Dabur Research Foundation New Delhi, INDIA ?· Dabur Research Foundation New Delhi, INDIA ... Dabur…

Download Dabur Research Foundation New Delhi, INDIA ?· Dabur Research Foundation New Delhi, INDIA ... Dabur…

Post on 07-Jul-2018




0 download

Embed Size (px)


<ul><li><p>1</p><p>Dabur Research FoundationNew Delhi, INDIA</p><p></p><p>ONCOLOGY SERVICES</p><p>Provided in Europe by the Exclusive Distributor </p><p>Kinase Logistics ApSStationsvej 805792 AarslevDenmark</p></li><li><p>2</p><p>Dabur Research Foundation (DRF)</p><p> Parent company was established in 1884, Dabur India Ltd is among the oldest and largest </p><p>healthcare companies in India, has over 5000 employees working in more than 20 countries</p><p> Contract Research Organization focused on Preclinical drug discovery &amp; Development</p><p> Positioned as an Oncology specialist CRO with services in several other therapeutic areas</p><p> Strength of 70 scientists with close to 40 % being PhDs recruited from the top 5 </p><p>Universities of India</p><p> Over 20 years of experience in preclinical development of Cytotoxics, biologically targeted </p><p>molecules, Phytochemicals, generics &amp; differentiated formulations in multiple therapeutic </p><p>areas</p><p> Comprehensive Services in Cell Biology, Pharmacology, Toxicology, DMPK, Bioanalytical, </p><p>Analytical &amp; formulation development to enable lead identification as well as lead </p><p>development</p><p> Availability of stand alone service modules &amp; complete service packages to meet various </p><p>client requirements</p><p> Availability of guideline-driven services as well customized services for the clients</p><p> GLP compliant studies managed by Project coordinators, Technical Coordinators &amp; QAU </p><p>teams</p></li><li><p>3</p><p>Phase I Phase II Phase IIIClinical</p><p>Support</p><p>Drug</p><p>Discovery </p><p>Early </p><p>Preclinical</p><p>Advanced</p><p>Preclinical</p><p>APISynthesis </p><p>&amp; Form. Dev </p><p>Drug </p><p>Manufacture</p><p>CLINICALCLINICAL</p><p>Biochemical &amp; Cell based </p><p>screens</p><p>Target basedscreens</p><p>Signal transduction</p><p>Molecularmodeling</p><p>in silico</p><p>Computational designing</p><p>Chemistry</p><p> Medicinal</p><p> Combichem</p><p> Computational</p><p> Natural Product</p><p> Analytical</p><p>Efficacy</p><p> Oncology</p><p> Diabetes </p><p> Pain</p><p> Inflammation</p><p> Dermatology</p><p> Hair</p><p>ADME</p><p>Bioanalytical</p><p>Characterization</p><p>Pharmacokinetics</p><p>Toxicology</p><p>Special Toxicity</p><p>Safety Pharmacology</p><p>Process Development</p><p>Scale up</p><p>Characterization</p><p>GMP Synthesis</p><p>GMP</p><p> Manufacture</p><p> Solid oral</p><p> Injectible</p><p>Bioavailability</p><p>Bioequivalence</p><p>Tissue banking</p><p> Data Management Plan </p><p> Database Design </p><p> CRF Management </p><p> Double Data Entry</p><p> Central Lab Data Import</p><p> Medical / AE Coding</p><p> Query Management</p><p> Manual Data Quality Control </p><p>Our Focus Areas</p><p>CRAMCRAMDRUG DISCOVERY &amp; PRECLINICALDRUG DISCOVERY &amp; PRECLINICAL</p></li><li><p>4</p><p>Cell Biology &amp; Pharmacology</p></li><li><p>5</p><p>in vitro Screens Cancer</p><p> Cell Lines</p><p> Indias largest tumor bank repository with human cancer cell linesrepresenting 15 20 different cancer types</p><p> Authenticated sources (ATCC / ECACC)</p><p> Screens validated with client defined reference drugs</p><p> Cell lines include -</p><p> Human Cancer lines</p><p> Epidermal cells</p><p> Hepatocytes</p><p> Cardiomyocytes</p><p> Endothelial cells</p><p> Assays</p><p> Validated cell based assays</p><p> Drug resistant cell lines available</p><p> Primary cultures for colon cancers available</p><p> Combination index method for evaluation of synergy</p><p>P-II tissue culture facility capable of screening up to 1000 compounds/month using the 96-well-plate format</p></li><li><p>6</p><p>Cancer cell lines</p><p>Name of cell line Tumor type Species</p><p>BRAIN</p><p>U-87 MG Glioblastoma, astrocytoma Human</p><p>SK-N-SH Neuroblastoma Human</p><p>SK-N-MC Neuroepithelioma Human</p><p>U373 MG Glioblastoma, astrocytoma Human</p><p>D283 Brain,cerebellum Human</p><p>BREAST</p><p>MCF-7 Breast Adenocarcinoma Human</p><p>T-47D Ductal carcinoma Human</p><p>MDA-MB-453 Mammary gland,Metastatic carcinoma Human</p><p>SK-BR-3 Mammary gland Human</p><p>ZR-75-1 Ductal carcinoma Human</p><p>HBL100 Mammary gland Human</p><p>COLON</p><p>SW620 Colorectal adenocarcinoma Human</p><p>Colo 205 Adenocarcinoma Human</p><p>HT-29 Colon Adenocarcinoma Human</p><p>HCT-15 Colorectal carcinoma Human</p><p>CACO-2 Human Caucasian Colon Adenocarcinomas Human</p><p>MELANOMA</p><p>B16-F10 Melanoma Mouse</p><p>SK-MEL-28 Melanoma, malignant Human</p><p>SK-MEL-2 Malignant melanoma Human</p><p>SK-MEL-5 Melanoma Human</p><p>LEUKEMIA</p><p>HL-60 Leukemia, acute promyelocytic Human</p><p>RAW 264 Leukemic monocyte-macrophage Mouse</p><p>K-562 Leukemia Human</p><p>MOLT-4 Human acute lymphoblastic leukemia Human</p><p>JurgatE6.1 leukemia Human</p><p>KIDNEY</p><p>COS 7 Kidney fibroblast Monkey</p><p>RAG Adenocarcinoma,Kidney Mouse</p><p>293 Kidney Human</p><p>MDCK canine kidney Dog</p><p>LUNG</p><p>DMS 114 Small Cell Lung Cancer Human</p><p>NCI-H460 Lung Carcinoma Human</p></li><li><p>7</p><p>Cancer cell lines</p><p>A-549 Lung Carcinoma Human</p><p>NCI-H345 Small Cell Lung Carcinoma Human</p><p>NCI-H522 Adenocarcinoma; non-small cell lung cancer Human</p><p>L-132 Embryonic lung tissue (HeLa contaminant) Human</p><p>PROSTATE</p><p>PC-3 Adenocarcinoma, Prostate Human</p><p>DU-145 Prostate, Carcinoma Human</p><p>LNCaP Prostate, Carcinoma Human</p><p>ENDOTHELIAL</p><p>HUVEC Primary human umbilical vein endothelial cells Human</p><p>EAHY 926 Endothelial Human</p><p>ECV304 Umbilical cord, endothelial Carcinoma Human</p><p>OVARY</p><p>PA1 Teratocarcinoma Human</p><p>SK-OV-3 Adenocarcinoma Human</p><p>NIH:OVCAR-3 Adenocarcinoma,Ovary Human</p><p>ORAL</p><p>KB Oral (HeLa contaminant) Human</p><p>SCC-25 Tongue Carcinoma Human</p><p>CAL 27 Tongue Carcinoma Human</p><p>HEART</p><p>H9C2 Heart myocardium Rat</p><p>GASTRO-Intestinal</p><p>INT 407 Intestine Human</p><p>FHs 74 Int Small Intestine Human</p><p>SNU-5 Gastric Carcinoma Human</p><p>HuTu 80 Duodenum,Adenocarcinoma Human</p><p>BONE</p><p>KHOS Osteosarcoma Human</p><p>MG-63 Osteosarcoma Human</p><p>HOS Osteogenic Sarcoma Human</p><p>PANCREAS</p><p>MIA PaCa-2 Pancreas Carcinoma Human</p><p>Capan-2 Pancreatic Carcinoma Human</p><p>HPAC Human Pancreas Human</p><p>LIVER</p><p>HepG2 Carcinoma, hepatocellular Human</p><p>SKIN</p><p>A-431 Carcinoma, epidermoid Human</p><p>HFF-1 Human foreskin, fibroblast Human</p><p>+ many more</p></li><li><p>8</p><p> Test System</p><p> Cancer cell lines</p><p> Method</p><p> Determination of % cytotoxicity &amp; IC50 of individual drugs</p><p> Selection of concentrations around IC50 for</p><p>combination studies</p><p> Testing all possible combinations of drugs for</p><p>combined cytotoxicities</p><p> Calculation of Combination Index (CI)</p><p> CI1 - Antagonism</p><p> End points</p><p> Categorization of drug combinations as</p><p>synergistic/additive/antagonistic for each combination</p><p>tested.</p><p>Evaluation of drug interactions in combination cancer chemotherapy by combination index method</p><p>Drug Combination Studies</p><p>Drug 1</p><p>Drug 2</p></li><li><p>9</p><p>Xenograft Models1</p><p>Strains</p><p> FoxN1 or NMRI strain athymic nude mice SCID mice C57BL/6 mice</p><p>Xenograft Models</p><p> Ovary Oral Lung Colon Melanoma + other solid cancers incl. Adenocarcinomas &amp; squamous cell carcinomas</p><p>End points Body weight Change Median Tumor Volume % Tumor Growth Inhibition Log Cell Kill %T/C Relative Tumor Volume Tumor Growth Delay Regression Chart</p><p>All studies carried out in a welfare regulations approved rodent animal facility equipped with state-of-the-art barrier facility. We have performed efficacy studies for more than 100 NCEs </p><p>including plant-based, synthetics, biologicals &amp; differentiated products</p></li><li><p>10</p><p>Xenograft Models..2</p><p>0</p><p>250</p><p>500</p><p>750</p><p>1000</p><p>1250</p><p>1500</p><p>1750</p><p>2000</p><p>18 20 22 24 26 28 30 32 34 36 38</p><p>Days Post inoclulation</p><p>Med</p><p>ian </p><p>Tum</p><p>or V</p><p>olum</p><p>e (m</p><p>m3 ) Vehicle Control</p><p>Tamoxifen Citrate, 10mg/kg, s.c.</p><p>In-vivo anticancer activity of Tamoxifen citrate on nude mice bearing MCF-7 tumor</p><p>Time to Reach 500mm3</p><p>24</p><p>&gt;38</p><p>0 10 20 30 40</p><p>VehicleControl</p><p>TamoxifenCitrate,</p><p>10mg/kg, s.c.</p><p>Days</p><p>Median %T/C</p><p>0</p><p>25</p><p>50</p><p>75</p><p>100</p><p>125</p><p>18 20 22 24 26 28 30 32 34 36 38Days</p><p>Med</p><p>ian </p><p>%T/</p><p>C Tamoxifen Citrate, 10mg/kg, s.c.</p><p>Treatment Partial </p><p>Regression</p><p>Complete </p><p>Regression</p><p>Cure</p><p>XXX, 50mg/kg,p.o. </p><p>Late stage model0 1 0</p><p>XXX, 30mg/kg,p.o. </p><p>Early stage model1 1 2</p></li><li><p>11</p><p>Xenograft Models3</p><p>Median Tumor Volume</p><p>0</p><p>250</p><p>500</p><p>750</p><p>1000</p><p>1250</p><p>1500</p><p>1 3 5 7 9 11 13 15 17 19 21 23 25 27 29Days</p><p>Med</p><p>ian </p><p>Tum</p><p>or V</p><p>olum</p><p>e (m</p><p>m3)</p><p>Vehicle Control</p><p>Erlotinib, 90mpk,po</p><p>In-vivo anticancer activity of Erlotinib on nude mice bearing A549 tumor</p><p>Time to Reach 500mm3</p><p>30.2</p><p>45.5</p><p>0 10 20 30 40 50</p><p>VehicleControl</p><p>Erlotinib,90mpk,po</p><p>Days</p><p>Median %T/C</p><p>0</p><p>25</p><p>50</p><p>75</p><p>100</p><p>125</p><p>1 3 5 7 9 11 13 15 17 19 21 23 25 27 29</p><p>Days</p><p>Med</p><p>ian </p><p>%T/</p><p>C Erlotinib, 90mpk,po</p></li><li><p>12</p><p>Xenograft Models..4</p><p>Antitumor activity of DRFXXX on HT-29 (colon) xenograft. </p><p>Antitumor activity of DRFXXX on HuTtu-80 (duodenum) xenograft. </p><p>0</p><p>1000</p><p>2000</p><p>3000</p><p>4000</p><p>5000</p><p>6000</p><p>0 5 10 15 20 25 30</p><p>Days post inoculum</p><p>Tum</p><p>or v</p><p>olum</p><p>e (c</p><p>u.m</p><p>m)</p><p>Untreated</p><p>DRF7295</p><p>T/C% = 19.1%</p><p>0</p><p>1000</p><p>2000</p><p>3000</p><p>4000</p><p>5000</p><p>0 10 20 30</p><p>Days post inoculum</p><p>Tum</p><p>or v</p><p>olum</p><p>e (c</p><p>u.m</p><p>m)</p><p>UntreatedDRF7295 T/C% = 2.8%</p></li><li><p>13</p><p>in vivo Models Syngeneic..1</p><p> Animals C57BL/6 mice BALB/c</p><p> Syngeneic Models Lung Colon</p><p> Metastasis Model</p><p> Mouse melanoma - lung nodule- I.V Injection of melanoma cells in C57BL/6 mice- Estimation of Number of Lung nodule, Melanin content, etc</p><p> Colon SQ Model ( CT-26 - Colon )- SQ injection of CT-26 in BALB/c mice- Development of Solid tumor &amp; Metastatic tumor at</p><p>colon, pancreas, lung, etc- Tumor growth, Histopathology etc..</p><p>Relative Melanin Content</p><p>0</p><p>25</p><p>50</p><p>75</p><p>100</p><p>G1, SWFI, 10ml/kg,p.o. S1P ReceptorModulator,60mg/kg,p.o.</p><p>in vivo model for assessment of anti-cancer potential of Compounds using syngeneic model</p></li><li><p>14</p><p>Median Tumor Volume</p><p>0</p><p>1000</p><p>2000</p><p>3000</p><p>4000</p><p>5000</p><p>1 3 5 7 9 11 13 15</p><p>Days</p><p>Med</p><p>ian </p><p>Tum</p><p>or V</p><p>olum</p><p>e (m</p><p>m3 )</p><p>Vehicle Control</p><p>Paclitaxel, 5mg/kg, i.v.</p><p>Median %T/C</p><p>0</p><p>25</p><p>50</p><p>75</p><p>100</p><p>1 3 5 7 9 11 13 15Days</p><p>Med</p><p>ian </p><p>%T/</p><p>C</p><p>Paclitaxel, 5mg/kg, i.v.</p><p>In-vivo anticncer activity of Paclitaxel on BALB/c bearing CT-26 colon tumor</p><p>Time to Reach 500mm3</p><p>14</p><p>0</p><p>0 5 10 15</p><p>VehicleControl</p><p>Paclitaxel,5mg/kg, i.v.</p><p>Days</p><p>Syngeneic Models2</p></li><li><p>15</p><p>Syngeneic Models3</p><p>Median Tumor Volume Chart</p><p>0</p><p>500</p><p>1000</p><p>1500</p><p>2000</p><p>2500</p><p>3000</p><p>3500</p><p>1 3 5 7 9 11 13 15Days</p><p>Med</p><p>ian </p><p>Tum</p><p>or V</p><p>olum</p><p>e (m</p><p>m^3</p><p>)</p><p>Vehicle Control</p><p>5-FU, 12mg/kg, i.p.</p><p>Median %T/C</p><p>0</p><p>20</p><p>40</p><p>60</p><p>80</p><p>100</p><p>1 3 5 7 9 11 13 15Days</p><p>Med</p><p>ian </p><p>% T</p><p>/C 5-FU, 12mg/kg, i.p.</p><p>In-vivo anticancer activity of 5-FU on BALB/c bearing CT-26 colon tumor</p><p>Median Tumor Volume Chart</p><p>0</p><p>500</p><p>1000</p><p>1500</p><p>2000</p><p>2500</p><p>3000</p><p>3500</p><p>1 3 5 7 9 11 13 15Days</p><p>Med</p><p>ian </p><p>Tum</p><p>or V</p><p>olum</p><p>e (m</p><p>m^3</p><p>)</p><p>Vehicle Control</p><p>Herbal Formulation,500mg/kg</p><p>Herbal Formulation, 500mg/kg</p><p>0</p><p>10</p><p>20</p><p>30</p><p>40</p><p>50</p><p>60</p><p>70</p><p>80</p><p>90</p><p>100</p><p>1 3 5 7 9 11 13 15Days</p><p>Med</p><p>ian </p><p>% T</p><p>/C</p><p>Anticancer activity of Herbal formulation on BALB/c bearing CT-26 colon tumor</p></li><li><p>16</p><p>in vivo Models leukemia</p><p>in vivo model for assessment of anti-Leukemic potential of Compounds </p><p>Model Assessment of anti-leukemic activity of the compounds in SCID mice</p><p>Test system SCID mice</p><p>Method</p><p> Intravenous inoculation of leukemic cell line Administration of test item and reference item at predetermined </p><p>time Observation of animals for defined time period Observation of animals in satellite group for occurrence of </p><p>chloroma Percentage Change in body weight Survival rate of animals Clinical signs &amp; symptoms Quantification by flow cytometry analysis in bone marrow &amp; </p><p>peripheral blood</p><p>End points Standard surface specific antigen staining - CD45</p><p> Lineage specific antigen staining Histopathology</p></li><li><p>17</p><p>in vivo Models Angiogenesis</p><p>in vivo &amp; In-vivo model for assessment of anti-angiogenesis potential of Compounds</p><p> Currently available Angiogenesis Model</p><p> In-vivo SQ Model in C57BL/6- SQ injection of Matrigel with growth factors</p><p>(FGF &amp; VEGF)- Histopathology, Hb content etc..</p><p> In-vitro Tube formation assay- Culture of HUVEC on Matrigel plate- Estimation of branch point, Tube area and tube length</p><p> In-vitro cell migration Assay- HUVEC Cell- No. of cells migrated towards wound area</p><p> In-vitro VEGF estimation- Incubation of Test compound with various cells (HUVEC etc..)- Estimation of endogenous VEGF production using ELISA</p></li><li><p>18</p><p> Test Principle</p><p> The in-vitro studies are not fully predictive of the metastatic behavior of tumor cells due to</p><p>its lack of interaction with the host. B16F10, a murine melanoma selectively colonize the</p><p>lung after intravenous administration.</p><p> Test System</p><p> C57BL/6 Mice; 6-8week</p><p> Method</p><p> B16F10 cells cultured and injected into the lateral tail vein at the conc. of 5-10X104 in 0.2ml.</p><p> The test animals grouped as per experimental design</p><p> Treatment as per recommended dose &amp; regimen</p><p> Humane sacrifice on 3-4weeks and lung will be weighed &amp; fixed in Bouins solution</p><p> End points</p><p> Lung weight</p><p> Lung Nodule</p><p> Relative melanin content</p><p>Lung Metastasis Model</p><p>Evaluation of Anti metastatic potential by lung colonization assay using murine syngenic Melanoma model</p></li><li><p>19</p><p>Lung Metastasis Model2</p><p>0</p><p>10</p><p>20</p><p>30</p><p>G1, SWFI, 10ml/kg,p.o. S1P ReceptorModulator,60mg/kg,p.o.</p><p>No.</p><p> of l</p><p>ung </p><p>nodu</p><p>les</p><p>Relative Melanin Content</p><p>0</p><p>25</p><p>50</p><p>75</p><p>100</p><p>G1, SWFI, 10ml/kg,p.o. S1P ReceptorModulator,60mg/kg,p.o.</p><p> Weight of Lung</p><p>0</p><p>0.1</p><p>0.2</p><p>0.3</p><p>0.4</p><p>0.5</p><p>0.6</p><p>0.7</p><p>0.8</p><p>0.9</p><p>Untreated XXX, 5mg/kg, i.v Normal lungs</p><p>Wei</p><p>ght o</p><p>f lun</p><p>g (g</p><p>ram</p><p>s)</p><p>*</p><p>*Control</p><p>XXX Receptor </p><p>Modulator, 60mg/kg</p><p>Model under Validation</p><p>Spontaneous Meatstasis Model B16F10 cell injection into the foot pad of C57BL6 Mouse</p></li><li><p>20</p><p>in vivo Models Orthotopic</p><p> Animals Nude and SCID Mice</p><p> Models Colon Liver Breast Spleen Renal</p><p> Currently available Orthotopic Model</p><p> Colon Model- Development of Solid tumor &amp; Metastatic tumor at</p><p>colon, pancreas, lung etc- Tumor growth, Histopathology etc..</p><p>in vivo model for assessment of anti-cancer potential of Compounds using orthotopic model</p></li><li><p>21</p><p>Mechanistic Studies</p></li><li><p>22</p><p>Sorting Endosomes</p><p>ACTIVE TARGETING IN CYTOPLASM</p><p>Early Endosomes</p><p>Free Paclitaxel</p><p>6 Tubulin Stabilization</p><p>Nanoparticle micelles containing Paclitaxel</p><p>1</p><p>NIPAM based Micellar polymers with LCST of 52-60 C in plasma</p><p>2Targeting through EPR effect</p><p>3Polymer aided higher cellular </p><p>uptake</p><p>4</p><p>Intracellular trafficking through endosomal lysosomal compartment</p><p>5 Drug Release from micelles at low pH conditions in Endo-</p><p>lysosomal compartment</p><p>Early Endosomes</p><p>7 Apoptosis</p><p>MECHANISTIC PROFILING STRATEGIES</p><p>Nanoxel - A novel Nanopolymer based tumor targeted delivery system for Paclitaxel - ASCO 2008</p></li><li><p>23</p><p>Complete repertoire of Screens for PCD to enable selection of Proapoptotic molecules</p><p> Apoptotic pathways</p><p> Death receptor and mitochondrial pathway</p><p> Parameters</p><p> Transmembrane Mitochondrial permeability</p><p> Cell Cycle</p><p> Reactive oxygen species (ROS) quantitation</p><p> Levels of pro-apoptotic and anti-apoptotic proteins</p><p> Ras-ERK kinases</p><p> Caspase 3 activation</p><p> PARP cleavage</p><p> DNA fragmentation</p><p> Micronuclei staining</p><p>Apoptosis Screens</p></li><li><p>24</p><p>Models for Clinical Toxicities</p></li><li><p>25</p><p>in vivo Model for Cardiotoxicity</p><p>Preclinical Models to compare lead molecules/ formulations to assess cardiac safety</p><p> Model</p><p> Wistar rat/ FVB mice</p><p> Parameters</p><p> Serum markers</p><p> CK-MB </p><p> LDH </p><p> Validated with Dex.</p><p> Myocardial markers</p><p> SOD enzyme </p><p> Catalase enzyme </p><p> Reduced Glutathione</p><p> Glutathione peroxidase</p><p> Lipid Peroxidation</p><p> Histopathology</p><p> Light microscopy</p><p> Electron microscopy</p><p> Heart wt &amp; Body wt. ratio.</p><p>Discrete markers of toxicity in cardiac biopsies</p><p>CK-MB</p><p>Wistar rat</p><p>Biochemical analysis &amp; Histopathology</p></li><li><p>26</p><p>in vivo Model for Gastrointestinal Safety</p><p>Preclinical in vivo models to compare lead molecules / formulations for their potential to cause Gastrointestinal toxicity during Clinical development</p><p> Validated Screens</p><p> in vivo:</p><p> Adult Wistar rat FOLFOX induced models</p><p> Parameters</p><p> External analysis of scores</p><p> Oral Mucositis Index (OMI)</p><p> Erythema</p><p> Ulceration</p><p> Internal analysis of scores</p><p> Number of ulcers in tongue</p><p> % Ulcerative area in tongue</p><p> Histopathological evaluation</p><p> Loss of keratinized filliform papillae</p><p> Decrease in mucosal thickness </p><p> Necrotic fibrinoid material</p><p> Inflammatory cells </p><p> Active granulation tissue</p><p>External Stomatitis</p><p>Ulcer scoring</p><p>Tongue Histology</p></li><li><p>27</p><p> Validated Screens in vitro:</p><p> Murine model - Hematopoeitic progenitor cellsfrom Bone marrow of C57/BL6 mice</p><p> Human model - Cord Blood cells </p><p> Parameters</p><p> Scoring of CFU-GM colonies</p><p> Determination of IC 50 values Inhibition of cell p...</p></li></ul>