deeplearning - graz university of...

33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Deep Learning Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern, Stefan Klampfl Know-Center, KTI, TU Graz 2015-05-07 Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 1 / 33

Upload: others

Post on 27-May-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep LearningKnowledge Discovery and Data Mining 2 (VU) (707.004)

Roman Kern, Stefan Klampfl

Know-Center, KTI, TU Graz

2015-05-07

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 1 / 33

Page 2: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

1 Introduction

2 Deep LearningDefinitionHistoryApproaches

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 2 / 33

Page 3: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

Introduction to Deep LearningWhat & Why

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 3 / 33

Page 4: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

History of Artificial Intelligence

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 4 / 33

Page 5: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

Success Stories of Deep Learning

Unsupervised high-level feature learningUsing a deep network of 1 billion parameters, 10 million images(sampled from YouTube), 1000 machines (16,000 cores) x 1 week.Evaluation

ImageNet data set (20,000 categories)0.005% random guessing9.5% state-of-the-art16.1% for deep architecture19.2% including pre-training

https://research.google.com/archive/unsupervised_icml2012.html

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 5 / 33

Page 6: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

Success Stories of Deep Learning

Primarily on speech recognition and images

Interest by the big playersFacebook

Face recognitionhttps://research.facebook.com/publications/480567225376225/deepface-closing-the-gap-to-human-level-performance-in-face-verification/

BaiduSpeech recognitionhttps://gigaom.com/2014/12/18/baidu-claims-deep-learning-breakthrough-with-deep-speech/

MicrosoftDeep learning technology centree.g. NLP - Deep Semantic Similarity Modelhttp://research.microsoft.com/en-us/projects/dssm/

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 6 / 33

Page 7: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

Prerequisite Knowledge

Neural NetworksBackpropagationRecurrent neural network (good for time series, NLP)

OptimizationGeneralisation (over-fitting), regularisation, early stoppingLogistic sigmoid, (stochastic) gradient descent

Hyper ParametersNumber of layers, size of e.g. mini-batches, learning rate, ...Grid search, manual search, a.k.a Graduate Student Descent (GSD)

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 7 / 33

Page 8: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

Neural Network Properties

1-layer networks can only separate linear problems (hyperplane)

2-layer networks with a non-linear activation function can expressany continuous function (with an arbitrarily large number of hiddenneurons)

For more than 2 layers, one needs fewer nodes → therefore onewants have deep neuronal networks

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 8 / 33

Page 9: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction

Neural Network Properties

Back propagation does not work well for more than 2 layersNon-convex optimization functionUses only local gradient informationDepends on initialisationGets trapped in local minimaGeneralisation is poorCumulative backpropagation error signals either shrink rapidly orgrow out of bounds (exponentially) (Hochreiter, 1991)

Severity increases with the number of layers

Focus shifted to convex optimization problems (e.g., SVM)

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 9 / 33

Page 10: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning

Deep Learning ApproachesOverview of the most common techniques

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 10 / 33

Page 11: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Definition

Definition of Deep Learning

Several definitions existTwo key aspects:

1 models consisting of multiple layers or stages of nonlinearinformation processing

2 methods for supervised or unsupervised learning of featurerepresentations at successively higher, more abstract layers

Deep Learning architectures originated from, but are not limited toartificial neural networks

contrasted by conventional shallow learning approachesnot to be confused with deep learning in educational psychology:

“Deep learning describes an approach to learning that ischaracterized by active engagement, intrinsic motivation, and apersonal search for meaning.”

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 11 / 33

Page 12: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Definition

Example

objects

edges, shapes, etc.

raw pixel values

Y. Bengio (2009). Learning Deep Architectures for AI. Foundations and Trends in Machine

Learning, 2(1), 1–127.Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 12 / 33

Page 13: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Definition

Deep Learning vs. Shallow Learning

When does shallow learning end and deep learning begin?

What is the depth of an machine learning algorithm?

Credit assignment path (CAP): chain of causal links between inputand output

Depth: length of CAP starting at the first modifiable linkExamples:

Feed-forward network: depth = number of layersNetwork with fixed random weights: depth = 0Network where only the output weights are trained (e.g., Echo StateNetwork): depth = 1Recurrent neural network: depth = length of input (potentiallyunlimited)

Deep Learning: depth > 2; Very Deep Learning: depth > 10

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 13 / 33

Page 14: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning History

History

The concept of deep learning originated from artificial neuralnetwork research

The deep architecture of the human brain is a major inspiration: itsuccessfully incorporates learning and information processing onmultiple layers

However, training ANNs with more than two hidden layers yieldedpoor results

Breakthrough 2006 (Hinton et al.): Deep Belief Networks (DBN)

Principle: training of intermediate representation levels usingunsupervised learning, which can be performed locally at eachlevel

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 14 / 33

Page 15: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Deep Belief Network (DBN)

A probabilistic, generative model composed ofmultiple simple learning modules that make upeach layer

Typically, these learning modules are RestrictedBoltzmann Machines (RBMs)

The top two layers have symmetric connectionsbetween them. The lower layers receive top-downconnections from the layer above

Greedy layer-wise training: Each layer issuccessively trained on the output of the previouslayer

Can be used for pre-training a network followed byfine tuning via backpropagation

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 15 / 33

Page 16: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Restricted Boltzmann Machine (RBM)

Stochastic artificial neural network forming abipartite graph

The network learns a representation of the trainingdata presented to the visible units

The hidden units model statistical dependenciesbetween the visible units

Try to optimise the weights so that the likelihood ofthe data is maximised

P(hj = 1|v) = σ (bj +∑

i viwij)

P(vi = 1|h) = σ(ai +

∑j hjwij

)σ(z) = 1/(1 + e−z)

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 16 / 33

Page 17: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Restricted Boltzmann Machine (RBM)

Activations in one layer are conditionallyindependent given the activations in the other layer→ efficient training algorithm (ContrastiveDivergence):

1 From a training sample v, compute the probabilitiesof the hidden units and sample a hidden activationvector h (vhT ... positive gradient).

2 From h, sample a reconstruction v′ of the visibleunits, then resample the hidden activations h′ fromthis (Gibbs sampling; v′h′T ... negative gradient).

3 Update the weights with ∆wi,j = ϵ(vhT − v′h′T).

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 17 / 33

Page 18: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Autoencoder

Feed-forward network trained to replicate its input (input is targetsignal for training) → unsupervised method

Objective: minimize some form of reconstruction errorForces the network to learn a (compressed) representation of theinput in hidden layers

For 1 hidden layer with k linear units, hidden neurons span thesubspace of the first k principal componentsWith non-linear units, more complex representations can be learnedWith stochastic units, corrupted input can be cleaned → denoisingautoencoder

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 18 / 33

Page 19: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Autoencoder

Dimensionality of the hidden layer can be smaller or larger thanthat of input/output

Smaller: yields a compressed representationLarger: results in a mapping to a higher-dimensional feature space

Typically trained with a form of stochastic gradient descent

Deep autoencoder: # hidden layers > 1

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 19 / 33

Page 20: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Stacked Autoencoder

Autoencoder can be used as the learning modulewithin a Deep Belief Network → stackedautoencoders

1 Train the first layer as an autoencoder to minimizesome form of reconstruction error of the raw input

2 The hidden units’ outputs (i.e., the codes) of theautoencoder are now used as input for anotherlayer, also trained to be an autoencoder

3 Repeat (2) until the desired number of additionallayers is reached

Can also be used for pre-training a network followedby fine-tuning via supervised learning

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 20 / 33

Page 21: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Convolutional neural network (CNN)

Before DBNs, supervised deep neural networks have been difficultto train, with one exception: convolutional neural networks (CNNs)

inspired by biological processes in the visual cortex

Topological structure: neurons are arranged in filter maps thatcompute the same features for different parts of the input

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 21 / 33

Page 22: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Convolutional neural network (CNN)

Typical CNNs have 5-7 layers

A CNN for handwritten digit recognition (LeCun et al., 1998):

Reasons why standard gradient descent methods are tractable forCNNs:

Sparse connectivity: Neurons receive input only from a localreceptive field (RF)Shared weights: Each neuron computes the same function for eachRFPooling: Predefined function instead of learnt weights for somelayers, e.g. max

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 22 / 33

Page 23: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Deep stacking network (DSN)

Simple classifiers are stacked on top of eachother to learn a complex classifier

e.g., CRFs, two-layer networks

Originally designed for scalability: simpleclassifiers can be efficiently trained (convexoptimization → “deep convex network”)

Features for a classifier at a higher level are aconcatenation of the classifier outputs oflower modules and the raw input features

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 23 / 33

Page 24: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Recursive Neural Tensor Network (RNTN)

Tree structure with a neural network at each node

Used in natural language processing, e.g., for sentiment detection

Socher et al., 2013: parse sentences into a binary tree, and at eachnode classify sentiment in a bottom-up manner (5 classes: – –, –,0, +, ++)

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 24 / 33

Page 25: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Deep learning with textual data

Text has to be transformed into real-valued vectors that deeplearning algorithms can understand

Word2Vec: efficient algorithms developed by Google(https://code.google.com/p/word2vec/)Word2Vec itself is not deep learning (it uses shallow ML methods)

Given a text it automatically learns relationships between wordsbased on their context

Each word is represented by a vector in a space where relatedwords are close to each other, i.e. word embedding

Word vectors can be used as features in many natural languageprocessing and machine learning applications

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 25 / 33

Page 26: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Deep learning with textual data

Interesting properties of Word2Vec vectors:vector(′Paris′)− vector(′France′) + vector(′Italy′) ≈ vector(′Rome′)vector(′king′)− vector(′man′) + vector(′woman′) ≈ vector(′queen′)

Training is performed via a two-layer neural network (hierarchicalsoftmax or negative sampling)

Input (word context) is represented as continuous bag of words orskip-grams

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 26 / 33

Page 27: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Categorization of Deep Learning approaches

Deep networks for unsupervised learninge.g., Restricted Boltzmann Machines, Deep Belief Networks,autoencoders, Deep Boltzmann machines, ...

Deep networks for supervised learninge.g., Convolutional Neural Networks, Deep Stacking Networks, ...

Hybrid deep networks: make use of both unsupervised andsupervised learning (e.g., “pre-training”)

e.g., pre-training a Deep Belief Network composed of RestrictedBoltzmann Machines

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 27 / 33

Page 28: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Alternative Deep Learning Architectures

Deep learning is not limited to neural networks

Stacked SVMs with random projectionsVinyals, Ji, Deng, & Darrell. Learning with Recursive PerceptualRepresentations.http://books.nips.cc/papers/files/nips25/NIPS2012_1290.pdf

Sum-product networksGens & Domingos. Discriminative Learning of Sum-ProductNetworks.http://books.nips.cc/papers/files/nips25/NIPS2012_1484.pdf

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 28 / 33

Page 29: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

How to choose the right network?

http://deeplearning4j.org/neuralnetworktable.html

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 29 / 33

Page 30: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Limitations of Deep Learning

LimitationsTeam at Google made an interesting findingSmall changes in the input yield an big, “unexpected” change inthe outputLeft images are labelled correctly, the right images aremisclassified, the image in the centre the shows the differencebetween the images

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural

networks. arXiv preprint arXiv:1312.6199.Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 30 / 33

Page 31: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Available Software Toolkits

Available toolkit to get started

Theano

Torch

deeplearning4j

0xdata / H2O

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 31 / 33

Page 32: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

Resources

Y. Bengio (2009). Learning Deep Architectures for AI. Foundationsand Trends in Machine Learning, 2(1), 1–127.

L. Deng and D. Yu (2014). Deep Learning: Methods andApplications. Foundations and Trends in Signal Processing, 7(3-4),197–387.

J. Schmidhuber (2014). Deep Learning in Neural Networks: AnOverview. http://arxiv.org/abs/1404.7828.

http://deeplearning.net/

http://en.wikipedia.org/wiki/Deep_learning

http://cl.naist.jp/ kevinduh/a/deep2014/

etc.

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 32 / 33

Page 33: DeepLearning - Graz University of Technologykti.tugraz.at/staff/rkern/courses/kddm2/2015/deep-learning.pdf · DeepLearning KnowledgeDiscoveryandDataMining2(VU)(707.004) RomanKern,StefanKlampfl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep Learning Approaches

The EndNext: Presentation: Planned Approach

Roman Kern, Stefan Klampfl (Know-Center, KTI, TU Graz) Deep Learning 2015-05-07 33 / 33