datasheet - stm32f303xb stm32f303xc - arm®-based cortex ... · arm ®-based cortex®-m4 32b...

145
This is information on a product in full production. March 2019 DS9911 Rev 9 1/145 STM32F302xB STM32F302xC Arm ® -based Cortex ® -M4 32b MCU+FPU, up to 256KB Flash+ 40KB SRAM, 2 ADCs, 1 DAC ch., 4 comp, 2 PGA, timers, 2.0-3.6 V Datasheet - production data Features Core: Arm ® Cortex ® -M4 32-bit CPU with FPU (72 MHz max), single-cycle multiplication and HW division, DSP instruction and MPU (memory protection unit) Operating conditions: V DD , V DDA voltage range: 2.0 V to 3.6 V Memories 128 to 256 Kbytes of Flash memory Up to 40 Kbytes of SRAM, with HW parity check implemented on the first 16 Kbytes. CRC calculation unit Reset and supply management Power-on/power-down reset (POR/PDR) Programmable voltage detector (PVD) Low-power modes: Sleep, Stop and Standby V BAT supply for RTC and backup registers Clock management 4 to 32 MHz crystal oscillator 32 kHz oscillator for RTC with calibration Internal 8 MHz RC with x 16 PLL option Internal 40 kHz oscillator Up to 87 fast I/Os All mappable on external interrupt vectors Several 5 V-tolerant Interconnect matrix 12-channel DMA controller Two ADCs 0.20 μS (up to 17 channels) with selectable resolution of 12/10/8/6 bits, 0 to 3.6 V conversion range, single ended/differential input, separate analog supply from 2 to 3.6 V One 12-bit DAC channel with analog supply from 2.4 to 3.6 V Four fast rail-to-rail analog comparators with analog supply from 2 to 3.6 V Two operational amplifiers that can be used in PGA mode, all terminals accessible with analog supply from 2.4 to 3.6 V Up to 24 capacitive sensing channels supporting touchkey, linear and rotary touch sensors Up to 11 timers One 32-bit timer and two 16-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input One 16-bit 6-channel advanced-control timer, with up to 6 PWM channels, deadtime generation and emergency stop One 16-bit timer with 2 IC/OCs, 1 OCN/PWM, deadtime generation and emergency stop Two 16-bit timers with IC/OC/OCN/PWM, deadtime generation and emergency stop Two watchdog timers (independent, window) SysTick timer: 24-bit downcounter One 16-bit basic timer to drive the DAC Calendar RTC with Alarm, periodic wakeup from Stop/Standby Communication interfaces CAN interface (2.0B Active) Two I 2 C Fast mode plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from STOP Up to five USART/UARTs (ISO 7816 interface, LIN, IrDA, modem control) LQFP64 (10 × 10 mm) LQFP100 (14 × 14 mm) LQFP48 (7 × 7 mm) WLCSP100 (0.4 mm pitch) www.st.com

Upload: others

Post on 01-Feb-2021

31 views

Category:

Documents


0 download

TRANSCRIPT

  • This is information on a product in full production.

    March 2019 DS9911 Rev 9 1/145

    STM32F302xB STM32F302xC

    Arm®-based Cortex®-M4 32b MCU+FPU, up to 256KB Flash+ 40KB SRAM, 2 ADCs, 1 DAC ch., 4 comp, 2 PGA, timers, 2.0-3.6 V

    Datasheet - production data

    Features• Core: Arm® Cortex®-M4 32-bit CPU with FPU

    (72 MHz max), single-cycle multiplication and HW division, DSP instruction and MPU (memory protection unit)

    • Operating conditions:– VDD, VDDA voltage range: 2.0 V to 3.6 V

    • Memories– 128 to 256 Kbytes of Flash memory– Up to 40 Kbytes of SRAM, with HW parity

    check implemented on the first 16 Kbytes.• CRC calculation unit• Reset and supply management

    – Power-on/power-down reset (POR/PDR)– Programmable voltage detector (PVD)– Low-power modes: Sleep, Stop and

    Standby– VBAT supply for RTC and backup registers

    • Clock management– 4 to 32 MHz crystal oscillator– 32 kHz oscillator for RTC with calibration– Internal 8 MHz RC with x 16 PLL option– Internal 40 kHz oscillator

    • Up to 87 fast I/Os– All mappable on external interrupt vectors– Several 5 V-tolerant

    • Interconnect matrix• 12-channel DMA controller• Two ADCs 0.20 µS (up to 17 channels) with

    selectable resolution of 12/10/8/6 bits, 0 to 3.6 V conversion range, single ended/differential input, separate analog supply from 2 to 3.6 V

    • One 12-bit DAC channel with analog supply from 2.4 to 3.6 V

    • Four fast rail-to-rail analog comparators with analog supply from 2 to 3.6 V

    • Two operational amplifiers that can be used in PGA mode, all terminals accessible with analog supply from 2.4 to 3.6 V

    • Up to 24 capacitive sensing channels supporting touchkey, linear and rotary touch sensors

    • Up to 11 timers– One 32-bit timer and two 16-bit timers with

    up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input

    – One 16-bit 6-channel advanced-control timer, with up to 6 PWM channels, deadtime generation and emergency stop

    – One 16-bit timer with 2 IC/OCs, 1 OCN/PWM, deadtime generation and emergency stop

    – Two 16-bit timers with IC/OC/OCN/PWM, deadtime generation and emergency stop

    – Two watchdog timers (independent, window)

    – SysTick timer: 24-bit downcounter– One 16-bit basic timer to drive the DAC

    • Calendar RTC with Alarm, periodic wakeup from Stop/Standby

    • Communication interfaces– CAN interface (2.0B Active)– Two I2C Fast mode plus (1 Mbit/s) with

    20 mA current sink, SMBus/PMBus, wakeup from STOP

    – Up to five USART/UARTs (ISO 7816 interface, LIN, IrDA, modem control)

    LQFP64 (10 × 10 mm)LQFP100 (14 × 14 mm)

    LQFP48 (7 × 7 mm)WLCSP100 (0.4 mm pitch)

    www.st.com

    http://www.st.com

  • STM32F302xB STM32F302xC

    2/145 DS9911 Rev 9

    – Up to three SPIs, two with multiplexed half/full duplex I2S interface, 4 to 16 programmable bit frames

    – USB 2.0 full speed interface– Infrared transmitter

    • Serial wire debug, Cortex®-M4 with FPU ETM, JTAG

    • 96-bit unique ID

    Table 1. Device summary Reference Part number

    STM32F302xB STM32F302CB, STM32F302RB, STM32F302VB

    STM32F302xC STM32F302CC, STM32F302RC, STM32F302VC

  • DS9911 Rev 9 3/145

    STM32F302xB STM32F302xC Contents

    5

    Contents

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.1 Arm® Cortex®-M4 core with FPU with embedded Flash and SRAM . . . . 14

    3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    3.6 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    3.7 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.7.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    3.7.2 Power supply supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    3.7.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    3.7.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3.8 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3.9 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    3.10 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    3.11 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    3.12 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.12.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 20

    3.13 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.13.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    3.13.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    3.13.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    3.13.4 OPAMP reference voltage (VREFOPAMP) . . . . . . . . . . . . . . . . . . . . . . 22

    3.14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    3.15 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    3.16 Fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.17.1 Advanced timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

  • Contents STM32F302xB STM32F302xC

    4/145 DS9911 Rev 9

    3.17.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) . . . 24

    3.17.3 Basic timer (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    3.17.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.17.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.17.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.18 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 25

    3.19 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . . 27

    3.21 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . . 27

    3.22 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 28

    3.23 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    3.24 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    3.25 Infrared Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    3.26 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    3.27 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.27.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31

    3.27.2 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 60

    6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 60

  • DS9911 Rev 9 5/145

    STM32F302xB STM32F302xC Contents

    5

    6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    6.3.16 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    6.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    6.3.18 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    6.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    6.3.20 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    6.3.21 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

    7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257.1 LQFP100 – 14 x 14 mm, low-profile quad flat package

    information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

    7.2 LQFP64 – 10 x 10 mm, low-profile quad flat package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    7.3 LQFP48 – 7 x 7 mm, low-profile quad flat package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    7.4 WLCSP100 - 0.4 mm pitch wafer level chip scale package information 134

    7.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1387.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    7.5.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 139

    8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

    9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

  • List of tables STM32F302xB STM32F302xC

    6/145 DS9911 Rev 9

    List of tables

    Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Table 2. STM32F302xB/STM32F302xC family device features and peripheral counts . . . . . . . . . . 12Table 3. External analog supply values for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Table 4. STM32F302xB/STM32F302xC peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . 17Table 5. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Table 7. STM32F302xB/STM32F302xC I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Table 8. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Table 9. STM32F302xB/STM32F302xC SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 28Table 10. Capacitive sensing GPIOs available on STM32F302xB/STM32F302xC devices . . . . . . . 30Table 11. No. of capacitive sensing channels available on STM32F302xB/STM32F302xC devices . 30Table 12. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Table 13. STM32F302xB/STM32F302xC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Table 14. Alternate functions for port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Table 15. Alternate functions for port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Table 16. Alternate functions for port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Table 17. Alternate functions for port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Table 18. Alternate functions for port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Table 19. Alternate functions for port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Table 20. STM32F302xB/STM32F302xC memory map, peripheral register boundary addresses . . 53Table 21. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Table 22. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Table 23. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Table 24. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Table 25. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Table 26. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 60Table 27. Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Table 28. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Table 29. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Table 30. Typical and maximum current consumption from VDD supply at VDD = 3.6V . . . . . . . . . . . 63Table 31. Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 64Table 32. Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 65Table 33. Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 65Table 34. Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 66Table 35. Typical current consumption in Run mode, code with data processing running from Flash67Table 36. Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 68Table 37. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Table 38. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Table 39. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Table 40. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Table 41. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Table 42. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76Table 43. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Table 44. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Table 45. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Table 46. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Table 47. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Table 48. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

  • DS9911 Rev 9 7/145

    STM32F302xB STM32F302xC List of tables

    7

    Table 49. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Table 50. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Table 51. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Table 52. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Table 53. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Table 54. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Table 55. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89Table 56. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Table 57. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Table 58. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Table 59. IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Table 60. WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Table 61. I2C timings specification (see I2C specification, rev.03, June 2007) . . . . . . . . . . . . . . . . . 94Table 62. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Table 63. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Table 64. I2S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Table 65. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Table 66. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Table 67. USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Table 68. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Table 69. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Table 70. ADC accuracy - limited test conditions, 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . 108Table 71. ADC accuracy, 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Table 72. ADC accuracy - limited test conditions, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . 112Table 73. ADC accuracy, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Table 74. ADC accuracy at 1MSPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Table 75. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Table 76. Comparator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Table 77. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121Table 78. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Table 79. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Table 80. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124Table 81. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . 125Table 82. LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . 128Table 83. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . 131Table 84. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale

    package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Table 85. WLCSP100 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . 136Table 86. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138Table 87. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Table 88. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

  • List of figures STM32F302xB STM32F302xC

    8/145 DS9911 Rev 9

    List of figures

    Figure 1. STM32F302xB/STM32F302xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 3. Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Figure 4. STM32F302xB/STM32F302xC LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Figure 5. STM32F302xB/STM32F302xC LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Figure 6. STM32F302xB/STM32F302xC LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Figure 7. STM32F302xB/STM32F302xC WLCSP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Figure 8. STM32F302xB/STM32F302xC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Figure 9. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Figure 11. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Figure 12. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Figure 13. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) . . . . . . . . . . . 66Figure 14. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Figure 15. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Figure 16. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Figure 18. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 80Figure 19. TC and TTa I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Figure 20. TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 88Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . 88Figure 23. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Figure 24. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Figure 25. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Figure 26. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Figure 27. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Figure 28. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Figure 29. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Figure 30. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Figure 31. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 101Figure 32. ADC typical current consumption on VDDA pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Figure 33. ADC typical current consumption on VREF+ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Figure 34. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Figure 35. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Figure 36. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Figure 37. Maximum VREFINT scaler startup time from power down. . . . . . . . . . . . . . . . . . . . . . . . 120Figure 38. OPAMP voltage noise versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Figure 39. LQFP100 – 14 x 14 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 125Figure 40. LQFP100 – 14 x 14 mm, low-profile quad flat package recommended footprint . . . . . . . 126Figure 41. LQFP100 – 14 x 14 mm, low-profile quad flat package top view example . . . . . . . . . . . . 127Figure 42. LQFP64 – 10 x 10 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . 128Figure 43. LQFP64 – 10 x 10 mm, low-profile quad flat package recommended footprint . . . . . . . . 129Figure 44. LQFP64 – 10 x 10 mm, low-profile quad flat package top view example . . . . . . . . . . . . . 130Figure 45. LQFP48 – 7 x 7 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . 131Figure 46. LQFP48 - 7 x 7 mm, low-profile quad flat package recommended footprint. . . . . . . . . . . 132Figure 47. LQFP48 - 7 x 7 mm, low-profile quad flat package top view example . . . . . . . . . . . . . . . 133Figure 48. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale

  • DS9911 Rev 9 9/145

    STM32F302xB STM32F302xC List of figures

    9

    package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Figure 49. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale

    package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Figure 50. WLCSP100, 0.4 mm pitch wafer level chip scale package

    top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

  • Introduction STM32F302xB STM32F302xC

    10/145 DS9911 Rev 9

    1 Introduction

    This datasheet provides the ordering information and mechanical device characteristics of the STM32F302xB/STM32F302xC microcontrollers.

    This STM32F302xB/STM32F302xC datasheet should be read in conjunction with the STM32F302xx reference manual (RM0365). The reference manual is available from the STMicroelectronics website www.st.com.

    For information on the Arm®(a) Cortex®-M4 core with FPU, refer to:• Cortex®-M4 with FPU Technical Reference Manual, available from the

    http://www.arm.com website.• STM32F3xxx and STM32F4xxx Cortex®-M4 programming manual (PM0214)

    available from our website www.st.com.

    a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

  • DS9911 Rev 9 11/145

    STM32F302xB STM32F302xC Description

    54

    2 Description

    The STM32F302xB/STM32F302xC family is based on the high-performance Arm® Cortex®-M4 32-bit RISC core with FPU operating at a frequency of up to 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (up to 256 Kbytes of Flash memory, up to 40 Kbytes of SRAM) and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

    The devices offer up to two fast 12-bit ADCs (5 Msps), four comparators, two operational amplifiers, up to one DAC channel, a low-power RTC, up to five general-purpose 16-bit timers, one general-purpose 32-bit timer, and one timer dedicated to motor control. They also feature standard and advanced communication interfaces: up to two I2Cs, up to three SPIs (two SPIs are with multiplexed full-duplex I2Ss), three USARTs, up to two UARTs, CAN and USB. To achieve audio class accuracy, the I2S peripherals can be clocked via an external PLL.

    The STM32F302xB/STM32F302xC family operates in the -40 to +85 °C and -40 to +105 °C temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

    The STM32F302xB/STM32F302xC family offers devices in four packages ranging from 48 pins to 100 pins.

    The set of included peripherals changes with the device chosen.

  • Description STM32F302xB STM32F302xC

    12/145 DS9911 Rev 9

    Table 2. STM32F302xB/STM32F302xC family device features and peripheral counts Peripheral STM32F302Cx STM32F302Rx STM32F302Vx

    Flash (Kbytes) 128 256 128 256 128 256

    SRAM (Kbytes) on data bus 32 40 32 40 32 40

    Timers

    Advanced control 1 (16-bit)

    General purpose

    5 (16-bit)1 (32-bit)

    Basic 1 (16-bit)

    PWM channels (all) (1)

    1. This total number considers also the PWMs generated on the complementary output channels

    26

    PWM channels (except complementary) 20

    Communication interfaces

    SPI (I2S)(2)

    2. The SPI interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode.

    3 (2)

    I2C 2

    USART 3

    UART 0 2

    CAN 1

    USB 1

    GPIOs

    Normal I/Os (TC, TTa) 20 27

    45 in LQFP10037 in WLCSP100

    5-volt tolerant I/Os (FT, FTf) 17 25

    42 in LQFP10040 in WLCSP100

    DMA channels 12

    Capacitive sensing channels 17 18 24

    12-bit ADCs

    Number of channels

    2

    9 16 17

    12-bit DAC channels 1

    Analog comparator 4

    Operational amplifiers 2

    CPU frequency 72 MHz

    Operating voltage 2.0 to 3.6 V

    Operating temperature Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °CJunction temperature: - 40 to 125 °C

    Packages LQFP48 LQFP64LQFP100

    WLCSP100

  • DS9911 Rev 9 13/145

    STM32F302xB STM32F302xC Description

    54

    Figure 1. STM32F302xB/STM32F302xC block diagram

    1. AF: alternate function on I/O pins.

    MSv36608V2

    Touch Sensing Controller

    AH

    B d

    ecod

    er

    TIMER 16

    2 Channels,1 Comp Channel, BRK as AF

    TIMER 17

    TIMER 1 / PWM

    SPI1MOSI, MISO, SCK,NSS as AF

    USART1RX, TX, CTS, RTS, SmartCard as AF

    WinWATCHDOG

    Bus

    Mat

    rix

    MPU/FPU

    Cortex M4 CPU

    Fmax: 72 MHz

    NVIC

    GP DMA1 7 channels

    Flas

    h in

    terfa

    ceOB

    L

    FLASH 256 KB64 bits

    JTRSTJTDI

    JTCK/SWCLKJTMS/SWDIO

    JTDOAs AF

    Power

    Voltage reg.3.3 V to 1.8V

    VDD18

    Supply Supervision

    POR /PDR

    PVD

    POR

    ResetInt.

    VDDIO = 2 to 3.6 VVSS

    NRESETVDDAVSSA

    Ind. WDG32KStandbyinterface

    PLL

    @VDDIO

    @VDDA

    XTAL OSC4 -32 MHz

    Reset & clock

    control

    AHBPCLKAPBP1CLKAPBP2CLK

    AHB2APB2

    AHB2APB1

    CRC

    AP

    B1

    F max

    = 3

    6 M

    Hz

    AP

    B2

    f max

    = 7

    2 M

    Hz

    GPIO PORT A

    GPIO PORT B

    GPIO PORT C

    GPIO PORT D

    GPIO PORT E

    OSC_INOSC_OUT

    SPI3/I2S

    SCL, SDA, SMBA as AF

    USART2

    SCL, SDA, SMBA as AF

    USART3

    RC LS

    TIMER6

    TIMER 4

    SPI2/I2S

    12bit DAC1IF

    @VDDA

    TIMER2 (32-bit/PWM)PA[15:0]

    PB[15:0]

    PC[15:0]

    MOSI/SD, MISO/ext_SD, SCK/CK, NSS/WS, MCLK as AF

    4 Channels, ETR as AF

    USB_DP, USB_DM

    DAC1_CH1 as AF

    HCLKFCLK

    USARTCLK

    RC HS 8MHz

    SRAM40 KB

    ETMTrace/TrigSWJTAG

    TPIU

    Ibus

    TRADECLKTRACED[0-3]

    as AF

    Dbus

    System

    GP DMA2 5 channels

    12-bit ADC1

    12-bit ADC2

    Temp. sensor

    VREF+ VREF-

    TIMER 15

    EXT.ITWKUPXX AF

    1 Channel, 1 Comp Channel, BRK as AF

    1 Channel, 1 Comp Channel, BRK as AF

    4 Channels, 4 Comp channels, ETR, BRK as AF

    GPIO PORT F

    PD[15:0]

    PE[15:0]

    USB SRAM 512B

    PF[7:0]

    IF

    I2CCLKADC SAR1/2/3/4 CLK

    @VDDIO

    @VDDA

    @VSW

    XTAL 32kHz OSC32_INOSC32_OUT

    VBAT = 1.65V to 3.6V

    RTCAWU

    BackupReg

    (64Byte)Backupinterface

    ANTI-TAMP

    TIMER 3

    UART4

    UART5

    I2C1

    I2C2

    bx CAN & 512B SRAM

    USB 2.0 FS

    OpAmp1

    OpAmp2

    @VDDA

    INxx / OUTxx

    INxx / OUTxx

    INTE

    RFA

    CESYSCFG CTL

    GP Comparator 6GP Comparator 4

    GP Comparator 2

    CAN TX, CAN RX

    4 Channels, ETR as AF

    4 Channels, ETR as AF

    RX, TX, CTS, RTS, as AF

    RX, TX, CTS, RTS, as AF

    RX, TX as AF

    RX, TX as AF

    @VDDA

    Xx Ins, 4 OUTs as AF

    XX Groups of 4 channels as AF

    GP Comparator 1

    MOSI/SD, MISO/ext_SD, SCK/CK, NSS/WS, MCLK as AF

  • Functional overview STM32F302xB STM32F302xC

    14/145 DS9911 Rev 9

    3 Functional overview

    3.1 Arm® Cortex®-M4 core with FPU with embedded Flash and SRAMThe Arm Cortex-M4 processor with FPU is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

    The Arm Cortex-M4 32-bit RISC processor with FPU features exceptional code-efficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices.

    The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

    Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

    With its embedded Arm core, the STM32F302xB/STM32F302xC family is compatible with all Arm tools and software.

    Figure 1 shows the general block diagram of the STM32F302xB/STM32F302xC family devices.

    3.2 Memory protection unit (MPU)The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

    The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

    The MPU is optional and can be bypassed for applications that do not need it.

    3.3 Embedded Flash memoryAll STM32F302xB/STM32F302xC devices feature up to 256 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above).

  • DS9911 Rev 9 15/145

    STM32F302xB STM32F302xC Functional overview

    54

    3.4 Embedded SRAMSTM32F302xB/STM32F302xC devices feature up to 40 Kbytes of embedded SRAM with hardware parity check on first 16 Kbytes of SRAM. The memory can be accessed in read/write at CPU clock speed with 0 wait states.

    3.5 Boot modesAt startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:• Boot from user Flash• Boot from system memory• Boot from embedded SRAMThe boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU (device firmware upgrade).

    3.6 Cyclic redundancy check (CRC)The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

    Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

  • Functional overview STM32F302xB STM32F302xC

    16/145 DS9911 Rev 9

    3.7 Power management

    3.7.1 Power supply schemes• VSS, VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is

    provided externally through VDD pins.• VSSA, VDDA = 2.0 to 3.6 V: external analog power supply for ADC, DAC, comparators

    operational amplifiers, reset blocks, RCs and PLL. The minimum voltage to be applied to VDDA differs from one analog peripheral to another. Table 3 provides the summary of the VDDA ranges for analog peripherals. The VDDA voltage level must be always greater or equal to the VDD voltage level and must be provided first.

    • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present.

    3.7.2 Power supply supervisionThe device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit.• The POR monitors only the VDD supply voltage. During the startup phase it is required

    that VDDA should arrive first and be greater than or equal to VDD.• The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power

    supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that VDDA is higher than or equal to VDD.

    The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

    3.7.3 Voltage regulator

    The regulator has three operation modes: main (MR), low-power (LPR), and power-down.• The MR mode is used in the nominal regulation mode (Run)• The LPR mode is used in Stop mode.• The power-down mode is used in Standby mode: the regulator output is in high

    impedance, and the kernel circuitry is powered down thus inducing zero consumption.The voltage regulator is always enabled after reset. It is disabled in Standby mode.

    Table 3. External analog supply values for analog peripherals Analog peripheral Minimum VDDA supply Maximum VDDA supply

    ADC / COMP 2.0 V 3.6 V

    DAC / OPAMP 2.4 V 3.6V

  • DS9911 Rev 9 17/145

    STM32F302xB STM32F302xC Functional overview

    54

    3.7.4 Low-power modesThe STM32F302xB/STM32F302xC supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:• Sleep mode

    In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

    • Stop modeStop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USB wakeup, the RTC alarm, COMPx, I2Cx or U(S)ARTx.

    • Standby modeThe Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin or an RTC alarm occurs.

    Note: The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop or Standby mode.

    3.8 Interconnect matrixSeveral peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

    Table 4. STM32F302xB/STM32F302xC peripheral interconnect matrix

    Interconnect source Interconnect destination Interconnect action

    TIMx

    TIMx Timers synchronization or chaining

    ADCxDAC1

    Conversion triggers

    DMA Memory to memory transfer trigger

    Compx Comparator output blanking

    COMPx TIMx Timer input: OCREF_CLR input, input capture

    ADCx TIMx Timer triggered by analog watchdog

  • Functional overview STM32F302xB STM32F302xC

    18/145 DS9911 Rev 9

    Note: For more details about the interconnect actions, please refer to the corresponding sections in the reference manual (RM0365.

    3.9 Clocks and startupSystem clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

    Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

    GPIORTCCLKHSE/32MC0

    TIM16 Clock source used as input channel for HSI and LSI calibration

    CSSCPU (hard fault)COMPxPVDGPIO

    TIM1, TIM15, 16, 17

    Timer break

    GPIO

    TIMx External trigger, timer break

    ADCxDAC1

    Conversion external trigger

    DAC1 COMPx Comparator inverting input

    Table 4. STM32F302xB/STM32F302xC peripheral interconnect matrix (continued)

    Interconnect source Interconnect destination Interconnect action

  • DS9911 Rev 9 19/145

    STM32F302xB STM32F302xC Functional overview

    54

    Figure 2. Clock tree

    /32

    4-32 MHzHSE OSC

    OSC_IN

    OSC_OUT

    OSC32_IN

    OSC32_OUT

    8 MHzHSI RC

    IWDGCLKto IWDG

    PLLx2,x3,..

    x16

    PLLMUL

    AHB APB1prescaler

    /1,2,4,8,16

    HCLK

    PLLCLK

    to AHB bus, core, memory and DMA

    LSE

    LSI

    HSI

    HSI

    HSE

    to RTC

    PLLSRC SW /8

    SYSCLK

    RTCCLK

    RTCSEL[1:0]

    to TIM 2,3,4,6,7

    If (APB1 prescaler =1) x1 else x2

    FLITFCLKto Flash programming interface

    to I2Cx (x = 1,2)

    to U(S)ARTx (x = 2..5)

    LSEHSI

    SYSCLK

    /2

    PCLK1

    SYSCLK

    HSI

    PCLK1

    MS19989V5

    to I2Sx (x = 2,3)

    USBCLKto USB interface

    to cortex System timer FHCLK Cortex free running clock to APB1 peripherals

    AHBprescaler/1,2,..512

    CSS/2,/3,.../16

    LSE OSC32.768kHz

    LSI RC 40kHz

    USBprescaler

    /1,1.5

    APB2prescaler

    /1,2,4,8,16

    to TIM 15,16,17If (APB2 prescaler =1) x1 else x2

    to USART1

    LSEHSI

    SYSCLKPCLK2

    PCLK2 to APB2 peripherals

    TIM1/8

    ADCPrescaler

    /1,2,4 to ADCxy(xy = 12, 34)

    ADCPrescaler

    /1,2,4,6,8,10,12,16,32,64,128,256

    I2SSRC

    SYSCLK

    Ext. clockI2S_CKIN

    x2

    MCO

    Main clockoutput

    /2 PLLCLKHSI

    HSE

    MCOSYSCLK

    LSI

  • Functional overview STM32F302xB STM32F302xC

    20/145 DS9911 Rev 9

    3.10 General-purpose input/outputs (GPIOs)Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.

    The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

    Fast I/O handling allows I/O toggling up to 36 MHz.

    3.11 Direct memory access (DMA)The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

    Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

    The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers, DAC and ADC.

    3.12 Interrupts and events

    3.12.1 Nested vectored interrupt controller (NVIC)The STM32F302xB/STM32F302xC devices embed a nested vectored interrupt controller (NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels.

    The NVIC benefits are the following:• Closely coupled NVIC gives low latency interrupt processing• Interrupt entry vector table address passed directly to the core• Closely coupled NVIC core interface• Allows early processing of interrupts• Processing of late arriving higher priority interrupts• Support for tail chaining• Processor state automatically saved• Interrupt entry restored on interrupt exit with no instruction overhead

    The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

  • DS9911 Rev 9 21/145

    STM32F302xB STM32F302xC Functional overview

    54

    3.13 Fast analog-to-digital converter (ADC)Two fast analog-to-digital converters 5 MSPS, with selectable resolution between 12 and 6 bit, are embedded in the STM32F302xB/STM32F302xC family devices. The ADCs have up to 17 external channels (5 channels multiplexed between ADC1 and ADC2). Channels can be configured to be either single-ended input or differential input. The ADCs can perform conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

    The ADCs have also internal channels: Temperature sensor connected to ADC1 channel 16, VBAT/2 connected to ADC1 channel 17, Voltage reference VREFINT connected to the 2 ADCs channel 18, VREFOPAMP1 connected to ADC1 channel 15 and VREFOPAMP2 connected to ADC2 channel 17.

    Additional logic functions embedded in the ADC interface allow:• Simultaneous sample and hold• Interleaved sample and hold• Single-shunt phase current reading techniques.

    The ADC can be served by the DMA controller. 3 analog watchdogs per ADC are available.

    An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

    The events generated by the general-purpose timers and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

    3.13.1 Temperature sensorThe temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature.

    The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

    The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

    To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

    3.13.2 Internal voltage reference (VREFINT)

    The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADCx_IN18, x=1...2 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

  • Functional overview STM32F302xB STM32F302xC

    22/145 DS9911 Rev 9

    3.13.3 VBAT battery voltage monitoring

    This embedded hardware feature allows the application to measure the VBAT battery voltage using the internal ADC channel ADC1_IN17. As the VBAT voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the VBAT voltage.

    3.13.4 OPAMP reference voltage (VREFOPAMP)Every OPAMP reference voltage can be measured using a corresponding ADC internal channel: VREFOPAMP1 connected to ADC1 channel 15, VREFOPAMP2 connected to ADC2 channel 17.

    3.14 Digital-to-analog converter (DAC)A single 12-bit buffered DAC channel can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

    This digital interface supports the following features:• One DAC output channel • 8-bit or 10-bit monotonic output• Left or right data alignment in 12-bit mode• Noise-wave generation• Triangular-wave generation• DMA capability • External triggers for conversion

    3.15 Operational amplifier (OPAMP)The STM32F302xB/STM32F302xC embeds two operational amplifiers with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement.

    The operational amplifier features:• 8.2 MHz bandwidth• 0.5 mA output capability• Rail-to-rail input/output• In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.

    3.16 Fast comparators (COMP)The STM32F302xB/STM32F302xC devices embed four fast rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.

  • DS9911 Rev 9 23/145

    STM32F302xB STM32F302xC Functional overview

    54

    The reference voltage can be one of the following:• External I/O• DAC output pin• Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 28: Embedded

    internal reference voltage on page 62 for the value and precision of the internal reference voltage.

    All comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined per pair into a window comparator

    3.17 Timers and watchdogsThe STM32F302xB/STM32F302xC includes one advanced control timer, up to six general-purpose timers, one basic timer, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

    Note: TIM1/8 can have PLL as clock source, and therefore can be clocked at 144 MHz.

    Table 5. Timer feature comparison

    Timer type Timer Counter resolutionCounter

    typePrescaler

    factor

    DMA request

    generation

    Capture/compare Channels

    Complementary outputs

    Advanced TIM1 16-bit Up, Down, Up/Down

    Any integer between 1 and 65536

    Yes 4 Yes

    General-purpose TIM2 32-bit

    Up, Down, Up/Down

    Any integer between 1 and 65536

    Yes 4 No

    General-purpose TIM3, TIM4 16-bit

    Up, Down, Up/Down

    Any integer between 1 and 65536

    Yes 4 No

    General-purpose TIM15 16-bit Up

    Any integer between 1 and 65536

    Yes 2 1

    General-purpose TIM16, TIM17 16-bit Up

    Any integer between 1 and 65536

    Yes 1 1

    Basic TIM6 16-bit UpAny integer between 1 and 65536

    Yes 0 No

  • Functional overview STM32F302xB STM32F302xC

    24/145 DS9911 Rev 9

    3.17.1 Advanced timer (TIM1)The advanced-control timer, TIM1, can be seen as a three-phase PWM multiplexed on six channels. It has a complementary PWM output with programmable inserted dead-times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:• Input capture• Output compare• PWM generation (edge or center-aligned modes) with full modulation capability (0-

    100%)• One-pulse mode output

    In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

    Many features are shared with those of the general-purpose TIM timers (described in Section 3.17.2 using the same architecture, so the advanced-control timers can work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

    3.17.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)There are up to six synchronizable general-purpose timers embedded in the STM32F302xB/STM32F302xC (see Table 5 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.• TIM2, 3, and TIM4

    These are full-featured general-purpose timers:– TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler– TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers.These timers all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general-purpose timers via the Timer Link feature for synchronization or event chaining.The counters can be frozen in debug mode.All have independent DMA request generation and support quadrature encoders.

    • TIM15, 16 and 17These three timers general-purpose timers with mid-range features:They have 16-bit auto-reload upcounters and 16-bit prescalers.– TIM15 has 2 channels and 1 complementary channel– TIM16 and TIM17 have 1 channel and 1 complementary channelAll channels can be used for input capture/output compare, PWM or one-pulse mode output.The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.The counters can be frozen in debug mode.

    3.17.3 Basic timer (TIM6)This timer is mainly used for DAC trigger generation. It can also be used as a generic 16-bit time base.

  • DS9911 Rev 9 25/145

    STM32F302xB STM32F302xC Functional overview

    54

    3.17.4 Independent watchdog (IWDG)The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

    3.17.5 Window watchdog (WWDG)The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

    3.17.6 SysTick timerThis timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:• A 24-bit down counter• Autoreload capability• Maskable system interrupt generation when the counter reaches 0.• Programmable clock source

    3.18 Real-time clock (RTC) and backup registersThe RTC and the 16 backup registers are supplied through a switch that takes power from either the VDD supply when present or the VBAT pin. The backup registers are sixteen 32-bit registers used to store 64 bytes of user application data when VDD power is not present.

    They are not reset by a system or power reset, or when the device wakes up from Standby mode.

    The RTC is an independent BCD timer/counter.It supports the following features:• Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,

    month, year, in BCD (binary-coded decimal) format.• Reference clock detection: a more precise second source clock (50 or 60 Hz) can be

    used to enhance the calendar precision.• Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.• Two programmable alarms with wake up from Stop and Standby mode capability. • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to

    synchronize it with a master clock. • Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal

    inaccuracy. • Three anti-tamper detection pins with programmable filter. The MCU can be woken up

    from Stopand Standby modes on tamper event detection.• Timestamp feature which can be used to save the calendar content. This function can

    be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

  • Functional overview STM32F302xB STM32F302xC

    26/145 DS9911 Rev 9

    • 17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY capability.

    The RTC clock sources can be:• A 32.768 kHz external crystal• A resonator or oscillator• The internal low-power RC oscillator (typical frequency of 40 kHz) • The high-speed external clock divided by 32.

    3.19 Inter-integrated circuit interface (I2C)Up to two I2C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100 KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes.

    Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters.

    In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match.

    The I2C interfaces can be served by the DMA controller.

    Refer to Table 7 for the features available in I2C1 and I2C2.

    Table 6. Comparison of I2C analog and digital filters Analog filter Digital filter

    Pulse width of suppressed spikes 50 ns

    Programmable length from 1 to 15 I2C peripheral clocks

    Benefits Available in Stop mode1. Extra filtering capability vs. standard requirements.2. Stable length

    Drawbacks Variations depending on temperature, voltage, process

    Wakeup from Stop on address match is not available when digital filter is enabled.

    Table 7. STM32F302xB/STM32F302xC I2C implementation I2C features(1) I2C1 I2C2

    7-bit addressing mode X X

    10-bit addressing mode X X

    Standard mode (up to 100 kbit/s) X X

    Fast mode (up to 400 kbit/s) X X

    Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X

    Independent clock X X

  • DS9911 Rev 9 27/145

    STM32F302xB STM32F302xC Functional overview

    54

    3.20 Universal synchronous/asynchronous receiver transmitter (USART)The STM32F302xB/STM32F302xC devices have three embedded universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).

    The USART interfaces are able to communicate at speeds of up to 9 Mbits/s.

    They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller.

    3.21 Universal asynchronous receiver transmitter (UART)The STM32F302xB/STM32F302xC devices have 2 embedded universal asynchronous receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR ENDEC, multiprocessor communication mode and single-wire half-duplex communication mode. The UART4 interface can be served by the DMA controller.

    Refer to Table 8 for the features available in all U(S)ART interfaces.

    SMBus X X

    Wakeup from STOP X X

    1. X = supported.

    Table 7. STM32F302xB/STM32F302xC I2C implementation (continued)I2C features(1) I2C1 I2C2

    Table 8. USART features USART modes/features(1) USART1 USART2 USART3 UART4 UART5

    Hardware flow control for modem X X X - -

    Continuous communication using DMA X X X X -

    Multiprocessor communication X X X X X

    Synchronous mode X X X - -

    Smartcard mode X X X - -

    Single-wire half-duplex communication X X X X X

    IrDA SIR ENDEC block X X X X X

    LIN mode X X X X X

    Dual clock domain and wakeup from Stop mode X X X X X

    Receiver timeout interrupt X X X X X

    Modbus communication X X X X X

    Auto baud rate detection X X X - -

    Driver Enable X X X - -

    1. X = supported.

  • Functional overview STM32F302xB STM32F302xC

    28/145 DS9911 Rev 9

    3.22 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S)Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

    Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio standards can operate as master or slave at half-duplex and full duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency.

    Refer to Table 9 for the features available in SPI1, SPI2 and SPI3.

    3.23 Controller area network (CAN)The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

    3.24 Universal serial bus (USB)The STM32F302xB/STM32F302xC devices embed an USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). The USB has a dedicated 512-bytes SRAM memory for data transmission and reception.

    Table 9. STM32F302xB/STM32F302xC SPI/I2S implementation SPI features(1)

    1. X = supported.

    SPI1 SPI2 SPI3

    Hardware CRC calculation X X X

    Rx/Tx FIFO X X X

    NSS pulse mode X X X

    I2S mode - X X

    TI mode X X X

  • DS9911 Rev 9 29/145

    STM32F302xB STM32F302xC Functional overview

    54

    3.25 Infrared TransmitterThe STM32F302xB/STM32F302xC devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below.

    TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.

    To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels.

    Figure 3. Infrared transmitter

    3.26 Touch sensing controller (TSC)The STM32F302xB/STM32F302xC devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

    Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

    The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

    MSv30365V1

    TIMER 16

    (for envelop)

    TIMER 17

    (for carrier)

    OC

    OC

    PB9/PA13

  • Functional overview STM32F302xB STM32F302xC

    30/145 DS9911 Rev 9

    Table 10. Capacitive sensing GPIOs available on STM32F302xB/STM32F302xC devices

    Group Capacitive sensing signal namePin

    name GroupCapacitive sensing

    signal namePin

    name

    1

    TSC_G1_IO1 PA0

    5

    TSC_G5_IO1 PB3

    TSC_G1_IO2 PA1 TSC_G5_IO2 PB4

    TSC_G1_IO3 PA2 TSC_G5_IO3 PB6

    TSC_G1_IO4 PA3 TSC_G5_IO4 PB7

    2

    TSC_G2_IO1 PA4

    6

    TSC_G6_IO1 PB11

    TSC_G2_IO2 PA5 TSC_G6_IO2 PB12

    TSC_G2_IO3 PA6 TSC_G6_IO3 PB13

    TSC_G2_IO4 PA7 TSC_G6_IO4 PB14

    3

    TSC_G3_IO1 PC5

    7

    TSC_G7_IO1 PE2

    TSC_G3_IO2 PB0 TSC_G7_IO2 PE3

    TSC_G3_IO3 PB1 TSC_G7_IO3 PE4

    TSC_G3_IO4 PB2 TSC_G7_IO4 PE5

    4

    TSC_G4_IO1 PA9

    8

    TSC_G8_IO1 PD12

    TSC_G4_IO2 PA10 TSC_G8_IO2 PD13

    TSC_G4_IO3 PA13 TSC_G8_IO3 PD14

    TSC_G4_IO4 PA14 TSC_G8_IO4 PD15

    Table 11. No. of capacitive sensing channels available on STM32F302xB/STM32F302xC devices

    Analog I/O groupNumber of capacitive sensing channels

    STM32F302Vx STM32F302Rx STM32F302Cx

    G1 3 3 3

    G2 3 3 3

    G3 3 3 2

    G4 3 3 3

    G5 3 3 3

    G6 3 3 3

    G7 3 0 0

    G8 3 0 0

    Number of capacitive sensing channels 24 18 17

  • DS9911 Rev 9 31/145

    STM32F302xB STM32F302xC Functional overview

    54

    3.27 Development support

    3.27.1 Serial wire JTAG debug port (SWJ-DP)The Arm SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

    The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

    3.27.2 Embedded trace macrocell™ The Arm embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F302xB/STM32F302xC through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using a high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

  • Pinouts and pin description STM32F302xB STM32F302xC

    32/145 DS9911 Rev 9

    4 Pinouts and pin description

    Figure 4. STM32F302xB/STM32F302xC LQFP48 pinout

    MSv40448V1

    47 46 45 44 43 42 41

    VS

    S

    BO

    OT0

    PB

    5

    40 39 38 37363534333231302928272625

    21 22 23 24

    PB

    4P

    B3

    VDDVSS

    PA12

    PB15PB14PB13PB12

    PB

    10

    VS

    SP

    B11

    VD

    D

    48

    13

    23

    456 7 8 9 1011

    VBAT

    PC14/OSC32_INPC15/OSC32_OUT

    NRSTVSSA/VREF-

    VDDAPA0PA1PA2

    VD

    D

    PF0/OSC_INPF1/OSC_OUT

    PC13

    12

    1

    14 15 16 17 18 19 20

    PA7

    PB

    1P

    B2

    LQFP48

    PA13

    PA11PA10PA9PA8

    PA3

    PA4

    PA5

    PA6

    PB

    0

    PB

    9P

    B8

    PB

    7P

    B6

    PA15

    PA14

  • DS9911 Rev 9 33/145

    STM32F302xB STM32F302xC Pinouts and pin description

    54

    Figure 5. STM32F302xB/STM32F302xC LQFP64 pinout

    64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 4948474645444342414039383736353433

    17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28

    123456 7 8 9 10111213141516

    VBAT

    PC14/OSC32_INPC15/OSC32_OUT

    NRSTPC0PC1PC2PC3

    VSSA/VREF-VDDA

    PA0PA1PA2

    VD

    D

    PD

    2

    PC

    12P

    C11

    PC

    10

    VDDVSS

    PC8PC7PC6

    PB12

    PF4PA

    3

    VD

    D

    PC

    4P

    C5

    PB

    2P

    B10

    PF1/OSC_OUTPF0/OSC_IN

    PC13

    VS

    S

    PB

    11V

    SS

    VD

    D

    LQFP64

    MS40449V2

    PA13PA12PA11PA10PA9PA8PC9

    PB15PB14PB13

    PA4

    PA5

    PA6

    PA7

    PB

    0P

    B1

    PB

    9P

    B8

    BO

    OT0

    PB

    7P

    B6

    PB

    5P

    B4

    PB

    3

    PA15

    PA14

  • Pinouts and pin description STM32F302xB STM32F302xC

    34/145 DS9911 Rev 9

    Figure 6. STM32F302xB/STM32F302xC LQFP100 pinout

    100

    99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

    12345678910111213141516171819202122232425

    75747372717069686766656463626160595857565554535251

    PE2PE3PE4PE5PE6

    VBAT

    PC14/OSC32_INPC15/OSC32_OUT

    PF9PF10

    PF0/OSC_IN

    NRSTPC0PC1PC2PC3PF2

    VSSA/VREF-VREF+VDDA

    PA0PA1PA2

    VDDVSSPF6PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12

    PA3

    PF4

    VD

    DPA

    4PA

    5PA

    6PA

    7P

    C4

    PC

    5P

    B0

    PB

    1P

    B2

    PE

    7P

    E8

    PE

    9P

    E10

    PE11

    PE

    12P

    E13

    PE

    14P

    E15

    PB

    10

    VS

    SV

    DD

    VD

    DV

    SS

    PE

    1

    PE

    0

    PB

    9

    PB

    8

    BO

    OT0

    P

    B7

    P

    B6

    P

    B5

    P

    B4

    P

    B3

    P

    D7

    P

    D6

    P

    D5

    P

    D4

    P

    D3

    P

    D2

    P

    D1

    P

    D0

    P

    C12

    P

    C11

    P

    C10

    PA

    15

    PA14

    26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

    MS40450V1

    LQFP100

    PC13

    PF1/OSC_OUT

    PB11

  • DS9911 Rev 9 35/145

    STM32F302xB STM32F302xC Pinouts and pin description

    54

    Figure 7. STM32F302xB/STM32F302xC WLCSP100 pinout

    MSv40453V1

    A

    B

    C

    D

    E

    F

    G

    H

    J

    K

    PA2

    PA3

    PA5

    PA4

    PA7

    7

    BOOT0

    PE0

    VSS

    PE3

    PE6

    PA8

    PE12

    PE11

    VDD

    PB2

    5

    PB3

    PB4

    PB7

    PB8

    PA9

    PC5

    PC4

    PA6

    PB0

    PB1

    6

    PB5

    PB6

    PB9

    PE2

    PE8

    PC6

    PD9

    PB15

    PB12

    PB10

    4

    PD2

    PD3

    PD4

    PD7

    PC10

    PC12

    PA13

    PC9

    PD13

    PD10

    PB13

    PB11

    3

    PD0

    PD1

    PC11

    PC7

    PD14

    PD11

    PB14

    VSS

    2

    VSS

    PA15

    PA14

    VDD

    PA11

    PC8

    PD15

    PD12

    VSS

    VSS

    1

    VSS

    VSS

    PF6

    PA12

    PA10

    PC2

    VSSA

    VREF+

    VDD

    PE7

    8

    PE1

    VDD

    PE4

    VBAT

    PF2

    PF0OSCIN

    PC0

    PC3

    VDDA

    VSS

    10

    VDD

    VDD

    PC14OSC32IN

    PF9

    PF10

    PC13

    PC15OSC32OUT

    NRST

    PC1

    PA0

    PA1

    VSS

    PF1OSCOUT

    9

    VDD

    PE5

  • Pinouts and pin description STM32F302xB STM32F302xC

    36/145 DS9911 Rev 9

    Table 12. Legend/abbreviations used in the pinout table Name Abbreviation Definition

    Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name

    Pin type

    S Supply pin

    I Input only pin

    I/O Input / output pin

    I/O structure

    FT 5 V tolerant I/O

    FTf 5 V tolerant I/O, FM+ capable

    TTa 3.3 V tolerant I/O directly connected to ADC

    TC Standard 3.3V I/O

    B Dedicated BOOT0 pin

    RST Bidirectional reset pin with embedded weak pull-up resistor

    Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset

    Pin functions

    Alternate functions Functions selected through GPIOx_AFR registers

    Additional functions Functions directly selected/enabled through peripheral registers

    Table 13. STM32F302xB/STM32F302xC pin definitions Pin number

    Pin name (function

    after reset) P

    in ty

    pe

    I/O s

    truc

    ture

    Not

    es

    Pin functions

    WLC

    SP10

    0

    LQFP

    100

    LQFP

    64

    LQFP

    48

    Alternate functions Additional functions

    D6 1 - - PE2 I/O FT (1) TRACECK, TIM3_CH1, TSC_G7_IO1, EVENTOUT -

    D7 2 - - PE3 I/O FT (1) TRACED0, TIM3_CH2, TSC_G7_IO2, EVENTOUT -

    C8 3 - - PE4 I/O FT (1) TRACED1, TIM3_CH3, TSC_G7_IO3, EVENTOUT -

    B9 4 - - PE5 I/O FT (1) TRACED2, TIM3_CH4, TSC_G7_IO4, EVENTOUT -

    E7 5 - - PE6 I/O FT (1) TRACED3, EVENTOUT WKUP3, RTC_TAMP3

    D8 6 1 1 VBAT S - - Backup power supply

  • DS9911 Rev 9 37/145

    STM32F302xB STM32F302xC Pinouts and pin description

    54

    C9 7 2 2 PC13(2) I/O TC - TIM1_CH1N WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT

    C10 8 3 3PC14(2)

    OSC32_IN(PC14)

    I/O TC - - OSC32_IN

    D9 9 4 4

    PC15(2) OSC32_

    OUT(PC15)

    I/O TC - - OSC32_OUT

    D10 10 - - PF9 I/O FT (1) TIM15_CH1, SPI2_SCK, EVENTOUT -

    E10 11 - - PF10 I/O FT (1) TIM15_CH2, SPI2_SCK, EVENTOUT -

    F10 12 5 5PF0-

    OSC_IN (PF0)

    I/O FTf - TIM1_CH3N, I2C2_SDA, OSC_IN

    F9 13 6 6PF1-

    OSC_OUT (PF1)

    I/O FTf - I2C2_SCL OSC_OUT

    E9 14 7 7 NRST I/O RST Device reset input / internal reset output (active low)

    G10 15 8 - PC0 I/O TTa (1) EVENTOUT ADC12_IN6

    G9 16 9 - PC1 I/O TTa (1) EVENTOUT ADC12_IN7

    G8 17 10 - PC2 I/O TTa (1) EVENTOUT ADC12_IN8

    H10 18 11 - PC3 I/O TTa (1) TIM1_BKIN2, EVENTOUT ADC12_IN9

    E8 19 - - PF2 I/O TTa (1) EVENTOUT ADC12_IN10

    H8 20 12 8 VSSA/VREF- S - - Analog ground/Negative reference voltage

    J8 21 - - VREF+(3) S - - Positive reference voltage

    J10 22 - - VDDA S - - Analog power supply

    - - 13 9 VDDA/VREF+ S - - Analog power supply/Positive reference voltage

    H9 23 14 10 PA0 I/O TTa (4)USART2_CTS, TIM2_CH1_ETR, TSC_G1_IO1, COMP1_OUT, EVENTOUT

    ADC1_IN1, COMP1_INM, RTC_ TAMP2, WKUP1

    Table 13. STM32F302xB/STM32F302xC pin definitions (continued)Pin number

    Pin name (function

    after reset) P

    in ty

    pe

    I/O s

    truc

    ture

    Not

    es

    Pin functions

    WLC

    SP10

    0

    LQFP

    100

    LQFP

    64

    LQFP

    48

    Alternate functions Additional functions

  • Pinouts and pin description STM32F302xB STM32F302xC

    38/145 DS9911 Rev 9

    J9 24 15 11 PA1 I/O TTa (4)USART2_RTS_DE, TIM2_CH2, TSC_G1_IO2, TIM15_CH1N, RTC_REFIN, EVENTOUT

    ADC1_IN2, COMP1_INP, OPAMP1_VINP

    F7 25 16 12 PA2 I/O TTa(4)(5)

    USART2_TX, TIM2_CH3, TIM15_CH1, TSC_G1_IO3, COMP2_OUT, EVENTOUT

    ADC1_IN3, COMP2_INM, OPAMP1_VOUT

    G7 26 17 13 PA3 I/O TTa (4)USART2_RX, TIM2_CH4, TIM15_CH2, TSC_G1_IO4, EVENTOUT

    ADC1_IN4, OPAMP1_VINP, COMP2_INP, OPAMP1_VINM

    - 27 18 - PF4 I/O TTa(1)(4) COMP1_OUT, EVENTOUT ADC1_IN5

    K9, K10 - - - VSS S - - Digital ground

    K8 28 19 - VDD S - - Digital power supply

    J7 29 20 14 PA4 I/O TTa(4)(5)

    SPI1_NSS, SPI3_NSS,I2S3_WS, USART2_CK, TSC_G2_IO1, TIM3_CH2, EVENTOUT

    ADC2_IN1, DAC1_OUT1, COMP1_INM, COMP2_INM, COMP4_INM, COMP6_INM

    H7 30 21 15 PA5 I/O TTa(4)(5)

    SPI1_SCK, TIM2_CH1_ETR, TSC_G2_IO2, EVENTOUT

    ADC2_IN2 OPAMP1_VINP, OPAMP2_VINM COMP1_INM, COMP2_INM, COMP4_INM, COMP6_INM

    H6 31 22 16 PA6 I/O TTa(4)(5)

    SPI1_MISO, TIM3_CH1, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT

    ADC2_IN3, OPAMP2_VOUT

    K7 32 23 17 PA7 I/O TTa (4)SPI1_MOSI, TIM3_CH2, TIM17_CH1, TIM1_CH1N, , TSC_G2_IO4, COMP2_OUT, EVENTOUT

    ADC2_IN4, COMP2_INP, OPAMP2_VINP, OPAMP1_VINP

    G6 33 24 - PC4 I/O TTa(1)(4) USART1_TX, EVENTOUT ADC2_IN5

    F6 34 25 - PC5 I/O TTa (1) USART1_RX, TSC_G3_IO1, EVENTOUTADC2_IN11, OPAMP2_VINM, OPAMP1_VINM

    J6 35 26 18 PB0 I/O TTa - TIM3_CH3, TIM1_CH2N, TSC_G3_IO2, EVENTOUT COMP4_INP, OPAMP2_VINP

    Table 13. STM32F302xB/STM32F302xC pin definitions (continued)Pin number

    Pin name (function

    after reset) P

    in ty

    pe

    I/O s

    truc

    ture

    Not

    es

    Pin functions

    WLC

    SP10

    0

    LQFP

    100

    LQFP

    64

    LQFP

    48

    Alternate functions Additional functions

  • DS9911 Rev 9 39/145

    STM32F302xB STM32F302xC Pinouts and pin description

    54

    K6 36 27 19 PB1 I/O TTa(4)(5)

    TIM3_CH4, TIM1_CH3N, COMP4_OUT, TSC_G3_IO3, EVENTOUT

    -

    K5 37 28 20 PB2 I/O TTa - TSC_G3_IO4, EVENTOUT ADC2_IN12, COMP4_INM

    F8 38 - - PE7 I/O TTa (1) TIM1_ETR, EVENTOUT COMP4_INP

    E6 39 - - PE8 I/O TTa (1) TIM1_CH1N, EVENTOUT COMP4_INM

    - 40 - - PE9 I/O TTa(4)(1) TIM1_CH1, EVENTOUT

    - 41 - - PE10 I/O TTa (1) TIM1_CH2N, EVENTOUT

    H5 42 - - PE11 I/O TTa (1) TIM1_CH2, EVENTOUT

    G5 43 - - PE12 I/O TTa (1) TIM1_CH3N, EVENTOUT

    - 44 - - PE13 I/O TTa (1) TIM1_CH3, EVENTOUT

    - 45 - - PE14 I/O TTa(4)(1)

    TIM1_CH4, TIM1_BKIN2, EVENTOUT

    - 46 - - PE15 I/O TTa(4)(1)

    USART3_RX, TIM1_BKIN, EVENTOUT

    K4 47 29 21 PB10 I/O TTa - USART3_TX, TIM2_CH3, TSC_SYNC, EVENTOUT

    K3 48 30 22 PB11 I/O TTa - USART3_RX, TIM2_CH4, TSC_G6_IO1, EVENTOUT COMP6_INP

    K1, J1, K2

    49 31 23 VSS S - - Digital ground

    J5 50 32 24 VDD S - - Digital power supply

    J4 51 33 25 PB12 I/O TTa(4)(5)

    SPI2_NSS, I2S2_WS,I2C2_SMBA, USART3_CK, TIM1_BKIN, TSC_G6_IO2, EVENTOUT

    J3 52 34 26 PB13 I/O TTa (4)SPI2_SCK,I2S2_CK,USART3_CTS, TIM1_CH1N, TSC_G6_IO3, EVENTOUT

    J2 53 35 27 PB14 I/O TTa (4)SPI2_MISO,I2S2ext_SD,USART3_RTS_DE, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4, EVENTOUT

    OPAMP2_VINP

    Table 13. STM32F302xB/STM32F302xC pin definitions (continued)Pin number

    Pin name (function

    after reset) P

    in ty

    pe

    I/O s

    truc

    ture

    Not

    es

    Pin functions

    WLC

    SP10

    0

    LQFP

    100

    LQFP

    64

    LQFP

    48

    Alternate functions Additional functions

  • Pinouts and pin description STM32F302xB STM32F302xC

    40/145 DS9911 Rev 9

    H4 54 36 28 PB15 I/O TTa (4)SPI2_MOSI, I2S2_SD, TIM1_CH3N, RTC_REFIN, TIM15_CH1N, TIM15_CH2, EVENTOUT

    COMP6_INM

    - 55 - - PD8 I/O TTa (1) USART3_TX, EVENTOUT

    G4 56 - - PD9 I/O TTa (1) USART3_RX, EVENTOUT

    H3 57 - - PD10 I/O TTa (1) USART3_CK, EVENTOUT COMP6_INM

    H2 58 - - PD11 I/O TTa (1) USART3_CTS, EVENTOUT COMP6_INP

    H1 59 - - PD12 I/O TTa (1)USART3_RTS_DE, TIM4_CH1, TSC_G8_IO1, EVENTOUT

    G3 60 - - PD13 I/O TTa (1) TIM4_CH2, TSC_G8_IO2, EVENTOUT

    G2 61 - - PD14 I/O TTa (1) TIM4_CH3, TSC_G8_IO3, EVENTOUT OPAMP2_VINP

    G1 62 - - PD15 I/O TTa (1) SPI2_NSS, TIM4_CH4, TSC_G8_IO4, EVENTOUT

    F4 63 37 - PC6 I/O FT (1) I2S2_MCK, COMP6_OUT TIM3_CH1, EVENTOUT -

    F2 64 38 - PC7 I/O FT (1) I2S3_MCK, TIM3_CH2, EVENTOUT -

    F1 65 39 - PC8 I/O FT (1) TIM3_CH3, EVENTOUT -

    F3 66 40 - PC9 I/O FT (1) TIM3_CH4, I2S_CKIN, EVENTOUT -

    F5 67 41 29 PA8 I/O FT -

    I2C2_SMBA, I2S2_MCK, USART1_CK, TIM1_CH1, TIM4_ETR, MCO, EVENTOUT

    -

    E5 68 42 30 PA9 I/O FTf -

    I2C2_SCL, I2S3_MCK, USART1_TX, TIM1_CH2, TIM2_CH3, TIM15_BKIN, TSC_G4_IO1, EVENTOUT

    -

    E1 69 43 31 PA10 I/O FTf -

    I2C2_SDA, USART1_RX, TIM1_CH3, TIM2_CH4, TIM17_BKIN, TSC_G4_IO2, COMP6_OUT, EVENTOUT

    -

    Table 13. STM32F302xB/STM32F302xC pin definitions (continued)Pin number

    Pin name (function

    after reset) P

    in ty

    pe

    I/O s

    truc

    ture

    Not

    es

    Pin functions

    WLC

    SP10

    0

    LQFP

    100

    LQFP

    64

    LQFP

    48

    Alternate functions Additional functions

  • DS9911 Rev 9 41/145

    STM32F302xB STM32F302xC Pinouts and pin description

    54

    E2 70 44 32 PA11 I/O FT -

    USART1_CTS, USB_DM, CAN_RX, TIM1_CH1N, TIM1_CH4, TIM1_BKIN2, TIM4_CH1, COMP1_OUT, EVENTOUT

    -

    D1 71 45 33 PA12 I/O FT -

    USART1_RTS_DE, USB_DP, CAN_TX, TIM1_CH2N, TIM1_ETR, TIM4_CH2, TIM16_CH1, COMP2_OUT, EVENTOUT

    -

    E3 72 46 34 PA13 I/O FT -