-1:2008, Bild 1, erscheinen. Während die Klassifizierung der Graphitform auf Grund-lage dieser Norm im Vergleich zu Richtreihenbildern erfolgt, kann die computergestützte Bildanalyse mit besonderen Software-Parametern bei diesem Werkstoff ebenso angewendet werden.

Ultraschallgeschwindigkeit und Schall-Resonanzfrequenz werden durch die Graphitstruktur beeinflusst. Durch deren Messung, nach der Kalibrierung, können Informationen über die Nodularität gewonnen werden. Diese Messung kann die metallographische Untersuchung jedoch nicht ersetzen.

Der Grad der Nodularität hängt nicht nur vom Herstellungsverfahren ab (Einsatzmaterial, Restmagnesium-gehalt, Impfmodus usw.), sondern auch vom Abkühl- und Erstarrungszeit der Schmelze. Außerdem wird die Graphitform im Randbereich durch den Kontakt mit der Form beeinflusst.

Die Nodularität stellt jedoch nur einen Aspekt des Werkstoffs dar. Weitere, die Qualität des Werkstoffs beeinflussende Parameter sind unter anderem die Anzahl der Graphitpartikel und deren Verteilung, die Gefügegrundmasse oder Mikrolunker. Es ist deshalb nicht möglich die Graphitausbildung der unterschiedlichen Sorten und Dicken genau zu definieren.

Eine Nodularität von 90 % oder größer stellt jedoch im Allgemeinen die in dieser Norm aufgeführten Mindest-Zugeigenschaften sicher (für Rp0,2 mehr als genug). Der restliche Graphit, der nicht die Formen V und VI hat, weist meist die Form IV auf.

DIN EN 1564:2012-01

Page 111: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

28

Anhang G (normativ)

Probenlage für Gussproben

Typ I Typ II Typ III Typ IV

Bild G.1 � Probenlage für Y-Probe (siehe Bild 2)

Typ A Typ B Typ C Typ D

Bild G.2 � Probenlage für angegossene Probestücke (siehe Bild 4)

DIN EN 1564:2012-01

Page 112: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

29

Anhang H (informativ)

Schlagbiegeversuch an ungekerbten Proben

H.1 Allgemeines

Dieser Anhang beschreibt ein indirektes Verfahren zur Bestimmung der Übereinstimmung mit dem geforderten Grundgefüge nach einer Wärmebehandlung, unter der Voraussetzung, dass die geforderten mechanischen Eigenschaften auf anderem Wege verifiziert wurden.

Dieser Anhang ist nur dann anwendbar, wenn dessen Anforderungen zwischen Hersteller und Käufer zum Zeitpunkt der Annahme der Bestellung vereinbart wurden.

H.2 Anforderungen

Die Mindestwerte der Schlagzähigkeit für unterschiedliche Werkstoffsorten sollten den Festlegungen in Tabelle H.1 entsprechen.

Tabelle H.1 � Schlagenergiewerte (ungekerbt) für ausferritische Gusseisen mit Kugelgraphit [6]

Werkstoffbezeichnung Schlagenergiewerte bei 23 °C 5 °C

J min.

EN-GJS-800-10

EN-GJS-800-10-RT 110

EN-GJS-900-8 100

EN-GJS-1050-6 80

EN-GJS-1200-3 60

EN-GJS-1400-1 35

EN-GJS-HB400 25

EN-GJS-HB450 20

ANMERKUNG An ungekerbten Proben ermittelte Werte, die bei 23 °C 5 °C geprüft wurden. Die in der Tabelle angegebenen Werte, entsprechen dem Mittelwert aus drei Höchstwerten, die bei vier getrennten Prüfungen bestimmt wurden.

DIN EN 1564:2012-01

Page 113: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

30

H.3 Probenahme

Das Gießverfahren für die Probestücke sollte zwischen Hersteller und Käufer vereinbart werden. Die Anforderungen an die Schlagzähigkeit gelten erst, nachdem der Prüfwerkstoff wärmebehandelt wurde. Die Schlagproben sollten nach der Wärmebehandlung ungekerbt nach den Maßen in Bild 6 hergestellt werden.

H.4 Prüfverfahren

Der Schlagbiegeversuch sollte an vier ungekerbten Proben in Anlehnung an EN ISO 148-1 durchgeführt werden, wobei eine Prüfeinrichtung mit einem ausreichenden Arbeitsvermögen zu verwenden ist, um die Eigenschaften korrekt zu bestimmen.

Der niedrigste Schlagenergiewert sollte gestrichen, und der Mittelwert aus den drei verbleibenden Werten verwendet werden.

H.5 Wiederholungsprüfungen

Wiederholungsprüfungen sollten zugelassen und unter denselben Bedingungen durchgeführt werden, wie im Abschnitt 10 festgelegt.

DIN EN 1564:2012-01

Page 114: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

31

Anhang I (informativ)

Zusätzliche Angaben zu mechanischen und physikalischen

Eigenschaften

Tabelle I.1 � Typische Eigenschaften

Technische Daten für ausferritische Gusseisen mit Kugelgraphit [8]

Werkstoffbezeichnung EN-GJS-

800-10 800-10-RT

900-8 1050-6 1200-3 1400-1 HB400

HB450

Eigenschaft Einheit Kennzeichnende Werte für Eigenschaften a

Druckfestigkeit db MPa

1 300 1 420 1 675 1 900 2 200 2 500

0,2 %-Dehngrenze 620 700 840 1 040 1 220 1 350

Scherfestigkeit aB MPa

720 800 940 1 080 1 260 1 400

0,2 %-Dehngrenze 350 420 510 590 770 850

Torsionsfestigkeit tB MPa

720 800 940 1 080 1 260 1 400

0,2 %-Dehngrenze 350 420 510 590 770 850

Bruchzähigkeit Kic MPa m 62 60 59 54 50 �

Dauerfestigkeit (Wöhler) (Umlaufbiegeversuch) ungekerbte Probe (Durchmesser 10,6 mm) N = 2 106 Zyklen

MPa 375 400 430 450 375 300

Dauerfestigkeit (Wöhler)

(Umlaufbiegeversuch) gekerbte Probe b (Durchmesser 10,6 mm) N = 2 106 Zyklen

MPa 225 240 265 280 275 270

Eigenschaft Einheit Typische Werte

Elastizitätsmodul E (Zug und Druck) GPa 170 169 168 167 165 165

Poissonzahl � 0,27 0,27 0,27 0,27 0,27 0,27

Schermodul GPa 65 65 64 63 63 63

Dichte g/cm3 7,1 7,1 7,1 7,0 7,0 7,0

Längenausdehnungskoeffizient von 20 °C bis 200 °C [1]

µM(m K) 18 c bis 14

Wärmeleitfähigkeit bei 200 °C W(m K) 23 d bis 20

ANMERKUNG Sofern nicht anders festgelegt, gelten die angegebenen Werte dieser Tabelle für Messungen bei Raumtemperatur.

a Die kennzeichnenden Werte können bis zu einer Wanddicke von 50 mm erzielt werden. Für größere Wanddicken wird eine Vereinbarung zwischen Käufer und Hersteller empfohlen.

b Nach der Wärmebehandlung gekerbt, mit einem umlaufenden 45°V-Kerb der einen Radius von 0,25 mm aufweist.

c Bei geringeren Festigkeitsklassen wird der Längenausdehnungskoeffizient höher sein.

d Bei geringeren Festigkeitsklassen wird die Wärmeleitfähigkeit höher sein.

DIN EN 1564:2012-01

Page 115: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

32

Tabelle I.2 � Typische Eigenschaften von ausferritischem Gusseisen mit Kugelgraphit für Getriebekonstruktionen [9]

Technische Daten für ausferritische Gusseisen

mit Kugelgraphit

Werkstoffbezeichnung

EN-GJS-800-10

EN-GJS-800-10-RT EN-GJS-900-8 EN-GJS-1050-6 EN-GJS-1200-3

Eigenschaft Einheit Typische Werte für Eigenschaften

Hertzsche Pressung Dauerfestigkeit H lim 90 %

N = 107 Zyklen

MPa 1 050 1 100 1 300 1 350

Zahngrund Dauerbiegefestigkeit F lim 90 %

N = 107 Zyklen

MPa 350 320 300 290

DIN EN 1564:2012-01

Page 116: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

33

Anhang J (informativ)

Bearbeitbarkeit von ausferritischem Gusseisen mit Kugelgraphit

J.1 Einleitung

Im Allgemeinen kann die Bearbeitbarkeit (Zerspanbarkeit) eines Werkstoffs durch vier Kriterien beschrieben werden:

Spanform;

Oberflächengüte;

Schneidkräfte;

Werkzeugverschleiß und Werkzeugstandzeit.

In den folgenden Abschnitten wird die Bearbeitbarkeit von ausferritischem Gusseisen mit Kugelgraphit im Hinblick auf diese vier Kriterien allgemein erörtert. Zusätzlich wird der Einfluss der chemischen Zusammen-setzung und von Parametern der Wärmebehandlung auf die Bearbeitbarkeit berücksichtigt.

J.2 Spanform

Die durch die Bearbeitung von ausferritischem Gusseisen mit Kugelgraphit entstehende Spanform unter-scheidet sich nicht wesentlich von der Spanform, die bei der Bearbeitung anderer Gusseisen mit Kugelgraphit entsteht. Im Allgemeinen werden diskontinuierlich segmentierte Späne erzeugt, die leicht zu handhaben sind. In bestimmten Fällen, bei denen negative Spanwinkel auftreten, können auch Nadelspäne entstehen.

J.3 Oberflächengüte

Die Oberflächengüte der bearbeiteten Fläche wird im Wesentlichen durch die eingelagerten Graphitkugeln bestimmt. Die durch die Bearbeitung von ausferritischem Gusseisen mit Kugelgraphit entstehende Oberflächengüte ähnelt deshalb der Oberflächengüte, die durch die Bearbeitung anderer Gusseisen mit Kugelgraphit erreicht wird. Graphitkugeln können ausbrechen oder die bearbeitete Oberfläche verschmieren. Das heißt, die beste Oberflächengüte wird mit scharfen positiven Schneidkanten erzielt.

J.4 Schneidkräfte

Die mittleren Schneidkräfte nehmen mit der unverformten Spandicke zu. Aufgrund der für Gusseisen typischen diskontinuierlich segmentierten Späne erhöht sich die mittlere Schneidkraft für Gusseisen, einschließlich ausferritsches Gusseisen mit Kugelgraphit, weniger schnell mit der nicht verformten Spandicke als bei Stählen mit vergleichbarer Härte.

Im Allgemeinen sind daher bei höheren Vorschubgeschwindigkeiten die mittleren Schneidkräfte von Guss-eisen wesentlich geringer als die von Stählen mit vergleichbarer Härte, und sie sind für ausferritisches Guss-eisen mit Kugelgraphit nicht wesentlich höher als für perlitische Sorten von Gusseisen mit Kugelgraphit. Dennoch weisen die Schneidkräfte von ausferritischem Gusseisen mit Kugelgraphit im Vergleich zu Stählen mit vergleichbarer Härte und zu perlitischen Sorten von Gusseisen mit Kugelgraphit höhere dynamische Kraftfaktoren auf.

Die durch die Schneidkraft erzeugten Schwingungen sind von der Zugfestigkeit von ausferritischem Guss-eisen mit Kugelgraphit relativ unabhängig und erhöhen sich mit steigender Vorschubgeschwindigkeit und geringeren Schnittgeschwindigkeiten. Eine kurze und starre Konstruktion des Werkzeugaufnahmesystems und das feste Einspannen des Werkstücks sind entscheidend, da die Werkzeugschwingungen infolge der Neigung zu Ratterschwingungen die Standzeit des Werkzeugs verringern können.

DIN EN 1564:2012-01

Page 117: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

34

J.5 Werkzeugverschleiß und Werkzeugstandzeit

Ausferritisches Gusseisen mit Kugelgraphit weist eine größere Härte und eine höhere Duktilität (Dehnung) auf als perlitische Sorten von Gusseisen mit Kugelgraphit. Der Werkzeugverschleiß steigt mit der Härte des Werk-stoffs, und die Schnittgeschwindigkeit sollte im Verhältnis zur steigenden Härte entsprechend verringert werden. Außerdem sollten Spanwerkzeuge aus verschleißbeständigem Werkstoff und mit verschleiß-beständiger Beschichtung eingesetzt werden. Beim Drehen, Bohren und Fräsen zeigen verschleißbeständige Wolframcarbide (K-Sorte) ein gutes Leistungsvermögen. Darüber hinaus führen höhere Festigkeit und Duktilität zu höheren Schneidtemperaturen, denen durch geeignete Beschichtungen, zum Beispiel Titan-aluminiumnitrid (TiAIN) oder Aluminiumoxid (Al2O3), entgegengewirkt werden kann. In einigen Fällen sind keramische Werkzeuge anwendbar. Verbesserungen der Werkzeugstandzeit (zum Beispiel beim Fräsen und Drehen mit Werkzeugen aus Wolframcarbid) können durch optimierte Werkzeuggeometrien erreicht werden, bei denen die hohe spezifische mechanische Belastung an der Schneidkante berücksichtigt wird.

J.6 Andere Aspekte

Die Güte des Grundgefüges von ausferritischem Gusseisen mit Kugelgraphit kann die Bearbeitbarkeit wesentlich beeinflussen. Die folgenden Einflüsse sollten berücksichtigt werden:

Schwankungen in der Härte durch das Grundgefüge führen zur Verkürzung der Werkzeugstandzeit;

der Werkzeugverschleiß steigt mit zunehmender Zugfestigkeit, und die geeignete Schnittgeschwindigkeit sollte entsprechend verringert werden;

ein höherer prozentualer Anteil von Legierungselementen (insbesondere von carbidbildenden Elementen wie beispielsweise Molybdän) erhöht den Werkzeugverschleiß;

Bereiche des Gussstücks mit ungenügend stabilisiertem Austenit weisen eine schlechtere Bearbeitbarkeit auf.

DIN EN 1564:2012-01

Page 118: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

35

Anhang K (informativ)

Wesentliche technische Änderungen zwischen

dieser Europäischen Norm und der vorherigen Ausgabe

Tabelle K.1 � Wesentliche technische Änderungen zwischen dieser Europäischen Norm und der vorherigen Ausgabe

Abschnitt/Absatz/Tabelle/Bild Änderung

3 Definitionen hinzugefügt für: Gussprobe, getrennt gegossenes Probe-stück, parallel gegossenes Probestück, angegossenes Probestück und maßgebende Wanddicke.

7.2, Tabelle 1 Die geforderten mechanischen Mindesteigenschaften gelten für mehrere Typen von Probestücken (Gussproben) und sind nun für drei Bereiche der maßgebenden Wanddicke angegeben.

7.2, Tabelle 1 Die geforderten Mindestwerte für die Dehnung wurden für Sorten mit einer Mindestzugfestigkeit bis zu 1 200 MPa erhöht.

7.2, Tabelle 1 Die Sorte EN-GJS-1000-5 wurde durch zwei Sorten ersetzt: EN-GJS-900-8 und EN-GJS-1050-6.

7.2, Tabelle 1, Tabelle 2, Tabelle A.1

Aufbau und Nummern der Werkstoffbezeichnung durch Nummern wurden verändert.

Anhang A Ergänzung des normativen Anhangs A, in dem zwei neue verschleiß-beständige Sorten mit ihrer definierten Härte beschrieben sind.

Anhang B Ergänzung des informativen Anhangs B zur Gegenüberstellung der Werkstoffbezeichnungen von ausferritischem Gusseisen mit Kugelgraphit nach EN 1560 und ISO/TR 15931.

Anhang C Ergänzung des informativen Anhangs C mit Richtwerten für mechanische Eigenschaften, die an Proben gemessen werden, die durch mechanische Bearbeitung einem Gussstück entnommen wurden

Anhang E Ergänzung des informativen Anhangs E, in dem das Verfahren zur Bestimmung des Härtebereichs beschrieben ist.

Anhang F Ergänzung des informativen Anhangs F, der Informationen zur Nodularität enthält.

Anhang G Ergänzung des normativen Anhangs G, der die Probenlage für Gussproben enthält.

Anhang H Ergänzung des informativen Anhangs H, der Einzelheiten zu und Anfor-derungen an den Schlagbiegeversuch an ungekerbten Proben enthält.

Anhang I Ergänzung des informativen Anhangs I, der zusätzliche Angaben zu mechanischen und physikalischen Eigenschaften enthält.

Anhang J Ergänzung des informativen Anhangs J, der Informationen zur Bear-beitbarkeit von ausferritischem Gusseisen mit Kugelgraphit enthält.

ANMERKUNG Die in Bezug genommenen technischen Änderungen umfassen die signifikanten technischen Ände-rungen der überarbeiteten Europäischen Norm, wobei es sich jedoch nicht um eine vollständige Liste aller Änderungen der vorherigen Ausgabe handelt.

DIN EN 1564:2012-01

Page 119: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

36

Anhang ZA (informativ)

Zusammenhang zwischen dieser Europäischen Norm und den

grundlegenden Anforderungen der EU-Richtlinie 97/23/EG

Diese Europäische Norm wurde im Rahmen eines Mandates, das dem CEN von der Europäischen Kommission und der Europäischen Freihandelszone erteilt wurde, erarbeitet, um ein Mittel zur Erfüllung der grundlegenden Anforderungen der Richtlinie 97/23/EG nach der neuen Konzeption bereitzustellen.

Sobald diese Norm im Amtsblatt der Europäischen Union im Rahmen der betreffenden Richtlinie in Bezug genommen und in mindestens einem der Mitgliedstaaten als nationale Norm umgesetzt worden ist, berechtigt die Übereinstimmung mit den in Tabelle ZA.1 aufgeführten Abschnitten dieser Norm innerhalb der Grenzen des Anwendungsbereichs dieser Norm zu der Annahme, dass eine Übereinstimmung mit den entsprechenden grundlegenden Anforderungen der Richtlinie und der zugehörigen EFTA-Vorschriften gegeben ist.

Im Falle dieser unterstützenden harmonisierten Norm für Werkstoffe beschränkt sich die Vermutung der Konformität mit den grundlegenden Anforderungen der Richtlinie auf die in der Norm genannten technischen Daten für Werkstoffe und bedeutet nicht, dass davon ausgegangen wird, dass der Werkstoff für ein bestimmtes Gerät geeignet ist. Deshalb sollten die in der Werkstoffnorm angegebenen technischen Daten im Hinblick auf die Anforderungen an die Auslegung des betreffenden Geräts beurteilt werden, um sicher-zustellen, dass die grundlegenden Anforderungen der Druckgeräte-Richtlinie (DGRL) erfüllt sind.

Tabelle ZA.1 � Zusammenhang zwischen EN 1564 und der Druckgeräte-Richtlinie 97/23/EG

Abschnitte/Unterabschnitte dieser Europäischen Norm

Gegenstand Erläuterungen/Anmerkungen

Tabellen 1 und 2 Werkstoffeigenschaften Anhang I, 4.1 a) der Richtlinie

11 Übereinstimmung des Werkstoffes und zertifizierte Bescheinigung des Herstellers

Anhang I, 4.3 der Richtlinie

WARNHINWEIS � Für Produkte, die in den Anwendungsbereich dieser Norm fallen, können weitere Anforderungen und weitere EU-Richtlinien anwendbar sein.

DIN EN 1564:2012-01

Page 120: Designing with Austempered Ductile Iron (ADI)allaboutmetallurgy.com/wp/wp-content/uploads/2017/08/ADI-Design... · Designing with Austempered Ductile Iron (ADI) J. R. Keough and K

EN 1564:2011 (D)

37

Literaturhinweise

[1] EN 1563, Gießereiwesen � Gusseisen mit Kugelgraphit

[2] EN 1560, Gießereiwesen � Bezeichnungssystem für Gusseisen � Werkstoffkurzzeichen und Werk-stoffnummern

[3] EN 10027-2, Bezeichnungssysteme für Stähle � Teil 2: Nummernsystem

[4] EN 1559-1, Gießereiwesen � Technische Lieferbedingungen � Teil 1: Allgemeines

[5] EN 1559-3, Gießereiwesen � Technische Lieferbedingungen � Teil 3: Zusätzliche Anforderungen an Eisengussstücke

[6] ISO 17804:2005, Founding � Ausferritic spheroidal graphite cast irons � Classification

[7] ISO/TR 15931, Designation system for cast irons and pig irons

[8] G.N.J Gilbert, BCIRA Journal, May 1986, Vol. 34, pp. 203-232 (BCIRA Research Report 1663)

[9] ISO 6336-5, Calculation of load capacity of spur and helical gears � Part 5: Strength and quality of materials

DIN EN 1564:2012-01