Design and testing of disc type hybrid turbine pump

Download Design and testing  of disc type hybrid turbine pump

Post on 19-Aug-2014

56 views

Category:

Engineering

1 download

DESCRIPTION

this slide is about integrating a tesla pump with a tesla turbine inorder to increase efficiency.

TRANSCRIPT

  • DESIGN AND TESTING OF DISC TYPE HYBRID TURBINE-PUMP Guided by, Er. Jiju John Assistant Professor ME Department Submitted by, Denny John Roll No: 19 S7
  • CONTENTS INTRODUCTION PROBLEM DESCRIPTION LITERATURE REVIEW WORKING PRINCIPLE DESIGN EXPERIMENTAL TESTING AND RESULTS ADVANTAGES AND DISADVANTAGES CONCLUSION REFERENCE
  • INTRODUCTION Nikola Tesla invented the bladeless turbine in 1913. Instead of using fan type blades he used solid disc metal. Here we uses properties of fluids like viscosity, adhesion, cohesion, instead of conventional energy transfer mechanisms. In this presentation, Integration of two types of viscous drag hydraulic machines- tesla turbine & tesla pump are made. Fluid transportation and power development is the advantage of these type of power unit.
  • LITERATURE REVIEW Nikola tesla invented bladeless turbine in 1909 and patented in1913. In 1948, tesla turbine pump started its initial production. In 1993 John pacello & Peter hanas studied the hard to pump applications of tesla pump. In 2013, Dr. Amalraju published a research paper regarding hybrid tesla turbine pump
  • PROBLEM DESCRIPTION Tesla pumps have a great application in lifting highly viscous fluids. Ordinary pumps have the following disadvantages o Difficulty in pumping highly viscous fluids. o Difficulty in pumping highly abrasive slurries with high amount of solid particles. Disadvantages of ordinary tesla pump are oHigh inlet pressure required at inlet. oLow torque. oLow efficiency.
  • WORKING PRINCIPLE Both turbine and pump operates mainly on the principles of boundary layer effect and viscous drag. Fluid layer closer to the inner disc surface in the inner disc spacing are almost stationary from external point of view but they are at highest velocity. Energy is transferred to adjacent layers. By viscous drag principle middle layer has maximum velocity. Operation of turbine depends upon impinging velocity A portion of the fluid pumped by the pump is bypassed to the turbine inlet which rotates the turbine and turbine outlet is connected to the pump.
  • Fig 1: Fluid path in a Tesla pump
  • Fig 2:Fluid path in a Tesla turbine
  • DESIGN OF TURBINE PUMP Uses same type of packing(metal, plastics, ceramics) and sealing(carbon, ceramic, silicon carbide) arrangements as a centrifugal pump. Disc assembly and pumping mechanisms can be varied by Number of discs. Diameter of disc (8,10,12,14,17,20 inches are standard). Spacing of the disc (determined by solids to be passed and nature of fluids). Discs are of smooth or ribbed. Spacers are used in between discs.
  • Contd Disc are arranged in tandem and are fitted to a circular flange which is coupled with a shaft. Fig 3: Forms of discs
  • TESTING BY SIMULATION Flow simulation by cosmos flow is presented. A prototype is created for this purpose. Pump is simulated for head range of 2 to 10m with 1m interval. Simulation Configuration- No of discs: 10. Inlet pressure: Environmental pressure. Outlet pressure: 20000 to 100000 Pa. RPM: 1440 It doesnt account losses. Fig 4: Simulation model
  • Head vs Discharge: for each head, discharge is obtained. Results are plotted to know the pump performance. TABLE: Head Vs Discharge
  • Velocity : Flow produce a vortex in the outlet Pressure produced by boundary layer effect is effectively collected to produce more head. Volute casing is used for this. Pressure : centrifugal force by the disc to the fluid pro- duce high pressure inside casing. It is effectively transferred to make a higher head of delivery by pump. Fig 5: Velocity plot Fig 6: Pressure plot
  • Turbine output: TABLE 2: discharge vs RPM
  • EXPERIMENTAL TESTING AND RESULTS Pump testing Pump is tested to variable head from 1 to 10m. 1m suction lift is used. Discharge head= total head-suction head. Pipe friction losses are 1m/10m for selected pipe system.
  • TABLE 3: Experimental(Q Vs H) value
  • Turbine testing: A control valve is used to get the desired flow rates. Theoretically required angular velocity is obtained by V= * R Where V= velocity in m/s = angular velocity in rad/s R= radius in m = (2N)/60 By controlling mass flow, velocity at outlet is varied and desired angular velocity is achieved.
  • TABLE 4: Q Vs RPM
  • RESULTS COMPARISON Discharge decline is in a linear manner. Difference in the graphs indicates the losses due to pumping, friction, sealing. To collect maximum pressure volute casing is recommended. To produce best power outputs effective nozzle configurations should be implemented.
  • TABLE 5: Comparison Table
  • ADVANTAGES Use of different kind of exotics fluids, with particles, droplets, multiphase is possible. More stable flow and lower cavitation occurrence. It can turn at much higher speeds with total safety. Tesla disk is the double clockwise and anticlockwise direction of rotation in a single machine. It can be used for lifting highly viscous fluids , viscosities upto several 10000 cP. Little wear from abrasion during pumping, slurries containing upto 80% solids by volume can be pumped without clogging the system.
  • Tesla was able to demonstrate a fuel efficiency of 60% with his bladeless turbine design. Most of engines today do not get above 27 28% energy efficiency in their conversion of fuel to work. Rotor has high efficiency as shown in the figure Fig 7: Efficiency comparison Fig 8: Rotor efficiency
  • DISADVANTAGES High speed but low torque. Experimentally has been found many difficulties to achieve high efficiencies in nozzles and rotors. Proof of its efficiency compared to conventional turbines is still questionable and needs more research.
  • APPLICATION Geothermal applications Chemical, oil & petrochemical processing. Pulp & paper manufacturing. Waste water treatment &disposal applications. Food & sanitary applications. Mining & environmental cleanup.
  • CONCLUSION Comparative study of experimental and simulation results shows that disc pump is more suitable for high viscous liquids. It requires effective nozzle design to produce more efficient output. This integration of two hydraulic fluids forms a base of new application and can be considered for further research.
  • REFERENCE Rebirth of the Tesla Turbine, Published in Extra Ordinary Technology magazine July 2003. Danny Blanchard, Phil Ligrani, Bruce Gale. Single-disc and double- disc viscous, Micro pumps. Petr Bloudicek, David Palousek. Design of tesla turbine. Konference diplomovych praci 2007 Warren Rice, Tesla Turbomachinery, Proc. IV International Nikola Tesla Symposium (Sep. 23 25 1991). H. S. Couto1, J.B.F. Duarte2 and D. Bastos-Netto, The Tesla Turbine Revisited, 8thAsia-Pacific International Symposium on Combustion and Energy Utilization October 10-12, 2006, Sochi, Russian Federation.
  • THANK YOU

Recommended

View more >