design of timber columns and beam-columns

Upload: elvislee

Post on 01-Jun-2018

244 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    1/41

    Design of

    Beam-Columnsin Timber 

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    2/41

     

    • a er a a ure crus ng•

    • Inelastic bucklin combination of

    buckling and material failure)   ∆Leff 

    P

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    3/41

     

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    4/41

    2 EI 

    P

      π  

    =  eff 

    cr  L

    Pcr  P

    er ec y s ra g an e as c co umn

    Crooked elastic column

       (   k   N

       )

      a   l   l  o  a   d   P

    Crooked column with material failure

    Leff 

       A  x

    Displacement ∆ (mm)

    P

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    5/41

    -

    Shadbolt Centre,

    Burnaby

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    6/41

     axis of

    bucklingP

    Pr = Fc A KZc KC

    where = 0.8d

    and Fc = f c (KD KH KSc KT)

    size factor K = 6.3 dL -0.13 ≤ 1.3

    L

     

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    7/41

    Glulam arches and

    cross-bracing

    UNBC, Prince George, BC

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    8/41

    Ca acit of a column

    material failure

      FcA

    combination of

    material failure and

    buckling

    π   u er equa on

    elastic buckling

    Le

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    9/41

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    10/41

     1

    3  −

    1.0

    05350.1 ⎥⎢   += T SE 

    C  ZccC 

    K K  E K 

    KC

    limit

    ± 0.15

    CC = Le /d50

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    11/41

    What is an acceptable

    ra o

    Clustered columns

    Forest Sciences Centre, UBC

     

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    12/41

    Effective lengthLeff = length of half sine-wave = k L

    P PP P P

    e e e e

    k theor 1.0 0.5 0.7 > 1

    P P PPP

    k (design) 1.0 0.65 0.8 > 1

    non-sway non-sway non-sway sway*

    * Sway cases should be treated with frame stability approach

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    13/41

    Glulam and steel trusses

    Velodrome, Bordeaux, France

     All end connections are assumed to

    be pin-ended

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    14/41

    Pin connected column base

    Note: water damage

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    15/41

    Column base: fixed or pin connected ??

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    16/41

     

    length

    Lex

    Ley

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    17/41

    Round poles in a marine structure

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    18/41

    Partiall braced

    columns in a post-and-beam structure

      u ng,

    Vancouver, BC

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    19/41

    L/d ratiosx

    yy

    x

    yy

    L

    ey

    Lex

    d

    dd

    x

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    20/41

     buckling

    d

    Lgnore s ea ng

    contribution

    when calculating

    stud wall

    resistance

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    21/41

    Stud wall construction

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    22/41

    Fixed or pinned

    connection ?

    Note: bearing block from hard

    wood

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    23/41

    An interesting

    connection between

    column and truss 

    (combined steel and glulam truss)

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    24/41

    Slightly over-designed truss member 

    (Architectural features)

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    25/41

    Effective length (sway cases)Leff = length of half sine-wave = k L

    P PP P P

    Le

    Le

    Le

    Le

    k theor 1.0 2.0 2.0 1.0

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    26/41

    Sway frame for a

    bridge

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    27/41

    Sway permitted columns

    ….or aren’t they ??

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    28/41

    Haunched columns

    UNBC, Prince George, BC

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    29/41

     •

    • Effective length based on sway-prevented case•

     – When no applied moments, assume frame to be out-

    of-plumb by 0.5% drift – Applied horizontal forces (wind, earthquake) get

    amplified

    • es gn as eam-co umn

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    30/41

    Frame stability(P- ∆ effects)Htotal = H

      = amplification factor 

    H

    W  .

    h

    W Δ−

    =1

    α 

    Note: This column does

    ∆ = 1st order displacement

    not contribute to the

    stability of the frame

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    31/41

    Sway frame for a

    bridge

    Minimal bracing,combined with roof

    diaphragm in lateral

    Haunched frame in

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    32/41

    Bi-axial bending

    Bending and

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    33/41

    Heavy timber trusses

    Abbotsford arena

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    34/41

    Roundhouse Lodge, Whistler Mountain

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    35/41

    Pf a = Pf  / A

    neu ra ax s

    xmax a bx by   des

    ( Pf / A ) + ( Mfx / Sx ) + ( Mfy / Sy ) < f des

    f bx = Mfx / SxMfx

    (Pf  / Af des) + (Mfx / Sxf des) + (Mfy / Syf des) < 1.0

    x

    (Pf / Pr ) + (Mfx / Mr ) + ( Mfy / Mr ) < 1.0by fy   y

    Mfy

    ye on y y n e p e s a des s

    not the same for the three cases

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    36/41

     P

    0max1 Δ⎟⎜⎛ =Δ

    ∆o

      ∆max

     E −

    0max

    1   PP  E ⎟⎜

    ⎝   −=

    =

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    37/41

     

    0.111 ≤⎟⎟⎜⎜ −+⎟⎟⎜⎜ −+ r 

     fy

     E rx

     fx

     Exr 

     f 

     M PP M PPP

    Axial BendinBendinload about y-axisabout x-axis

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    38/41

    3 storey walk-up (woodframe construction)

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    39/41

    New Forestry Building, UBC, Vancouver 

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    40/41

    Stud wall construction

  • 8/9/2019 Design of Timber Columns and Beam-Columns

    41/41

    wall and top plate

    o s s loads into studs

    d

    op p a e

    wall plate

    L

    studs

     check

    compression perp.