cu(i)-catalyzed 1 3 dipolarcatalyzed 1,3 dipolar ...· cu(i)-catalyzed 1 3 dipolarcatalyzed 1,3...
Post on 12-Aug-2018
222 views
Embed Size (px)
TRANSCRIPT
Cu(I)-Catalyzed 1 3 DipolarCu(I) Catalyzed 1,3 Dipolar Cycloadditions
Anne-Marie DechertAnne-Marie DechertFeb. 7, 2008
Outline
Introduction to 1 3 Dipolar Cycloadditions Introduction to 1,3 Dipolar Cycloadditions Cu(I)-catalyzed 1,3 Dipolar Cycloaddition Between Azides and
Alkynes Cascade Reactions Extension of the Original Methodology
S th i f L t Synthesis of Lactams Kinugasa Reaction
1 3 Dipolar Cycloadditions Between Azomethine Ylides and Activated1,3 Dipolar Cycloadditions Between Azomethine Ylides and Activated Alkenes
1, 3 Dipolar Cycloadditions
AB
C
D E
AB
C
D E
Typical 1,3 Dipoles
R2C N O R2C N O R2C O O R2C O ONitrones Carbonyl Oxide2 R2
R
R2C NR
CHR2 R2C NR
CHR2
R2C O O R2C O ONitrones
Azomethine Ylide
Ca bo y O de
R2C N N R2C N N Diazoalkane
RC N O RC N O
RN N N RN N N
Nitrile Oxide
Azide
RC N CHR2 RC N CR2
RC N NR RC N NR
Nitrile Ylide
Nitrile Imine
Typical Dipolarophiles
R2C N R Imine
RC CR
R2C CR2
RN O
Alkyne
Alkene
Nitroso
Padwa, A.; ed., 1,3-Dipolar Cycloaddition Chemistry, John Wiley & Sons, New York, 1984.
RN NR Azo
Stereospecificity
HHPhH
PhC N N PhPh
H
Ph
H
H
Ph
Ph
HN
N PhPh
H Ph
NN PhPh
H H
- Stereospecific syn addition with respect to dipolarophile
Ph H Ph Ph
H CH3HN
NPhH N
NHPh
N NHCPh
3
H3CO2C CO2CH3
N
CO2CH3H3CO2CCH3H
Ph N
CO2CH3H3CO2CCH3H
H
Huisgen, R.; Seidel, G.; Wallibillich, G.; Knupfer, H. Tetrahedron 1962, 17, 3.Huisgen, R.; Eberhard, P. Tetrahedron Lett. 1971, 4743.
Regioselectivity
- Dominated by Frontier Molecular Orbital (FMO) interactions- Sterics can also play a role
C C
E
AB
C
E
AB
D
E
D
E
HOMOdipole - LUMOdipolarophile LUMOdipole - HOMOdipolarophiletypical for an electron def icient dipolarophile typical f or an electron rich dipolarophile
If the energies of the two interactions are similar, both reactions can occur.
Houk, K.; Sims, J.; Due, B.; Strozier, R.; George, J. J. Am. Chem. Soc. 1973, 95, 7287.
g ,
1,3 Dipolar Cycloadditions of Azides and Alkynes
The Cu(I) Catalyzed 1,3 Dipolar Cycloadditions of Azides and Alkynes
C CHR1 N N N R2N
N NR2cat. Cu(I)
R1
NOH NNO
Ph
NPhN N
Ph
NN N
Ph
NN N
HOO
N NPh
NEt2
82% 84%88% 90%
NN N
SO
O
H2N NN NPh
HO NNN
HOOH
NHNH
H2NHO HO
Rostovtsev, V.; Green, L.; Fokin, V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.Tornoe, C.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.
91% 84% 94%
Generation of The Cu(I) Catalyst
C CHR1 N N N R2N
N NR2
Cu(I) salt1.0 eq. 2,6-lutidine
Formation of Byproducts
RR diacetylenesC CHR N N N R2 N N
R1
Cu(I) salt = CuOTf.C6H6, CuBr, CuI
1.0 eq. 2,6 lutidine
5- hydroxyltriazolesN
N NR1
HO R( ) 6 6
bistriazoles
Cu(II) salt (0 25 2 0 mol %)
NN
N
R1
R
N N
N
R1
R
Cu(II) salt (0.25-2.0 mol %)Na ascorbate and/orascorbic acid (5-10 mol %)C CHR1 N N N R2
NN N
R1
R2
Click Chemistry
NN NR
2
- high yielding- wide in scope- stereospecific- inoffensive byproducts- simple reaction conditions
C CHR1 N N N R2 copper metalN
R1
simple reaction conditions
Rostovtsev, V.; Green, L.; Fokin, V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.Kolb, H.; Finn, M.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004.Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. J. Am. Chem. Soc. 2005, 127, 210.
A Stepwise Mechanism is Proposed
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. J. Am Chem. Soc. 2005, 127, 210.
The Unexpected Formation of Trisubstituted Triazoles
OMH
CuI, rt, 1h, air
OOH
N NN
OMeMeO
OOH
N3
OMeH
CuI, rt, 1h, airO
OHN N
N
OMe
OMe
Unexpected Result
OMe
p
Perhaps Glaser Coupling:
OOH
N3CuI, rt, 1h, air
MeO OH
OMeMeO
OH
OMe
MeO
Alternative Pathway:
O N NN
OOH
N NN
OMe
H
CuI, rt, 1h, air
OH
OMeMeO
Gerard, B.; Ryan, J.; Beeler, A.; Porco, J. Tetrahedron 2006, 62, 6405.
NOMe
H O N NN
Mechanistic Rational for the Formation of Trisubstituted Triazoles
N3Cu(CH3CN)4PF6(0.2 eq.)
ligand (0 2 eq )
MeMe
MeN
NH
Me
Me
Me
Me
HMe
ligand (0.2 eq.)DIEA (1 eq.)NMO (0.1 eq.)rt/air
NN
N NN
NN
NMe
Me
MeMe
Ligands
Proposed Mechanism:
Ligands
Proposed Mechanism:
R1LnCu R1L CHR1
HR1DIEA R1L C
R1
II
NNN
R2N
NNR2
RLnCu
B-H
HR DIEA
NNN
R2
RLnCuII
1.[O]2 red elimB H
BwithoutDIEA
R1H
2. red. elim
R1R1
Gerard, B.; Ryan, J.; Beeler, A.; Porco, J. Tetrahedron 2006, 62, 6405.
N NNR2
R1
NNN
R2
R
The Use of N-Sulfonyl Azides as 1,3 Dipoles
Finzi, P.; Grunanger, P. Tetrahedron Lett. 1963, 4, 1839.Yoo, E.; Ahlquist, M.; Kim, S.; Bae, I.; Fokin, V.; Sharpless, K. B.; Chang, S. Angew. Chem. Int. Ed. 2007, 46, 1730.Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038.
Proposed Route to Sulfonamides
Cu(I), 2 mol %TBTA, 2 mol %Na ascorbate 4 mol %HC C R1
BnN
NN NNNa ascorbate 4 mol %
NaHCO3, 1 eq
OR1
HN
SO2
R
N N N SO2R
N NBn
BnN NN
TBTA =
HC C R1[Cu]
NN N SO2R
-N2R1 N
[Cu]
SO2R
R1
N N N SO2R-H+
[Cu]R1
N
R1NSO2R
H H2O ONH
O2SR
NSO2R
[Cu]
NN
R1
Cassidy, M.; Raushel, V.; Fokin, V. Angew. Chem. Int. Ed. 2006, 118, 3154.Cho S.; Yoo, E.; Bae, I.; Chang, S. J. Am. Chem. Soc. 2005, 127, 16047.
A Cu(I) Catalyzed Cascade to Form Azetidinimines
Ligand t[h] trans-A: cis-A: B
2,6lutidine 3 80:13:7
HC C R1NPh
N N N SO2Tol
Cu(I), 10 mol %ligand (1 eq.)
N
NSO2Tol
R1 NN N SO2Tol
pyridine 3 95:5:0
TBTA
Reaction Scope: the Imine Component
SO2Tol
HC C PhNR2
R1N N N SO2Tol
Cu(I), 10 mol %pyridine, 2 eq.
MeCN, rt N
NSO2Tol
PhPh
R1
R1 R2Yield(%) trans:cis
4-FC6H4 Ph 87 95:5
4-(MeO)C6H4 Ph 79 95:5
Ph SO2Ph 5 NR
CO2Et Ph 53 5:95
CO Et 4 (MeO)C H 63 5:95CO2Et 4-(MeO)C6H4 63 5:95
N N N S NO N N N S MO O O O
Fokin, V.; Whiting, M. Angew. Chem. Int. Ed. 2006, 118, 3157.
N N N S NO2 N N N S Br N N N S IN N N S MeO O O O
Synthesis of N-Sulfonyl-1,2,3-Triazoles
Yoo, E.; Ahlquist, M.; Kim, S.; Bae, I.; Fokin,V.; Sharpless, K. B.; Sukbo, C. Angew. Chem. Int. Ed. 2007, 46, 1730.
Fus Extension to Azomethine Imine Dipoles
Fu, G.; Shintani, R. J. Am. Chem. Soc. 2003, 125, 10778.
Asymmetric Extension
NN
O
CO2Et
5% CuI0.5 eq. Cy2NMe
NN
O
CO2Et5.5% ligand A
PPh2PPh2
= A
H Ph 1.2 eq. Ph% g
Asymmetric ExtensionO O
NN
O
H PhCO2Et
1 2
5% CuI0.5 eq. Cy2NMe
NN
O
CO2Et
Ph5.5% ligand A = A
PMeMe
MeMeO
NiPrFe
1.2 eq. Ph
98%, 90% ee
MeMe
O5% CuI
N
OP
MeMeO
NtBu
NN
H PhCO2Et
1.2 eq.
0.5 eq. Cy2NMeNN
CO2Et
Ph5.5% ligand B
= BMe
MeMe
MeN
Fe
100%, 58% ee
NN
O
H PhCO2Et
5% CuI0.5 eq. Cy2NMe
NN
O
CO2Et
Ph5.5% ligand C MeMe
P
MeMe
N
O
iPrFe= C
Fu, G.; Shintani, R. J. Am. Chem. Soc. 2003, 125, 10778.
H Ph1.2 eq. Ph Me
MeMe
100%, 80% ee
Reaction Scope: The Azomethine Imine Component
Fu, G.; Shintani, R. J. Am. Chem. Soc. 2003, 125, 10778.
Reaction Scope: The Alkyne Component
Me
NN
O
H PhR
5% CuI0.5 eq. Cy2NMe
NN
O
R
Ph5.5% ligand
PMe
Me
Me
MeMeO
NiPrFe
H Ph 1.2 eq. Ph MeMe
Me
O
NN
Ph CO2Et NN
O
NMe
Ph
77%, 88% ee
Ph
100%, 94% ee
O
NN
O
NN
O
Ph
73%, 88% ee
Ph
63%, 74% ee
Fu, G.; Shintani, R. J. Am. Chem. Soc. 2003, 125, 10778.- erosion of regioselectivity observed for electron rich alkynes
Application to Kinetic ResolutionApplication to Kinetic Resolution
Downey, W.; Fu, G.; Suarez, A. J. Am. Chem. Soc. 2005, 127, 11245.
Limitations to the Kinetic Resolution of Azomethine Imine Dipoles
Downey, W.; Fu, G.; Suarez, A. J. Am. Chem. Soc. 2005, 127, 11245.
Other Cu(I) Catalyzed 1,3 Dipolar Cycloadditions
Synthesis of Pyrazoles: A Direct Approach
i TsNHNH2 NN
2R1
O
HR1
i. TsNHNH2MeCN, rt, 3h
ii. 5M NaOH
N
R1
R2
NNH
R25
Recommended