decentralized hydrogen production …elib.dlr.de/88731/1/decentralized hydrogen production from...

16
Decentralized hydrogen production from diesel and biodiesel Fuel Cells 2014 Science & Technology, 34 April 2014, Amsterdam S. Martin, G. Kraaij, A. Wörner German Aerospace Center, Germany NEMESIS2 + (New Method for Superior Integrated Hydrogen Generation System) received funding from the European Union‘s Seventh Framework Programme (FP7/20072013) for the Fuel Cells and Hydrogen Joint Technology Initiative under Grant Agreement No 278138.

Upload: vonguyet

Post on 30-Apr-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

Decentralized hydrogen production from diesel and biodiesel

Fuel Cells 2014 Science & Technology, 3‐4 April 2014, Amsterdam

S. Martin, G. Kraaij, A. WörnerGerman Aerospace Center, Germany

NEMESIS2+ (New Method for Superior Integrated Hydrogen Generation System) received funding from the European Union‘s Seventh Framework Programme (FP7/2007‐2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under Grant Agreement No 278138.

Slide 2 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

Biological / Thermochemical conversion

B) Biomass

H2

C) Renewable electricity

A) Conventional H2 production(mainly steam reforming of natural gas)

Worldwide: ~600*109 m3N H2/year

70 % chemical industry (ammonia, methanol)30 % fuel and heating purposes

Linde‐steam reformerLocation: Texas/USAFeed: natural gasCapacity: 110,000 mN

3/hPurity: 99.99 %

WaterElectrolysis

H2 production: Which options are available?

H2

Slide 3 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

DieselFAME

BiodieselGasoline

Bioethanol

Dimethyl ether 

Methane,Natural gas

LNG

LPGs

Propane

Spruce

Beech

n‐Butane 

OakLarch

Pellet bed

Crude Oil

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100 110 120

Volumetric

 Ene

rgy Den

sity [M

J/l]

Gravimetric Energy Density [MJ/kg]

Liquid fuels

LH2, liquified

Biomass

Light Hydrocarbons(C1‐C4)

Hydrogen

Fischer‐Tropsch‐Diesel

Methanol

Pulverized coal

Coal briquette

Coal

Straw bale

Butanol

CGH2 (70 MPa)

atmospheric pressure

CNG

Metalhydride

Complex hydride

High volumetric and gravimetric energy density of liquid fuels + existing infrastructure

Volumetric limitations ofCGH2 and LH2 technology

On-site/on-board hydrogenproduction from liquid fuels

Slide 4 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

On‐site hydrogen production at refuelling stations from diesel and biodiesel

H2

H2

Steam reforming Liquid fuels only!

NEMESIS2+: Project Objectives

Slide 5 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

• Development of a pre‐commercial hydrogen generator (50 Nm3/h)• System efficiency > 65 % (>70 %), stable long‐term operation testing for at least 1000 hours, H2‐purity 5.0

• Total hydrogen production costs < 4 € per kg• Show feasibility of desulphurization concept based on liquid phase adsorption

• Development of improved reformer and WGS catalyst formulations

NEMESIS2+: Project Targets

Slide 6 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

Pressurized steam reforming (13 bara)

Long‐term testing (1000 h)

Focus on liquid fuels(diesel, biodiesel)

„One‐reformer“‐concept(without pre‐reforming)

Scale up from 5 to 50 Nm3/h

Innovative desulph. concept (liquid phase adsorption)

Elaborated heat management (Pinch‐Analysis)

Development of S‐tolerant and coke‐resistant catalysts

Dual Fuel Burner

NEMESIS2+: Scientific Approach

Slide 7 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

Fuel characterization

Biodiesel Diesel

Chemical formula C18.3H34.8O2 C13.3H24.7

S content (ppmw) 1.5 7.1

LHV (kJ/kg) 37,790 42,930

• Fossil diesel (Shell)• Biodiesel (Abengoa Bioenergy)

Boiling point curves

GC Analysis

Slide 8 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

Diesel with S < 2ppmw is produced for 20 ml desulphurized diesel/gr of sorbent

‐  

0 5 10 15 20 25 30 35 40 45deS fuel (ml) / sorbent (g)

Remaining

 sulphu

r (pp

mw)

LAB‐scale experiments Fresh DIESEL: [S] = 7.1 

Diesel desulphurization breakthrough curve

…achieved in an adsorption bed of activated carbon(lab scale) with low particle size and high surface area 

Lab‐scale deS reactor Pilot‐scale deS unit

Liquid Desulphurization

x 10

Process scaling up:

Production of 1.5‐2 l/h of desulphurized fuel

Slide 9 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

Lab scale steam reforming of desulphurized B7 Diesel (T=850 °C, p=5 bar, S/C=5)

Stable product gas concentration over 100 hours

Slide 10 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

No signs of catalyst deactivation! Diesel conversion > 99 % Coking (mixing zone, catalyst surface)  cannot be completely avoided → foreseeperiodic regeneration with steam and/or air

Thermocouples1/8"

23 mm

25 mm49 mm

TATBTC

TD

51 mm

TA

TB

TC

TD

Lab scale steam reforming of desulphurized B7 Diesel (T=850 °C, p=5 bar, S/C=5)

Slide 11 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

Single-tube testing

Burner

Single‐tub

e

ReformateCooler

Mass and energy balance

Axial temperature profile

Single tube

Single tube integrated in LIFT test facility

Mixing chamber(H2O + Diesel)

Slide 12 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

Water gas shift durability testing (Lab scale)

100 hour continuous tests carried out with addition of 1 ppm H2S and         600 ppm of hydrocarbons (C2, C3 and C4) → No degrada on observed

y = ‐1E‐05x + 0,0296

0%

2%

4%

6%

8%

10%

12%

0%

10%

20%

30%

40%

50%

60%

0 20 40 60 80 100

CO, C

H4 mol %

H2, H2O

,  CO

2  m

ol %

t (h)

H2 H2Ocalc CO2 CO CH4

Assessment of operating conditions and reactor design:

• Steam to carbon ratio• Temperature• Gas Hour Space Velocity• Dimension of reactor

R. C. Neto et al., Int. J. Hydrogen Energy 39 (2014) 5242‐5247

Slide 13 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

Dual Fuel Burner Development: Simulation 

• Challenges to use three different fuels alone or combined in a single burner: Biodiesel, Natural Gas and Off‐Gas.

• Existing furnace with small volume and requirements to produce a short flame and distribute the gases uniformly through the multiple reformer tubes.

• Use of CFD based numerical models to evaluate effects of swirl number, air and fuel velocity on flame shape.

• Model also used to transpose the results from test work to the final furnace dimensions.

Flow Stream Lines

Temperature (K)

Slide 14 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

Dual Fuel Burner Development: Experiments • Tests on atomization and combustion were carried out to show relative 

advantages of atomizers:– Pressure atomizers: fine atomization but very sensible to flow rate– Air assisted atomizers: acceptable atomization but air mass flow 

restrictions• Final burner designed with high swirl and air assisted atomizer.

900

1000

1100

1200

1300

1400

1500

‐50 0 50 100 150 200 250 300

Tem

pera

ture

(ºC

)

Radial distance (mm)

Above reformer tubes

Below reformer tube caps

Slide 15 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

Design Study NEMESIS2+ Hydrogen Generator

‐ System has been designed based on HyGear HGS‐L system

‐ Additional hardware for water‐gas‐shift reactor and heat exchangers designed and built:

‐ Control temperature of 300‐350 °C in shift reactor ‐ Increase steam temp. for biodiesel reforming‐ Vaporize and dose (bio)diesel feed

‐ Next steps: Build up system and test with‐ Biodiesel‐ Fossil diesel‐ GtL Diesel

Newly designed water gas shift reactor

Slide 16 • Decentralized hydrogen production from diesel and biodiesel• Fuel Cells 2014 Science & Technology• S. Martin, G. Kraaij, A. Wörner • 04.04.2014

Thank you for your attention!www.nemesis‐project.eu [email protected]

NEMESIS2+ (New Method for Superior Integrated Hydrogen Generation System) received funding from the European Union‘s Seventh Framework Programme (FP7/2007‐2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under Grant Agreement No 278138.