ctl.sc0x - supply chain analytics - amazon web … key concept... · ... supply chain analytics key...

61
V1 Spring 2017CTL.SC0x – Supply Chain Analytics Key ConceptsMITx MicroMasters in Supply Chain Management MIT Center for Transportation & LogisticsCambridge, MA 02142 USA [email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 1 CTL.SC0x - Supply Chain Analytics Key Concepts Document This document contains the Key Concepts for the SC0x course. The document is based on a past run of the course and does not include all the material that will be included in this course; please check back for newer versions of the document throughout the course. These are meant to complement, not replace, the lesson videos and slides. They are intended to be references for you to use going forward and are based on the assumption that you have learned the concepts and completed the practice problems. The draft was created by Dr. Alexis Bateman in the Spring of 2017. This is a draft of the material, so please post any suggestions, corrections, or recommendations to the Discussion Forum under the topic thread “Key Concept Documents Improvements.” Thanks, Chris Caplice, Eva Ponce and the SC0x Teaching Community Spring 2017 v1

Upload: phamcong

Post on 19-Aug-2018

230 views

Category:

Documents


1 download

TRANSCRIPT

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 1

CTL.SC0x-SupplyChainAnalytics

KeyConceptsDocumentThisdocumentcontainstheKeyConceptsfortheSC0xcourse.Thedocumentisbasedonapastrunofthecourseanddoesnotincludeallthematerialthatwillbeincludedinthiscourse;pleasecheckbackfornewerversionsofthedocumentthroughoutthecourse.Thesearemeanttocomplement,notreplace,thelessonvideosandslides.Theyareintendedtobereferencesforyoutousegoingforwardandarebasedontheassumptionthatyouhavelearnedtheconceptsandcompletedthepracticeproblems.ThedraftwascreatedbyDr.AlexisBatemanintheSpringof2017.Thisisadraftofthematerial,sopleasepostanysuggestions,corrections,orrecommendationstotheDiscussionForumunderthetopicthread“KeyConceptDocumentsImprovements.”Thanks,ChrisCaplice,EvaPonceandtheSC0xTeachingCommunitySpring2017v1

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 2

TableofContentsSupplyChainIntro................................................................................................................................3

Models,Algebra,&Functions...............................................................................................................6Models.....................................................................................................................................................6Functions..................................................................................................................................................6QuadraticFunctions.................................................................................................................................7ConvexityandContinuity.........................................................................................................................8

Optimization........................................................................................................................................9UnconstrainedOptimization....................................................................................................................9ConstrainedOptimization......................................................................................................................11LinearPrograms.....................................................................................................................................11IntegerandMixedIntegerPrograms.....................................................................................................14

AdvancedOptimization......................................................................................................................18NetworkModels.....................................................................................................................................18Non-LinearOptimization........................................................................................................................20

AlgorithmsandApproximations.........................................................................................................23Algorithms..............................................................................................................................................23ShortestPathProblem...........................................................................................................................24VehicleRoutingProblem........................................................................................................................25ApproximationMethods........................................................................................................................29

DistributionsandProbability..............................................................................................................36Probability..............................................................................................................................................36Summarystatistics.................................................................................................................................37ProbabilityDistributions.........................................................................................................................40

Regression..........................................................................................................................................47MultipleRandomVariables....................................................................................................................47InferenceTesting....................................................................................................................................49OrdinaryLeastSquaresLinearRegression.............................................................................................54

Simulation..........................................................................................................................................58Simulation..............................................................................................................................................58StepsinaSimulationStudy....................................................................................................................58

References.........................................................................................................................................61

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 3

SupplyChainIntro

SummarySupplyChainBasicsisanoverviewoftheconceptsofSupplyChainManagementandlogistics.Itdemonstratesthatproductsupplychainsasvariedasbananastowomen’sshoestocementhavecommonsupplychainelements.Therearemanydefinitionsofsupplychainmanagement.Butultimatelysupplychainsarethephysical,financial,andinformationflowbetweentradingpartnersthatultimatelyfulfillacustomerrequest.Theprimarypurposeofanysupplychainistosatisfyacustomer’sneedattheendofthesupplychain.Essentiallysupplychainsseektomaximizethetotalvaluegeneratedasdefinedas:theamountthecustomerpaysminusthecostoffulfillingtheneedalongtheentiresupplychain.Allsupplychainsincludemultiplefirms.

KeyConceptsWhileSupplyChainManagementisanewterm(firstcoinedin1982byKeithOliverfromBoozAllenHamiltoninaninterviewwiththeFinancialTimes),theconceptsareancientanddatebacktoancientRome.Theterm“logistics”hasitsrootsintheRomanmilitary.Additionaldefinitions:

• Logisticsinvolves…“managingtheflowofinformation,cashandideasthroughthecoordinationofsupplychainprocessesandthroughthestrategicadditionofplace,periodandpatternvalues”–MITCenterforTransportationandLogistics

• “SupplyChainManagementdealswiththemanagementofmaterials,informationandfinancialflowsinanetworkconsistingofsuppliers,manufacturers,distributors,andcustomers”-StanfordSupplyChainForum

• “Callitdistributionorlogisticsorsupplychainmanagement.Bywhatevernameitisthesinuous,gritty,andcumbersomeprocessbywhichcompaniesmovematerials,partsandproductstocustomers”–Fortune1994

Logisticsvs.SupplyChainManagementAccordingtotheCouncilofSupplyChainManagementProfessionals…

• Logisticsmanagementisthatpartofsupplychainmanagementthatplans,implements,andcontrolstheefficient,effectiveforwardandreverseflowandstorageofgoods,servicesandrelatedinformationbetweenthepointoforiginandthepointofconsumptioninordertomeetcustomers'requirements.

• Supplychainmanagementencompassestheplanningandmanagementofallactivitiesinvolvedinsourcingandprocurement,conversion,andalllogisticsmanagementactivities.Importantly,italsoincludescoordinationandcollaborationwithchannelpartners,whichcanbesuppliers,intermediaries,thirdpartyserviceproviders,andcustomers.Inessence,supplychainmanagementintegratessupplyanddemandmanagementwithinandacrosscompanies.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 4

SupplyChainPerspectivesSupplychainscanbeviewedinmanydifferentperspectivesincludingprocesscycles(Chopra&Meindl2013)andtheSCORmodel(SupplyChainCouncil).TheSupplyChainProcesshasfourPrimaryCycles:CustomerOrderCycle,ReplenishmentCycle,ManufacturingCycle,andProcurementCycle,Noteverysupplychaincontainsallfourcycles.TheSupplyChainOperationsReference(SCOR)Modelisanotherusefulperspective.Itshowsthefourmajoroperationsinasupplychain:source,make,deliver,plan,andreturn.(SeeFigurebelow)

Additionalperspectivesinclude:

• GeographicMaps-showingorigins,destinations,andthephysicalroutes.• FlowDiagrams–showingtheflowofmaterials,information,andfinancebetween

echelons.• Macro-ProcessorSoftware–dividingthesupplychainsintothreekeyareasof

management:SupplierRelationship,Internal,andCustomerRelationship.• TraditionalFunctionalRoles–wheresupplychainsaredividedintoseparatefunctional

roles(Procurement,InventoryControl,Warehousing,MaterialsHandling,OrderProcessing,Transportation,CustomerService,Planning,etc.).Thisishowmostcompaniesareorganized.

• SystemsPerspective–wheretheactionsfromonefunctionareshowntoimpact(andbeimpactedby)otherfunctions.Theideaisthatyouneedtomanagetheentiresystemratherthantheindividualsiloedfunctions.Asoneexpandsthescopeofmanagement,therearemoreopportunitiesforimprovement,butthecomplexityincreasesdramatically.

SupplyChainasaSystemItisusefultothinkofthesupplychainasacompletesystem.Thismeansoneshould:

Figure:SCORModel.Source:SupplyChainCouncil

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 5

• Looktomaximizevalueacrossthesupplychainratherthanaspecificfunctionsuchastransportation.

• Notethatwhilethisincreasesthepotentialforimprovement,complexityandcoordinationrequirementsincreaseaswell.

• Recognizenewchallengessuchas:o Metrics—howwillthisnewsystembemeasured?o Politicsandpower—whogainsandlosesinfluence,andwhataretheeffectso Visibility—wheredataisstoredandwhohasaccesso Uncertainty—compoundsunknownssuchasleadtimes,customerdemand,

andmanufacturingyieldo GlobalOperations—mostfirmssourceandsellacrosstheglobe

Supplychainsmustadaptbyactingasbothabridgeandashockabsorbertoconnectfunctionsaswellasneutralizedisruptions.

LearningObjectives• Gainmultipleperspectivesofsupplychainstoincludeprocessandsystemviews.• Identifyphysical,financial,andinformationflowsinherenttosupplychains.• Recognizethatallsupplychainsaredifferent,buthavecommonfeatures.• Understandimportanceofanalyticalmodelstosupportsupplychaindecision-making.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 6

Models,Algebra,&Functions

SummaryThisreviewprovidesanoverviewofthebuildingblockstotheanalyticalmodelsusedfrequentlyinsupplychainmanagementfordecision-making.Eachmodelservesarole;italldependsonhowthetechniquesmatchwithneed.First,aclassificationofthetypesofmodelsoffersperspectivesonwhentheuseamodelandwhattypeofoutputtheygenerate.Second,areviewofthemaincomponentsofmodels,beginningwithanoverviewoftypesoffunctions,thequadraticandhowtofinditsroot(s),logarithms,multivariatefunctions,andthepropertiesoffunctions.These“basics”willbeusedcontinuouslythroughouttheremainderofthecourses.

KeyConcepts

ModelsDecision-makingisatthecoreofsupplychainmanagement.Analyticalmodelscanaidindecision-makingtoquestionssuchas“whattransportationoptionshouldIuse?”or“HowmuchinventoryshouldIhave?”Theycanbeclassifiedintoseveralcategoriesbasedondegreeofabstraction,speed,andcost.Modelscanbefurthercategorizedintothreecategoriesontheirapproach:

• Descriptive–whathashappened?• Predictive–whatcouldhappen?• Prescriptive–Whatshouldwedo?

FunctionsFunctionsareonethemainpartsofamodel.Theyare“arelationbetweenasetofinputsandasetofpermissibleoutputswiththepropertythateachinputisrelatedtoexactlyoneoutput.”(Wikipedia)

y=f(x)

LinearFunctionsWithLinearfunctions,“ychangeslinearlywithx.”Agraphofalinearfunctionisastraightlineandhasoneindependentvariableandonedependentvariable.(Seefigurebelow)

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 7

Figure:ComponentsofaLinearFunction**Typicallyconstantsaredenotesbylettersfromthestartofthealphabet,variablesarelettersfromtheendofthealphabet.

QuadraticFunctions

Figure:ComponentsofaQuadraticFunction Figure:GraphofQuadraticFunctions

RootsofQuadraticAroot,orsolution,satisfiesthequadratic.Theequationcanhave2,1,or0roots.Therootsmustbearealnumber.Therearetwomethodsforfindingroots:

Quadratic Functions

• When a>0, the function is convex (or concave up)• When a<0, the function is concave down

13

y =ax2 +bx+c

dependent variable

This is the function, f(x).

constantsindependent variable

Parabola - Polynomial function of degree 2 where a, b, and c are numbers and a≠0

a>0

x

y

x

y a<0

Aquadraticfunctiontakestheformofy=ax2+bx+c,wherea,b,andcarenumbersandarenotequaltozero.Inagraphofaquadraticfunction,thegraphisacurvethatiscalledaparabola,formingtheshapeofa“U”.(SeeFigures)

Quadraticequation

Factoring:Findr1andr2suchthatax2+bx+c=a(x-r1)(x-r2)

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 8

OtherCommonFunctionalFormsPowerFunctionApowerfunctionisafunctionwherea≠ zero,isaconstant,andbisarealnumber.Theshapeofthecurveisdictatedbythevalueofb.

y=f(x)=axbExponentialFunctionsExponentialfunctionshaveveryfastgrowth.Inexponentialfunctions,thevariableisthepower.

y=abx

MultivariateFunctionsFunctionwithmorethanoneindependentxvariable(x1,x2,x3).

ConvexityandContinuityPropertiesoffunctions:

• Convexity:Doesthefunction“holdwater”?• Continuity:Functioniscontinuousifyoucandrawitwithoutliftingpenfrompaper!

LearningObjectives• Recognizedecision-makingiscoretosupplychainmanagement.• Gainperspectivesonwhentouseanalyticalmodels.• Understandbuildingblocksthatserveasthefoundationtoanalyticalmodels.

Euler’snumber,ore,isaconstantnumberthatisthebaseofthenaturallogarithm.e=2.7182818…

Y=ex

Logarithms:Alogarithmisaquantityrepresentingthepowertowhichafixednumbermustberaisedtoproduceagivennumber.Itistheinversefunctionofanexponential.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 9

Optimization

SummaryThisisanintroductionandoverviewofoptimization.Itstartswithanoverviewofunconstrainedoptimizationandhowtofindextremepointsolutions,keepinginmindfirstorderandsecondorderconditions.Italsoreviewsrulesinfunctionssuchasthepowerrule.Nextthelessonreviewconstrainedoptimizationthatsharessimilarobjectivesofunconstrainedoptimizationbutaddsadditionaldecisionvariablesandconstraintsonresources.Tosolveconstrainedoptimizationproblems,thelessonintroducesmathematicalprogramsthatarewidelyusedinsupplychainformanypracticessuchasdesigningnetworks,planningproduction,selectingtransportationproviders,allocatinginventory,schedulingportandterminaloperations,fulfillingorders,etc.Theoverviewoflinearprogrammingincludeshowtoformulatetheproblem,howtographicallyrepresentthem,andhowtoanalyzethesolutionandconductasensitivityanalysis.Inrealsupplychains,youcannot.5bananasinanorderorshipment.Thismeansthatwemustaddadditionalconstraintsforintegerprogrammingwhereeitherallofthedecisionvariablesmustbeintegers,orinamixedintegerprogrammingwheresome,butnotall,variablesarerestrictedtobeaninteger.Wereviewthetypesofnumbersyouwillencounter.Thenweintroduceintegerprogramsandhowtheyaredifferent.Wethenreviewthestepstoformulatinganintegerprogramandconcludewithconditionsforworkingwithbinaryvariables.

KeyConcepts

UnconstrainedOptimizationUnconstrainedoptimizationconsiderstheproblemofminimizingormaximizinganobjectivefunctionthatdependsonrealvariableswithnorestrictionsontheirvalues.Extremepoints

• Extremepointsarewhenafunctiontakesonanextremevalue-avaluethatismuchsmallerorlargerincomparisontonearbyvaluesofthefunction.

• Theyaretypicallyaminoramax(eitherglobalorlocal),orinflectionpoints.• Extremepointoccurwhereslope(orrateofchange)offunction=0.• TestforGlobalvs.Local

o Globalmin/max–forwholerangeo Localmin/max–onlyincertainarea

FindingExtremePointSolutionsUsedifferentialcalculustofindextremepointsolutions,lookforwhereslopeisequaltozero

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 10

Tofindtheextremepoint,thereisathree-stepprocess:

1. Takethefirstderivativeofyourfunction2. Setitequaltozero,and3. SolveforX*,thevalueofxatextremepoint.

ThisiscalledtheFirstOrderCondition.Instantaneousslope(orfirstderivative)occurswhen:

• dy/dxisthecommonform,wheredmeanstherateofchange.

TheProductRule:Iffunctionisconstant,itdoesn’thaveanyeffect.

y = f (x) = a à y ' = f '(x) = 0 PowerRuleiscommonlyusedforfindingderivativesofcomplexfunctions.

y = f (x) = axn à y ' = f '(x) = anxn−1

FirstandSecondOrderConditionsInordertodeterminex*atthemax/minofanunconstrainedfunction

• FirstOrder(necessary)condition–theslopemustbe0f’(x*)=0

• Secondorder(sufficiency)condition-determineswhereextremepointisminormaxbytakingthesecondderivative,f”(x).

o Iff”(x)>0extremepointisalocalmino Iff”(x)<0extremepointisalocalmaxo Iff”(x)=0itisinconclusive

• Specialcaseso Iff(x)isconvex–>globalmino Iff(x)isconcave–>globalmax

δ (delta)=rateofchange.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 11

ConstrainedOptimizationSimilaritieswithunconstrainedoptimization

• Requiresaprescriptivemodel• Usesanobjectivefunction• Solutionisanextremevalue

Differences• Multipledecisionvariables• Constraintsonresources

MathProgramming:Mathprogrammingisapowerfulfamilyofoptimizationmethodsthatiswidelyusedinsupplychainanalytics.Itisreadilyavailableinsoftwaretools,butisonlyasgoodasthedatainput.Itisthebestwaytoidentifythe“best”solutionunderlimitedresources.SometypesofmathprogramminginSCM:

• LinearProgramming(LPs)• IntegerProgramming• MixedIntegerandLinearProgramming(MILPs)• Non-linearProgramming(NLPs)

LinearPrograms1.DecisionVariables

• Whatareyoutryingtodecide?• Whataretheirupperorlowerbounds?

2.Formulateobjectivefunction• Whatarewetryingtominimizeormaximize?• Mustincludethedecisionvariablesandtheformofthefunctiondeterminesthe

approach(linearforLP)3.Formulateeachconstraint

• Whatismyfeasibleregion?Whataremylimits?• Mustincludethedecisionvariableandwillalmostalwaysbelinearfunctions

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 12

SolutionThesolutionofalinearprogramwillalwaysbeina“corner”oftheFeasibleRegion:

• Linearconstraintsformaconvexfeasibleregion.• Theobjectivefunctiondeterminesinwhichcorneristhesolution.

TheFeasibleRegionisdefinedbytheconstraintsandtheboundsonthedecisionvariables(SeeFigure).

AnalysisoftheResultsSometimestheoriginalquestionistheleastinterestingone,itisoftenmoreinterestingtodivealittledeeperintothestructureoftheproblem.AdditionalQuestions:

• AmIusingallofmyresources?• WheredoIhaveslack?

Figure:LinearProgramExample

Figure:GraphicalRepresentationoftheFeasibleRegion

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 13

• WhereIamconstrained?• Howrobustismysolution?

SensitivityAnalysis:whathappenswhendatavaluesarechanged.

• ShadowPriceorDualValueofConstraint:Whatisthemarginalgainintheprofitabilityforanincreaseofoneontherighthandsideoftheconstraint?

• SlackConstraint–Foragivensolution,aconstraintisnotbindingiftotalvalueofthelefthandsideisnotequaltotherighthandsidevalue.Otherwiseitisabindingconstraint

• BindingConstraint–Aconstraintisbindingifchangingitalsochangestheoptimalsolution

AnomaliesinLinearProgramming

• AlternativeorMultipleOptimalSolutions(seeFigure)

• RedundantConstraints-DoesnoteffecttheFeasibleRegion;itisredundant.• Infeasibility-TherearenopointsintheFeasibleRegion;constraintsmaketheproblem

infeasible.

Figure:AlternativeofMultipleOptimalSolutions

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 14

IntegerandMixedIntegerProgramsAlthoughinsomecasesalinearprogramcanprovideanoptimalsolution,inmanyitcannot.Forexampleinwarehouselocationselection,batchorders,orscheduling,fractionalanswersarenotacceptable.Inaddition,theoptimalsolutioncannotalwaysbefoundbyroundingthelinearprogramsolution.Thisiswhereintegerprogramsareimportant.However,integerprogramsolutionsareneverbetterthanalinearprogramsolution,theylowertheobjectivefunction.Ingeneral,formulatingintegerprogramsismuchharderthanformulatinglinearprogram.

• Toidentifythesolutioninintegerprograms–theFeasibleRegionbecomesacollectionofpoints,itisnolongeraconvexhull(seeFigure)

• Inaddition,cannotrelyon“corner”solutionsanymore–thesolutionspaceismuchbigger

FormulatingIntegerProgramsToformulateanintegerprogram,wefollowthesameapproachforformulatinglinearprograms–variables,constraintsandobjective.Theonlysignificantchangeistoformulatingintegerprogramsisinthedefinitionofthevariables.SeeexampleformulationinFigurebelowwithintegerspecification.

Numbers• N=Natural,WholeorCounting

numbers1,2,3,4• Z-Integers=-3,-2,-1,0,1,2,3• Q=RationalNumber,continuous

numbers=Anyfactionofintegers½,-5/9

• R=RealNumbers=allRationalandIrrationalNumbers,ex:e,pie,e

• BinaryIntegers=0,1

Massenumeration-Unlikelinearprograms,integerprogramscanonlytakeafinitenumberofintegervalues.Thismeansthatoneapproachistoenumerateallofthesepossibilities–calculatingtheobjectivefunctionateachoneandchoosingtheonewiththeoptimalvalue.Astheproblemsizeincreases,thisapproachisnotfeasible.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 15

BinaryVariablesSupposeyouhadthefollowingformulationofaminimizationproblemsubjecttocapacityatplantsandmeetingdemandforindividualproducts:

Wecouldaddbinaryvariablestothisformulationtobeabletomodelseveraldifferentlogicalconditions.Binaryvariablesareintegervariablesthatcanonlytakethevaluesof0or1.Generally,apositivedecision(dosomething)isrepresentedby1andthenegativedecision(donothing)isrepresentedbythevalueof0.Introducingabinaryvariabletothisformulation,wewouldhave:

Min z = cij xijj∑i∑s.t.

xiji∑ ≤C j ∀j

xijj∑ ≥ Di ∀i

xij ≥ 0 ∀ij

Maxz(XHL,XSL)=8XHL+20XSL

XHL+XSL≤11

3XHL+2XSL≤30

XHL+3XSL≤28

XHL,XSL≥0Integers

s.t.

Plant

Add.A

Add.B

Figure:Formulatinganintegerprogram

where:xij=Numberofunitsofproductimadeinplantjcij=CostperunitofproductimadeatplantjCj=CapacityinunitsatplantjDi=Demandforproductiinunits

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 16

Notethatthenotonlywehaveaddedthebinaryvariableintheobjectivefunction,wehavealsoaddedanewconstraint(thethirdone).Thisisknownasalinkingconstraintoralogicalconstraint.Itisrequiredtoenforceanif-thenconditioninthemodel.Anypositivevalueofxijwillforcetheyjvariabletobeequaltoone.The“M”valueisabignumber–itshouldbeassmallaspossible,butatleastasbigasthevaluesofwhatsumofthexij’scanbe.Therearealsomoretechnicaltricksthatcanbeusedtotightenthisformulation.WecanalsointroduceEither/OrConditions-wherethereisachoicebetweentwoconstraints,onlyoneofwhichhastohold;itensuresaminimumlevel,Lj,ifyj=1.

xiji∑ −My j ≤ 0 ∀j xiji∑ − Lj y j ≥ 0 ∀j

Forexample:xiji∑ ≤C j ∀j

xijj∑ ≥ Di ∀i

xiji∑ −My j ≤ 0 ∀j

WeneedtoaddaconstraintthatensuresthatifweDOuseplantj,thatthevolumeisbetweentheminimumallowablelevel,Lj,andthemaximumcapacity,Cj.ThisissometimescalledanEither-Orcondition.

Min z = cij xijj∑i∑ + f j y jj∑s.t.

xiji∑ ≤C j ∀j

xijj∑ ≥ Di ∀i

xiji∑ −My j ≤ 0 ∀j

xij ≥ 0 ∀ij

y j ={0,1}

where:xij=Numberofunitsofproductimadeinplantjyj=1ifplantjisopened;=0otherwisecij=Costperunitofproductimadeatplantjfj=FixedcostforproducingatplantjCj=CapacityinunitsatplantjDi=Demandforproductiinunits M=abignumber(suchasCjinthiscase)

where: xij=Numberofunitsofproductimadeinplantj yj=1ifplantjisopened;=0o.w. M=abignumber(suchasCjinthiscase) Cj=Maximumcapacityinunitsatplantj Lj=Minimumlevelofproductionatplantj Di=Demandforproductiinunits

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 17

xiji∑ ≤My j ∀j

xiji∑ ≥ Lj y j ∀j

where: xij=Numberofunitsofproductimadeinplantj yj=1ifplantjisopened;=0o.w. M=abignumber(suchasCjinthiscase) Lj=Minimumlevelofproductionatplantj

Finally,wecancreateaSelectFromCondition–thatallowsustoselectthebestNchoices.Notethatthiscanbeformulatedas“chooseatleastN”or“choosenomorethanN”bychangingtheinequalitysignonthesecondconstraint.

xiji∑ −My j ≤ 0 ∀j y jj∑ ≤ N

DifferencebetweenLinearProgramsandIntegerPrograms/MixedIntegerPrograms• Integerprogramsaremuchhardertosolvesincethesolutionspaceexpands.

o Forlinearprograms,acorrectformulationisgenerallyagoodformulation.o Forintegerprogramsacorrectformulationisnecessarybutnotsufficientto

guaranteesolvability.• Integerprogramsrequiresolvingmultiplelinearprogramstoestablishbounds–relaxing

theIntegerconstraints.• Whileitseemsthemoststraightforwardapproach,youoftencan’tjust“round”the

linearprogramssolution–itmightnotbefeasible.• Whenusinginteger(notbinary)variables,solvethelinearprogramfirsttoseeifitis

sufficient.

LearningObjectives• Learntheroleofoptimization.• Understandhowtooptimizeinunconstrainedconditions.• IdentifyhowtofindExtremePointSolutions.• Understandhowtoformulateproblemswithdecisionvariablesandresourceconstraints

andgraphicallypresentthem.• Reviewhowtointerpretresultsandconductsensitivityanalysis.• Understandthedifferent“types”ofnumbersandhowtheychangetheapproachto

problems.• Reviewtheapproachofformulatingintegerandmixedintegerprogramproblemsand

solvingthem.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 18

AdvancedOptimization

SummaryThisreviewconcludesthelearningportiononoptimizationwithanoverviewofsomefrequentlyusedadvancedoptimizationmodels.Networkmodelsarekeyforsupplychainprofessionals.Thereviewbeginsbyfirstdefiningtheterminologyusedfrequentlyinthesenetworks.ItthenintroducescommonnetworkproblemsincludingtheShortestPath,TravelingSalesmanProblem(TSP),andFlowproblems.Theseareusedfrequentinsupplychainmanagementandunderstandingwhentheyariseandhowtosolvethemisessential.Wethenintroducenon-linearoptimization,highlightingitsdifferenceswithlinearprogramming,andanoverviewofhowtosolvenon-linearproblems.Thereviewconcludeswithpracticalrecommendationsofforconductingoptimization,emphasizingthatsupplychainprofessionalsshould:knowtheirproblem,theirteamandtheirtool.

KeyConcepts

NetworkModelsNetworkTerminology

• Nodeorvertices–apoint(facility,DC,plant,region)• Arcoredge–linkbetweentwonodes(roads,flows,etc.)maybedirectional• Networkorgraph–acollectionofnodesandarcs

CommonNetworkProblemsShortestPath–Easy&fasttosolve(LPorspecialalgorithms)Resultofshortestpartproblemisusedasthebaseofalotofotheranalysis.Itconnectsphysicaltooperationalnetwork.

• Given:One,origin,onedestination.• Find:Shortestpathfromsingleorigintosingledestination,• Challenges:Timeordistance?Impactofcongestionorweather?Howfrequentlyshould

weupdatethenetwork?• Integralityisguaranteed.• Caveat:Otherspecializedalgorithmsleveragethenetworkstructuretosolvemuch

faster.TravelingSalesmanProblem(TSP)–Hardtosolve(heuristics)

• Given:Oneorigin,manydestinations,sequentialstops,onevehicle.• Objective:Startingfromanoriginnode,findtheminimumdistancerequiredtovisit

eachnodeonceandonlyoneandreturntotheorigin.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 19

• Importance:TSPisatthecoreofallvehicleroutingproblems;localroutingandlastmiledeliveriesarebothcommonandimportant.

• Challenges:Itisexceptionallyhardtosolveexactly,duetoitssize;possiblesolutionsincreaseexponentiallywithnumberofnodes.

• Primaryapproach:specialalgorithmsforexactsolutions(smallerproblems)–Heuristics(manyavailable).

o Twoexamples:NearestNeighbor,CheapestInsertion

FlowProblems(Transportation&Transshipment)–Widelyused(MILPs)• Given:Multiplesupplyanddemandnodeswithfixedcostsandcapacitiesonnodes

and/orarcs.• Objective:Findtheminimumcostflowofproductfromsupplynodesthatsatisfy

demandatdestinationnodes.• Importance:Transportationproblemsareeverywhere;transshipmentproblemsareat

theheartoflargersupplychainnetworkdesignmodels.Intransportationproblems,shipmentsarebetweentwonodes.Fortransshipmentproblems,shipmentsmaygothroughintermediarynodes,possiblychangingmodeoftransport.Transshipmentproblemscanbeconvertedintotransportationproblems.

• Challenges:datarequirementscanbeextensive;difficulttodrawthelineon“realism”vs.“practicality”.

• Primaryapproaches:mixedintegerlinearprograms;somesimulation–usuallyafteroptimization.

NearestNeighborHeuristicThisalgorithmstartswiththesalesmanatarandomcityandvisitsthenearestcityuntilallhavebeenvisited.Ityieldsashorttour,buttypicallynottheoptimalone.

• Selectanynodetobetheactivenode.

• Connecttheactivenodetotheclosestunconnectednode;makethatthenewactivenode.

• Iftherearemoreunconnectednodesgotostep2,otherwiseconnecttotheoriginandend.

CheapestInsertionHeuristicOneapproachtotheTSPistostartwithasubtour–tourofsmallsubsetsofnodes,andextendthistourbyinsertingtheremainingnodesoneaftertheotheruntilallnodeshavebeeninserted.Thereareseveraldecisionstobemadeinhowtoconstructtheinitialtour,howtochoosenextnodetobeinserted,wheretoinsertchosennode.

• Formasubtourfromtheconvexhull.

• Addtothetourtheunconnectednodethatincreasesthecosttheleast;continueuntilallnodesareconnected.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 20

Non-LinearOptimizationAnonlinearprogramissimilartoalinearprograminthatitiscomposedofanobjectivefunction,generalconstraints,andvariablebounds.Thedifferenceisthatanonlinearprogramincludesatleastonenonlinearfunction,whichcouldbetheobjectivefunction,orsomeoralloftheconstraints.

• Manysystemsarenonlinear–importanttoknowhowtohandlethem.• Hardertosolvethanlinearprograms–lose‘corner’solutions(SeeFigure).• Shapeofobjectivefunctionandconstraintsdictateapproachanddifficulty.

Figure:ExampleofNLPwithlinearconstraintandnon-linearobjectivefunction(z=xy).

PracticalTipsforOptimizationinPractice• Knowyourproblem:

o Determiningwhattosolveisrarelyreadilyapparentoragreeduponbyallstakeholders.

o Establishanddocumenttheover-ridingobjectiveofaprojectearlyon.• Levelofdetail&scopeofmodel:

o Modelscannotfullyrepresentreality,modelswillneverrepresentallfactors,determineproblemboundariesanddataaggregationlevels.

• Inputdata:o Collectingdataishardest,leastappreciated,andmosttimeconsumingtaskinan

optimizationproject.o Datanevercompleteclean,ortotallycorrect.o Everhourspentondatacollection,cleaningandverificationsavesdayslateron

intheproject.• SensitivityandRobustnessAnalysis

o Thesearealldeterministicmodels–dataassumedperfect&unchanging.o Optimizationmodelswilldoanythingforadollar,yuan,peso,euro,etc.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 21

o Runmultiple“what-if”scenarioschanginguncertaininputvaluesandtestingdifferentconditions.

• Modelsvs.People(modelsdon’tmakedecisions,peopledo!)o Optimizationmodelsaregoodatmakingtrade-offsbetweencomplicated

optionsanduncoveringunexpectedinsightsandsolutions.o Peoplearegoodat:

§ Consideringintangibleandnon-quantifiablefactors,§ Identifyingunderlyingpatterns,and§ Miningpreviousexperienceandinsights.§ ModelsshouldbeusedforDecisionSUPPORTnotforthedecision.

LearningObjectives• Introductiontoadvancedoptimizationmethods.• Understandtheconditionsandwhentoapplynetworkmodels.• Differentiatenonlinearoptimizationandwhenitshouldbeused.• Reviewrecommendationsforrunningoptimizationinpractice–emphasizing

importanceofknowingtheproblem,teamandtool.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 22

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 23

AlgorithmsandApproximations

SummaryInthislessonwewillbereviewingAlgorithmsandapproximations.Thefirsthalfofthelessonwillbeareviewofalgorithms–whichyoutechnicallyhavealreadybeintroducedto,butperhapsnotintheseterms.Wewillbereviewingthebasicsofalgorithms,theircomponents,andhowtheyareusedinoureverydayproblemsolving!TodemonstratethesewewillbelookingatafewcommonsupplychainproblemssuchastheShortestPathproblem,TravelingSalesmanProblem,andVehicleRoutingProblemwhileapplyingtheappropriatealgorithmtosolvethem.Inthisnextpartofthelesswewillbereviewingapproximations.Approximationsaregoodfirststepsinsolvingaproblembecausetheyrequireminimaldata,allowforfastsensitivityanalysis,andenablequickscopingofthesolutionspace.Recognizinghowtouseapproximationmethodsareimportantinsupplychainmanagementbecausecommonlyoptimalsolutionsrequirelargeamountsofdataandaretimeconsumingtosolve.Soifthatlevelofgranularityisnotneeded,approximationmethodscanprovideabasistoworkfromandtoseewhetherfurtheranalysisisneeded.

AlgorithmsAlgorithm-aprocessorsetofrulestobefollowedincalculationsorotherproblem-solvingoperations,especiallybyacomputer.DesiredPropertiesofanAlgorithm

• shouldbeunambiguous• requireadefinedsetofinputs• produceadefinedsetofoutputs• shouldterminateandproducearesult,alwaysstoppingafterafinitetime.

AlgorithmExample:find_maxInputs:

• L=arrayofNintegervariables• v(i)=valueoftheithvariableinthelist

Algorithm:1. setmax=0andi=12. selectitemiinthelist3. ifv(i)>max,thensetmax=v(i)4. ifi<N,thenseti=i+1andgotostep2,otherwisegotostep55. end

Output:

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 24

maximumvalueinarrayL(max)

ShortestPathProblemObjective:FindtheshortestpathinanetworkbetweentwonodesImportance:Itsresultisusedasbaseforotheranalysis,andconnectsphysicaltooperationalnetworkPrimaryapproaches:

• StandardLinearProgramming(LP)• SpecializedAlgorithms(Dijkstra’sAlgorithm)

Minimize: cijj∑i∑ xij

Subject to:x jii∑ =1 ∀ j = s

x jii∑ − xiji∑ = 0 ∀ j ≠ s, j ≠ t

xiji∑ =1 ∀ j = t

xij ≥ 0

where: xij=Numberofunitsflowingfromnodeitonodej cij=Costperunitforflowfromnodeitonodej s=Sourcenode–whereflowstarts t=Terminalnode–whereflowendsDijkstra’sAlgorithmDjikstra'salgorithm(namedafteritsdiscover,E.W.Dijkstra)solvestheproblemoffindingtheshortestpathfromapointinagraph(thesource)toadestination.L(j)=lengthofpathfromsourcenodestonodejP(j)=precedingnodeforjintheshortestpathS(j)=1ifnodejhasbeenvisited,=0otherwised(ij)=distanceorcostfromnodeitonodejInputs:

• Connectedgraphwithnodesandarcswithpositivecosts,d(ij)• Source(s)andTerminal(t)nodes

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 25

Algorithm:1. forallnodesingraph,setL()=∞,P()=Null,S()=02. setstoi,S(i)=1,andL(i)=03. Forallnodes,j,directlyconnected(adjacent)tonodei;ifL(j)>L(i)+d(ij),thensetL(j)=

L(i)+d(ij)andP(j)=i4. ForallnodeswhereS()=0,selectthenodewithlowestL()andsetittoi,setS(i)=15. Isthisnodet,theterminalnode?Ifso,gotoend.Ifnot,gotostep36. end–returnL(t)

Output:L(t)andParrayTofindpathfromstot,startattheend.

• FindP(t)–sayitisj• Ifj=sourcenode,stop,otherwise,findP(j)• keeptracingprecedingnodesuntilyoureachsourcenode

TravelingSalesmanProblem(TSP)Startingfromanoriginnode,findtheminimumdistancerequiredtovisiteachnodeonceandonlyonceandreturntotheorigin.NearestNeighborHeuristic

1. Selectanynodetobetheactivenode2. Connecttheactivenodetotheclosestunconnectednode,makethatthenewactive

node.3. Iftherearemoreunconnectednodesgotostep2,otherwiseconnecttothestarting

nodeandend.

2-OptHeuristic1. Identifypairsofarcs(i-jandk-l),whered(ij)+d(kl)>d(ik)+d(jl)–usuallywherethey

cross2. Selectthepairwiththelargestdifference,andre-connectthearcs(i-kandj-l)3. Continueuntiltherearenomorecrossedarcs.

VehicleRoutingProblemFindminimumcosttoursfromsingleorigintomultipledestinationswithvaryingdemandusingmultiplecapacitatedvehicles.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 26

Heuristics• RoutefirstClustersecond

o AnyearlierTSPheuristiccanbeused

Optimal

• MixedIntegerLinearProgram(MILP)• Selectoptimalroutesfrompotentialset

ClusterfirstRoutesecond

• SweepAlgorithm• Savings(Clarke-Wright)

VRPSweepHeuristicFindminimumcosttoursfromDCto10destinationswithdemandasshownusingupto4vehiclesofcapacityof200units.SweepHeuristic

1. FormarayfromtheDCandselectanangleanddirection(CWvsCCW)tostart2. Selectanewvehicle,j,thatisempty,wj=0,andhascapacity,cj.3. Rotatetherayinselecteddirectionuntilithitsacustomernode,i,orreachesthe

startingpoint(gotostep5).4. Ifthedemandati(Di)pluscurrentloadalreadyinthevehicle(wj)islessthanthevehicle

capacity,addittothevehicle,wj=Di+wjandgotostep3.Otherwise,closethisvehicle,andgotostep2tostartanewtour.

5. SolvetheTSPforeachindependentvehicletour.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 27

Differentstartingpointsanddirectionscanyielddifferentsolutions!Besttouseavarietyorastackofheuristics.

Clark-WrightSavingsAlgorithmTheClarkeandWrightsavingsalgorithmisoneofthemostknownheuristicforVRP.Itappliestoproblemsforwhichthenumberofvehiclesisnotfixed(itisadecisionvariable)

• Startwithacompletesolution(outandback)• Identifynodestolinktoformacommontourbycalculatingthesavings:

Example:joiningnode1&2intoasingletour

Currenttourscost=2cO1+2cO2Joinedtourcosts=cO1+c12+c2O

So,if2cO1+2cO2>cO1+c12+c2OthenjointhemThatis:cO1+c2O–c12>0

• Thissavingsvaluecanbecalculatedforeverypairofnodes• Runthroughthenodespairingtheoneswiththehighestsavingsfirst• Needtomakesurevehiclecapacityisnotviolated• Also,“interiortour”nodescannotbeadded–mustbeonend

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 28

SavingsHeuristic1. Calculatesavingssi,j=cO,i+cO,j-ci,jforeverypair(i,j)ofdemandnodes.2. Rankandprocessthesavingssi,jindescendingorderofmagnitude.3. Forthesavingssi,junderconsideration,includearc(i,j)inarouteonlyif:

• Norouteorvehicleconstraintswillbeviolatedbyaddingitinarouteand• Nodesiandjarefirstorlastnodesto/fromtheoriginintheircurrentroute.

4. Ifthesavingslisthasnotbeenexhausted,returntoStep3,processingthenextentryinthelist;otherwise,stop.

SolvingVRPwithMILPPotentialroutesareaninputandcanconsiderdifferentcosts,notjustdistance.Mixedintegerlinearprogramusedtoselectroutes:

• Eachcolumnisaroute• Eachrowisanode/stop• Totalcostofeachrouteisincluded

Min C jYjj∑

s.t.

aijY jj=1

J

∑ ≥ Di ∀i

Yjj=1

J

∑ ≤ V

Yj = {0,1} ∀j

Indices Demandnodesi VehicleroutesjInputData Cj=Totalcostofroutej($) Di=Demandatnodei(units) V=Maximumvehicles aij=1ifnodeiisinroutej; =0otherwiseDecisionVariables Yj=1ifroutejisused, =0otherwise

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 29

ApproximationMethodsInthissecondhalfwewilldiscussexamplesofapproximationandestimation.InparticularwewillreviewestimationofOne-to-ManyDistributionthroughlinehauldistance,travelingsalesmanandvehicleroutingproblems.Approximation:avalueorquantitythatisnearlybutnotexactlycorrect.

Estimation:aroughcalculationofthevalue,number,quantity,orextentofsomething.synonyms:estimate,approximation,roughcalculation,roughguess,evaluation,back-of-theenvelope

Whyuseapproximationmethods?• Fasterthanmoreexactorprecisemethods,• Usesminimalamountsofdata,and• Candetermineifmoreanalysisisneeded:GoldilocksPrinciple:Toobig,Toolittle,Just

right.

Alwaystrytoestimateasolutionpriortoanalysis!

QuickEstimationSimpleEstimationRules:1.Breaktheproblemintopiecesthatyoucanestimateordeterminedirectly2.Estimateorcalculateeachpieceindependentlytowithinanorderofmagnitude3.CombinethepiecesbacktogetherpayingattentiontounitsExample:HowmanypianotunersarethereinChicago?"

• Thereareapproximately9,000,000peoplelivinginChicago.• Onaverage,therearetwopersonsineachhouseholdinChicago.• Roughlyonehouseholdintwentyhasapianothatistunedregularly.• Pianosthataretunedregularlyaretunedonaverageaboutonceperyear.• Ittakesapianotunerabouttwohourstotuneapiano,includingtraveltime.• Eachpianotunerworkseighthoursinaday,fivedaysinaweek,and50weeksinayear.

TuningsperYear=(9,000,000ppl)÷(2ppl/hh)×(1piano/20hh)×(1tuning/piano/year)=225,000TuningsperTunerperYear=(50wks/yr)×(5day/wk)×(8hrs/day)÷(2hrstotune)=1000NumberofPianoTuners=(225,000tuningsperyear)÷(1000tuningsperyearpertuner)=225ActualNumber=290

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 30

EstimationofOnetoManyDistributionSingleDistributionCenter:

• Productsoriginatefromoneorigin• Productsaredemandedatmanydestinations• AlldestinationsarewithinaspecifiedServiceRegion• Ignoreinventory(samedaydelivery)

Assumptions:

• Vehiclesarehomogenous• Samecapacity,QMAX• Fleetsizeisconstant

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 31

Findingtheestimatedtotaldistance:• DividetheServiceRegionintoDeliveryDistricts• Estimatethedistancerequiredtoserviceeachdistrict

Routetoserveaspecificdistrict:

• Linehaulfromorigintothe1stcustomerinthedistrict• Localdeliveryfrom1sttolastcustomerinthedistrict• Backhaul(empty)fromthelastcustomertotheorigin

dTOUR ≈ 2dLineHaul + dLocal

dLineHaul=Distancefromorigintocenterofgravity(centroid)ofdeliverydistrictdLocal=Localdeliverybetweencustomersinonedistrict

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 32

Howdoweestimatedistances?• PointtoPoint• RoutingorwithinaTour

EstimatingPointtoPointDistancesDependsonthetopographyoftheunderlyingregionEuclideanSpace: dA-B=√[(xA-xB)2+(yA-yB)2]Grid: dA-B=|xA-xB|+|yA-yB|RandomNetwork:differentapproach

ForRandom(real)Networksuse:DA-B=kCFdA-BFinddA-B-the“ascrowflies”distance.

• Euclidean:forreallyshortdistanceso dA-B=SQRT((xA-xB)2+(yA-yB)2)

• GreatCircle:forlocationswithinthesamehemisphereo dA-B=3959(arccos[sin[LATA]sin[LATB]+cos[LATA]cos[LATB]cos[LONGA-LONGB]])

• Where:o LATi=Latitudeofpointiinradianso LONGi=Longitudeofpointiinradianso Radians=(AngleinDegrees)(π/180o)

Applyanappropriatecircuityfactor(kCF)

• Howdoyougetthisvalue?• Whatdoyouthinktherangesare?• Whataresomecautionsforthisapproach?

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 33

EstimatingLocalRouteDistancesTravelingSalesmanProblem

• Startingfromanorigin,findtheminimumdistancerequiredtovisiteachdestinationonceandonlyonceandreturntoorigin.

• TheexpectedTSPdistance,dTSP,isproportionalto√(nA)wheren=numberofstopsandA=areaofdistrict

• Theestimationfactor(kTSP)isafunctionofthetopology

OnetoManySystemWhatcanwesayabouttheexpectedTSPdistancetocovernstopsindistrictwithanareaofA?Agoodapproximation,assuminga"fairlycompactandfairlyconvex"area,is:A=Areaofdistrictn=Numberofstopsindistrictδ=Density(#stops/Area)kTSP=TSPnetworkfactor(unitless)dTSP=TravelingSalesmanDistancedstop=Averagedistanceperstop

dTSP ≈ kTSP nA = kTSP n nδ

⎝⎜⎞

⎠⎟ = kTSP

⎝⎜

⎠⎟

dstop ≈kTSP nAn

= kTSPAn

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 34

WhatvaluesofkTSPshouldweuse?• LotsofresearchonthisforL1andL2networks-dependsondistrictshape,approachto

routing,etc.• Euclidean(L2)Networks

o kTSP=0.57to0.99dependingonclustering&sizeofN(MAPE~4%,MPE~-1%)o kTSP=0.765commonlyusedandisagoodapproximation!

• Grid(L1)Networkso kTSP=0.97to1.15dependingonclusteringandpartitioningofdistrict

EstimatingVehicleTourDistancesFindingthetotaldistancetraveledonalltours,where:

• l=numberoftours• c=numberofcustomerstopspertourand• n=totalnumberofstops=c*l

dTOUR = 2dLineHaul +ckTSPδ

dAllTours = ldTOUR = 2ldLineHaul +nkTSPδ

Minimizenumberoftoursbymaximizingvehiclecapacity

l = DQMAX

⎣⎢

⎦⎥

+

dAllTours = 2DQMAX

⎣⎢

⎦⎥

+

dLineHaul +nkTSPδ

[x]+=lowestintegervalue>x.ThisisastepfunctionEstimatethiswithcontinuousfunction: [x]+~x+½

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 35

KeyPoints

• Reviewthebasisandcomponentsofalgorithms• Recognizedesiredpropertiesofanalgorithm• Reviewdifferentnetworkalgorithms• RecognizehowtosolvetheShortestPathProblem• RecognizewhichalgorithmstousefortheTravelingSalesmanProblem• RecognizehowtosolveaVehicleRoutingProblem(ClusterFirst–RouteSecond)• Reviewhowtouseapproximations• Recognizestepstoquickestimation

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 36

DistributionsandProbability

SummaryWereviewtwoveryimportanttopicsinsupplychainmanagement:probabilityanddistributions.Probabilityisanoften-reoccurringthemeinsupplychainmanagementduetothecommonconditionsofuncertainty.Onagivenday,astoremightsell2unitsofaproduct,onanother,50.Toexplorethis,theprobabilityreviewincludesanintroductionofprobabilitytheory,probabilitylaws,andpropernotation.Summaryordescriptivestatisticsareshownforcapturingcentraltendencyandthedispersionofadistribution.Wealsointroducetwotheoreticaldiscretedistributions:UniformandPoisson.Wethenintroducethreecommoncontinuousdistributions:Uniform,Normal,andTriangle.Thereviewthengoesthroughthedifferencebetweendiscretevs.continuousdistributionsandhowtorecognizethesedifferences.Theremainderofthereviewisaexplorationintoeachtypeofdistribution,whattheylooklikegraphicallyandwhataretheprobabilitydensityfunctionandcumulativedensityfunctionofeach.

KeyConceptsProbabilityProbabilitydefinestheextenttowhichsomethingisprobable,orthelikelihoodofaneventhappening.Itismeasuredbytheratioofthecasetothetotalnumberofcasespossible.

ProbabilityTheory• Mathematicalframeworkforanalyzingrandomeventsorexperiments.• Experimentsareeventswecannotpredictwithcertainty(e.g.,weeklysalesatastore,

flippingacoin,drawingacardfromadeck,etc.).• Eventsareaspecificoutcomefromanexperiment(e.g.,sellinglessthan10itemsina

week,getting3headsinarow,drawingaredcard,etc.)

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 37

ProbabilityLaws1.Theprobabilityofanyeventisbetween0and1,thatis0≤P(A)≤12.IfAandBaremutuallyexclusiveevents,thenP(AorB)=P(AUB)=P(A)+P(B)3.IfAandBareanytwoevents,then

P(A | B) = P(A and B)P(B)

=P A∩B( )P(B)

WhereP(AIB)istheconditionalprobabilityofAoccurringgivenBhasalreadyoccurred.4.IfAandBareindependentevents,then

P(A | B) = P(A)

P(A and B) = P(A∩B) = P A | B( )P(B) = P A( )×P B( )

WhereeventsAandBareindependentifknowingthatBoccurreddoesnotinfluencetheprobabilityofAoccurring.

SummarystatisticsDescriptiveorsummarystatisticsplayasignificantroleintheinterpretation,presentation,andorganizationofdata.Itcharacterizesasetofdata.Therearemanywaysthatwecancharacterizeadataset,wefocusedontwo:CentralTendencyandDispersionorSpread.

CentralTendencyThisis,inroughterms,the“mostlikely”valueofthedistribution.Itcanbeformallymeasuredinanumberofdifferentwaystoinclude:

• Mode–thespecificvaluethatappearsmostfrequently• Median–thevalueinthe“middle”ofadistributionthatseparatesthelowerfromthe

higherhalf.Thisisalsocalledthe50thpercentilevalue.• Mean(μ)–thesumofvaluesmultipliedbytheirprobability(calledtheexpectedvalue).

Thisisalsothesumofvaluesdividedbythetotalnumberofobservations(calledtheaverage).

Notation• P(A)–theprobabilitythateventAoccurs• P(A’)=complementofP(A)–probabilitysomeothereventthatisnotAoccurs.This

isalsotheprobabilitythatsomethingotherthanAhappens.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 38

E[X]= x = µ = pixii=1

n∑

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 39

DispersionorSpreadThiscapturesthedegreetowhichtheobservations“differ”fromeachother.Themorecommondispersionmetricsare:

• Range–themaximumvalueminustheminimumvalue.• InnerQuartiles–75thpercentilevalueminusthe25thpercentilevalue-capturesthe

“centralhalf”oftheentiredistribution.• Variance(σ2)–theexpectedvalueofthesquareddeviationaroundthemean;also

calledtheSecondMomentaroundthemean

Var[X]=σ 2 = pi xi − x( )i=1

n∑

2= pi xi −µ( )

i=1

n∑

2

• StandardDeviation(σ)–thesquarerootofthevariance.Thisputsitinthesameunitsastheexpectedvalueormean.

• CoefficientofVariation(CV)–theratioofthestandarddeviationoverthemean=σ/μ.Thisisacommoncomparablemetricofdispersionacrossdifferentdistributions.Asageneralrule:

o 0≤CV≤0.75,lowvariabilityo 0.75≤CV≤1.33,moderatevariabilityo CV>1.33,highvariability

PopulationversusSampleVarianceInpractice,weusuallydonotknowthetruemeanofapopulation.Instead,weneedtoestimatethemeanfromasampleofdatapulledfromthepopulation.Whencalculatingthevariance,itisimportanttoknowwhetherweareusingallofthedatafromtheentirepopulationorjustusingasampleofthepopulation’sdata.Inthefirstcasewewanttofindthepopulationvariancewhileinthesecondcasewewanttofindthesamplevariance.Theonlydifferencesbetweencalculatingthepopulationversusthesamplevariances(andthustheircorrespondingstandarddeviations)isthatforthepopulationvariance,σ2,wedividethesumoftheobservationsbyn(thenumberofobservations)whileforthesamplevariance,s2,wedividebyn-1.

σ 2 =xi −µ( )

i=1

n∑

2

ns2 =

xi − x( )i=1

n∑

2

n−1

Notethatthesamplevariancewillbeslightlylargerthanthepopulationvarianceforsmallvaluesofn.Asngetslarger,thisdifferenceessentiallydisappears.Thereasonfortheusen-1isduetohavingtouseadegreeoffreedomincalculatingtheaverage(xbar)fromthesamesamplethatweareestimatingthevariance.Itleadstoanunbiasedestimateofthepopulationvariance.Inpractice,youshouldjustusethesamplevarianceandstandarddeviationunlessyouaredealingwithspecificprobabilities,likeflippingacoin.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 40

SpreadsheetFunctionsforSummaryStatisticsAllofthesesummarystatisticscanbecalculatedquiteeasilyinanyspreadsheettool.Thetablebelowsummarizesthefunctionsforthreewidelyusedpackages.

Table:SpreadsheetFunctionsforDescriptiveStatistics

ProbabilityDistributionsProbabilitydistributionscaneitherbeempirical(basedonactualdata)ortheoretical(basedonamathematicalform).Determiningwhichisbestdependsontheobjectiveoftheanalysis.Empiricaldistributionsfollowpasthistorywhiletheoreticaldistributionsfollowanunderlyingmathematicalfunction.Theoreticaldistributionsdotendtoallowformorerobustmodelingsincetheempiricaldistributionscanbethoughtofasasamplingofthepopulationdata.Thetheoreticaldistributioncanbeseenasbetterdescribingtheassumedpopulationdistribution.Typically,welookforthetheoreticaldistributionthatbestfitsthedataWepresentedfivedistributions.Twoarediscrete(UniformandPoisson)andthreearecontinuous(Uniform,Normal,andTriangle).Eachissummarizedinturn.

DiscreteUniformDistribution~U(a,b)Finitenumber(N)ofvaluesobservedwithaminimumvalueofaandamaximumvalueofb.Theprobabilityofeachpossiblevalueis1/NwhereN=b–a+1

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 41

PoissonDistribution~P(λ)Discretefrequencydistributionthatgivestheprobabilityofanumberofindependenteventsoccurringinafixedtimewheretheparameterλ =mean=variance.Widelyusedtomodelarrivals,slowmovinginventory,etc.Notethatthedistributiononlycontainsnon-negativeintegersandcancapturenon-symmetricdistributions.Asthenumberofobservationsincrease,thedistributionbecomes“belllike”andapproximatestheNormalDistribution.

Table:SpreadsheetFunctionsforPoissondistribution

SummaryMetrics• Mean=λ• Median≈ ⎣(λ + 1/3 – 0.02/λ)⎦• Mode=⎣λ⎦• Variance=λ

ProbabilityMassFunction(pmf):

where• e=Euler’snumber~2.71828...• λ=meanvalue(parameter)• x!=factorialofx,e.g.,3!=3×2×1=6and0!=1

ProbabilityMassFunction(pmf):

SummaryMetrics• Mean=(a+b)/2• Median=(a+b)/2• ModeN/A(allvaluesareequallylikely)• Variance=((b-a+1)2-1)/12

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 42

ProbabilityDensityFunction(pdf)Thepdfisfunctionofacontinuousvariable.TheprobabilitythatXliesbetweenvaluesaandbisequaltoareaunderthecurvebetweenaandb.Totalareaunderthecurveequals1,buttheP(X=t)=0foranyspecificvalueoft.

CumulativeDensityFunction(cdf)

• F(t)=P(X≤t)ortheprobabilitythatXdoesnotexceedt• ≤F(t)≤1.0• F(b)≥F(1)ifb>a–itisincreasing

Simplerules• P(X≤t)=F(t)• P(X>t)=1–F(t)• P(c≤X≤d)=f(d)–F(c)• P(X=t)=0

ContinuousUniformDistribution~U(a,b)Sometimesalsocalledarectangulardistribution

• “Xifuniformlydistributedovertherangeatob,orX~U(a,b)”.

pdf:

SummaryMetrics• Mean=(a+b)/2• Median= (a+b)/2• ModeN/Aallvaluesequallylikely• Variance=(b-a)2/12

cdf:

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 43

NormalDistribution~N(μ,σ)Widelyusedbell-shaped,symmetriccontinuousdistributionwithmeanμandstandarddeviationσ.Mostcommonlyuseddistributioninpractice.

Commondispersionvalues~N(μ,σ)

• P(Xw/in1σaroundμ)=0.6826• P(Xw/in2σaroundμ)=0.9544• P(Xw/in3σaroundμ)=0.9974• +/-1.65σaroundμ=0.900• +/-1.96σaroundμ=0.950• +/-2.81σaroundμ=0.995

UnitorStandardNormalDistributionZ~N(0,1)• Thetransformationfromany~N(μ,σ)totheunitnormaldistribution=Z=(x-μ)/σ• Zscore(standardscore)givesthenumberofstandarddeviationsawayfromthemean• Allowsforuseofstandardtablesandisusedextensivelyininventorytheoryforsetting

safetystock

Table:SpreadsheetFunctionsforNormalDistribution

SummaryMetrics• Mean=μ• Median= μ• Mode=μ• Variance=σ2

pdf:

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 44

TriangleDistribution~T(a,b,c)Thisisacontinuousdistributionwithaminimumvalueofa,maximumvalueofb,andamodeofc.Itisagooddistributiontousewhendealingwithananecdotalorunknowndistribution.Itcanalsohandlenon-symmetricdistributionswithlongtails.

Figure1TriangleDistribution

Triangle DistributionWe would say,

“X follows a triangle distribution with a minimum of a, maximum b, and a mode of c, ~T(a, b, c)”

22

f (x) =

0 x < a

2 x - a( )b- a( ) c- a( )

a £ x £ c

2 b- x( )b- a( ) b- c( )

c £ x £ b

0 x > b

ì

í

ïïïï

î

ïïïï

a bc

2(b- a)

x

E xéë ùû=a+b+ c

3

Var xéë ùû=118

æ

èç

ö

ø÷ a2 +b2 + c2 - ab-ac-bc( )

P x > déë ùû=b- d( )2

b- a( ) b- c( )

æ

è

ççç

ö

ø

÷÷÷

for c £ d £ b

d = b- P x > déë ùû b- a( ) b- c( ) for c £ d £ b

Characteristics• Good way to get a sense of an unknown distribution• People tend to recall extreme and common values• Handles asymmetric distributions

pdf:

cdf:

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 45

DifferencesbetweenContinuousandDiscreteDistributionsJustlikevariables,distributionscanbeclassifiedintocontinuous(pdf)anddiscrete(pmf)probabilitydistributions.Whilediscretedistributionshaveaprobabilityforeachoutcome,theprobabilityforaspecificpointinacontinuousdistributionmakesnosenseandiszero.Insteadforcontinuousdistributionswelookfortheprobabilityofarandomvariablefallingwithinaspecificinterval.Continuousdistributionsuseafunctionorformulatodescribethedataandthusinsteadofsumming(aswedidfordiscretedistributions)tofindtheprobability,weintegrateovertheregion.

DiscreteDistributions ContinuousDistributions

LearningObjectives• Understandprobabilities,importanceandapplicationindailyoperationsandextreme

circumstances.• Understandandapplydescriptivestatistics.• Understanddifferencebetweencontinuousvs.discreterandomvariabledistributions.• Reviewmajordistributions:Uniform(discreteandcontinuous),Poisson,Normaland

Triangle.• Understandthedifferencebetweendiscretevs.continuousdistributions.• Recognizeandapplyprobabilitymassfunctions(pmf),probabilitydensityfunctions

(pdf),andcumulativedensityfunctions(cdf).

SummaryMetrics

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 46

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 47

Regression

SummaryInthisreviewweexpandourtoolsetofpredictivemodelstoincludeordinaryleastsquaresregression.Thisequipsuswiththetoolstobuild,runandinterpretaregressionmodel.Wearefirstintroducedwithhowtoworkwithmultiplevariablesandtheirinteraction.Thisincludescorrelationandcovariance,whichmeasureshowtwovariableschangetogether.Aswereviewhowtoworkwithmultiplevariables,itisimportanttokeepinmindthatthedatasetssupplychainmanagerswilldealwitharelargelysamples,notapopulation.Thismeansthatthesubsetofdatamustberepresentativeofthepopulation.Thelaterpartofthelessonintroduceshypothesistesting,whichallowsustoanswerinferencesaboutthedata.Wethentacklelinearregression.Regressionisaveryimportantpracticeforsupplychainprofessionalsbecauseitallowsustotakemultiplerandomvariablesandfindrelationshipsbetweenthem.Insomeways,regressionbecomesmoreofanartthanascience.Therearefourmainstepstoregression:choosingwithindependentvariablestoinclude,collectingdata,runningtheregression,andanalyzingtheoutput(themostimportantstep).

KeyConcepts

MultipleRandomVariablesMostsituationsinpracticeinvolvetheuseandinteractionofmultiplerandomvariablesorsomecombinationofrandomvariables.WeneedtobeabletomeasuretherelationshipbetweentheseRVsaswellasunderstandhowtheyinteract.

CovarianceandCorrelationCovarianceandcorrelationmeasureacertainkindofdependencebetweenvariables.Ifrandomvariablesarepositivelycorrelated,higherthanaveragevaluesofXarelikelytooccurwithhigherthanaveragevaluesofY.Fornegativelycorrelatedrandomvariables,higherthanaveragevaluesarelikelytooccurwithlowerthanaveragevaluesofY.Itisimportanttorememberastheold,butnecessarysayinggoes:correlationdoesnotequalcausality.Thismeansthatyouarefindingamathematicalrelationship–notacausalone.

CorrelationCoefficient:isusedtostandardizethecovarianceinordertobetterinterpret.Itisameasurebetween-1and+1thatindicatesthedegreeanddirectionoftherelationshipbetweentworandomvariablesorsetsofdata.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 48

SpreadsheetFunctionsFunction MicrosoftExcel GoogleSheets LibreOffice->Calc

Covariance =COVAR(array,array) =COVAR(array,array) =COVAR(array;array)

Correlation =CORREL(array,array) =CORREL(array,array) =CORREL(array;array)

LinearFunctionofRandomVariablesAlinearrelationshipexistsbetweenXandYwhenaone-unitchangeinXcausesYtochangebyafixedamount,regardlessofhowlargeorsmallXis.Formally,thisis:Y=aX+b.ThesummarystatisticsofalinearfunctionofaRandomVariableare:

SumsofRandomVariablesIFXandYareindependentrandomvariableswhereW=aX+bY,thenthesummarystatisticsare:

TheserelationsholdforanydistributionofXandY.However,ifXandYare~N,thenWis~Naswell!

CentralLimitTheoremCentrallimittheoremstatesthatthesampledistributionofthemeanofanyindependentrandomvariablewillbenormalornearlynormal,ifthesamplesizeislargeenough.Largeenoughisbasedonafewfactors–oneisaccuracy(moresamplepointswillberequired)aswellastheshapeoftheunderlyingpopulation.Manystatisticianssuggestthat30,sometimes40,isconsideredlargeenough.Thisisimportantbecauseisdoesn’tmatterwhatdistributionstherandomvariablefollows.

Covariance

Expectedvalue:E[W]=aμX+bμYVariance:VAR[W] =a2σ2X+b2σ2Y+2abCOV(X,Y)

=a2σ2X+b2σ2Y+2abσXσYCORR(X,Y)StandardDeviation:σW=√VAR[W]

Expectedvalue:E[Y]=μY=aμX+bVariance:VAR[Y]=σ2Y=a2σ2XStandardDeviation:σY=|a|σX

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 49

Canbeinterpretedasfollows:• Xi,..Xnareiidwithmean=µandstandarddeviation=σ

o ThesumofthenrandomvariablesisSn=ΣXio ThemeanofthenrandomvariablesisX�=Sn/n

• Then,ifnis“large”(say>30)o SnisNormallydistributedwithmean=nµandstandarddeviationσ√no X�isNormallydistributedwithmean=µandstandarddeviationσ/√n

InferenceTesting

SamplingWeneedtoknowsomethingaboutthesampletomakeinferencesaboutthepopulation.Theinferenceisaconclusionreachedonthebasisofevidenceandreasoning.Tomakeinferencesweneedtoasktestablequestionssuchasifthedatafitsaspecificdistributionoraretwovariablescorrelated?Tounderstandthesequestionsandmore–weneedtounderstandsamplingofapopulation.Ifsamplingisdonecorrectly,thesamplemeanshouldbeanestimatorofthepopulationmeanaswellascorrespondingparameters.

• Population:istheentiresetofunitsofobservation• Sample:subsetofthepopulation.• Parameter:describesthedistributionofrandomvariable.• RandomSample:isasampleselectedfromthepopulationsothateachitemisequally

likely.

Thingstokeepinmind• Xisarv~?(µ,σ,...)fortheentirepopulation• X1,X2,...Xnareiid• X�isanestimateofthepopulationparameter,themeanorµ• RememberthatX�isalsoarvbyitself!• x1,x2,...xn,aretherealizationsorobservationsofrvX• xisthesamplestatistic–themean• WewanttofindhowxrelatestoX�relatestoµ

Whydowecare?• WecanshowthatE[X�]=μ andthatS=σ/√n• Note:standarddeviationdecreasesassamplesizegetsbigger!• Also,theCentralLimitTheoremsaysthatsamplemeanX�is~N(μ,σ/√n)

ConfidenceIntervalsConfidenceintervalsareusedtodescribetheuncertaintyassociatedwithasampleestimateofapopulationparameter.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 50

CalculatingConfidenceIntervalsWhenthen>30Wecanassume:X�~N(μ,σ/√n)Thelevelcofaconfidenceintervalgivestheprobabilitythattheintervalproducedincludesthetruevalueoftheparameter.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 51

Wherezisthecorrespondingz-scorecorrespondingtotheareaaroundthemean:

z=1.65forβ=.90, z=1.96forβ=.95, z=2.81forβ=.995Forspreadsheetsuse: z=NORM.S.INV((1+β)/2)Whenn≤30Thenweneedtousethet-distribution,whichisbell-shapedandsymmetricaround0.

• Mean=0,butStdDev=√(k/k-2)• Wherekisthedegreesoffreedomand,generally,k=n-1• Thevalueofcisafunctionofβandk

Wherecisthecorrespondingt-statisticcorrespondingtotheareaaroundthemean.Forspreadsheets,use: c=T.INV.2T(1-β,k)Therearesomeimportantinsightsforconfidenceintervalsaroundthemean.Therearetradeoffsbetweeninterval(l),samplesize(n)andconfidence(b):

• Whennisfixed,usingahigherconfidencelevelbleadstoawiderinterval,L.• Whenconfidencelevelisfixed(b),increasingsamplesizen,leadstosmallerinterval,L.• Whenbothnandconfidencelevelarefixed,wecanobtainatighterinterval,L,by

reducingthevariability(i.e.smallsands).

Wheninterpretingconfidenceintervals,afewthingstokeepinmind:• Repeatedlytakingsamplesandfindingconfidenceintervalsleadstodifferentintervals

eachtime,• Butb%oftheresultingintervalswouldcontainthetruemean.• Toconstructab%confidenceintervalthatiswithin(+/-)Lofμ,therequiredsamplesize

is:n=z2*s2/L2

x − zs

n, x + zs

n

⎣⎢

⎦⎥

x − cs

n,x + cs

n

⎣⎢

⎦⎥

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 52

HypothesisTestingHypothesistestingisamethodformakingachoicebetweentwomutuallyexclusiveandcollectivelyexhaustivealternatives.Inthispractice,wemaketwohypothesesandonlyonecanbetrue.NullHypothesis(H0)andtheAlternativeHypothesis(H1).Wetest,ataspecifiedsignificancelevel,toseeifwecanRejecttheNullhypothesis,orAccepttheNullHypothesis(ormorecorrectly,“donotreject”).TwotypesofMistakesinhypothesistesting:

• TypeI:RejecttheNullhypothesiswheninfactitisTrue(Alpha)• TypeII:AccepttheNullhypothesiswheninfactitisFalse(Beta)• WefocusonTypeIerrorswhensettingsignificancelevel(.05,.01)

Threepossiblehypothesesoroutcomestoatest

• Unknowndistributionisthesameastheknowndistribution(AlwaysH0)• Unknowndistributionis‘higher’thantheknowndistribution• Unknowndistributionis‘lower’thantheknowndistribution

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 53

ExampleofHypothesisTestingIamtestingwhetheranewinformationsystemhasdecreasedmyordercycletime.Weknowthathistorically,theaveragecycletimeis72.5hours+/-4.2hours.Wesampled60ordersaftertheimplementationandfoundtheaveragetobe71.4hours.Weselectalevelofsignificancetobe5%.

1. Selecttheteststatisticofinterest meancycletimeinhours–useNormaldistribution(z-statistic)2.Determinewhetherthisisaoneortwotailedtest Onetailedtest3.Pickyoursignificancelevelandcriticalvalue alpha=5percent,thereforez=NORM.S.INV(.05)=-1.6448

4. FormulateyourNull&Alternativehypotheses H0:Newcycletimeisnotshorterthantheoldcycletime H1:Newcycletimeisshorterthantheoldcycletime

5. Calculatetheteststatistic z=(Xb-μXb)/σXb=(Xb-μ)/(σ/√n)=(71.4–72.5)/(4.2/√60)=-2.0287

6. Comparetheteststatistictothecriticalvaluez=-2.0287<-1.6448theteststatistic<criticalvalue,therefore,werejectthenull

hypothesisRatherthanjustreportingthatH0wasrejectedata5%significancelevel,wemightwanttoletpeopleknowhowstronglywerejectedit.Thep-valueisthesmallestlevelofalpha(levelofsignificance)suchthatwewouldrejecttheNullhypothesiswithourcurrentsetofdata.Alwaysreportthep-valuep-value=NORM.S.DIST(-2.0287)=.0212ChisquaretestChiSquaretestcanbeusedtomeasurethegoodnessoffitanddeterminewhetherthedataisdistributednormally.Touseachisquaretest,youtypicallywillcreateabucketofcategories,c,counttheexpectedandobserved(actual)valuesineachcategory,andcalculatethechi-squarestatisticsandfindthep-value.Ifthep=valueislessthanthelevelofsignificant,youwillthenrejectthenullhypothesis.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 54

SpreadsheetFunctions:Function Returnsp-valueforChi-SquareTestMicrosoftExcel =CHISQ.TEST(observed_values,expected_values)GoogleSheets =CHITEST(observed_values,expected_values)LibreOffice->Calc =CHISQ.TEST(observed_values;expected_values)

OrdinaryLeastSquaresLinearRegressionRegressionisastatisticalmethodthatallowsuserstosummarizeandstudyrelationshipsbetweenadependent(Y)variableandoneormoreindependent(X)variables.ThedependentvariableYisafunctionoftheindependentvariablesX.Itisimportanttokeepinmindthatvariableshavedifferentscales(nominal/ordinal/ratio).Forlinearregression,thedependentvariableisalwaysaratio.Theindependentvariablescanbecombinationsofthedifferentnumbertypes.

LinearRegressionModelThedata(xi,yi)aretheobservedpairsfromwhichwetrytoestimatetheΒcoefficientstofindthe‘bestfit’.Theerrorterm,ε,isthe‘unaccounted’or‘unexplained’portion.LinearModel:

ResidualsBecausealinearregressionmodelisnotalwaysappropriateforthedata,youshouldassesstheappropriatenessofthemodelbydefiningresiduals.Thedifferencebetweentheobservedvalueofthedependentvariableandpredictedvalueiscalledtheresidual.

OrdinaryLeastSquares(OLS)RegressionOrdinaryleastsquaresisamethodforestimatingtheunknownparametersinalinearregressionmodel.Itfindstheoptimalvalueofthecoefficients(b0andb1)thatminimizethesumofthesquaresoftheerrors:

MultipleVariables

yi = β0 +β1xiYi = β0 +β1xi +εi for i =1,2,...n

yi = b0 +b1xi for i =1,2,...nei = yi − yi = yi −b0 +b1xi for i =1,2,...n

ei2( )i=1

n∑ = yi − yi( )

2

i=1

n∑ = yi −b0 −b1xi( )

2

i=1

n∑

= y −b1x b1 =(xi − x )(yi − y)i=1

n∑

(xi − x )2

i=1

n∑

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 55

Theserelationshipstranslatealsotomultiplevariables.

ValidatingaModelAllstatisticalsoftwarepackageswillprovidestatisticsforevaluation(namesandformatwillvarybypackage).Butthemodeloutputtypicallyincludes:modelstatistics(regressionstatisticsorsummaryoffit),analysisofvariance(ANOVA),andparameterstatistics(coefficientstatistics).OverallFitOverallfit=howmuchvariationinthedependentvariable(y),canweexplain?TotalvariationofCPL–findthedispersionaroundthemean.

Yi = β0 +β1x1i + ...+βk xki +εi for i =1,2,...nE(Y | x1,x2 ,...,xk ) = β0 +β1x1 +β2x2 + ...+βk xkStdDev(Y | x1,x2 ,...,xk ) =σ

ei2( )i=1

n∑ = yi − yi( )

2

i=1

n∑ = yi −b0 −b1x1i − ...−bk xki( )

2

i=1

n∑

TotalSumofSquares

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 56

MakeestimateforofYforeachx.

Modelexplains%oftotalvariationofthedependentvariables.

AdjustedR2correctsforadditionalvariables

IndividualCoefficientsEachIndependentvariable(andb0)willhave:

• Anestimateofcoefficient(b1),• Astandarderror(sbi)

o se=Standarderrorofthemodel

o sx=Standarddeviationoftheindependentvariables=numberofobservations

• Thet-statistic

o k=numberofindependentvariableso bi=estimateorcoefficientofindependent

variable

ErrororResidualSumofSquares

CoefficientofDeterminationorGoodnessofFit(R2)

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 57

Correspondingp-value–TestingtheSlopeo Wewanttoseeifthereisalinearrelationship,i.e.wewanttoseeiftheslope

(b1)issomethingotherthanzero.So:H0:b1=0andH1b1≠0

o Confidenceintervals–estimateanintervalfortheslopeparameter.

Multi-Collinearity,AutocorrelationandHeterscedasticityMulti-Collinearityiswhentwoormorevariablesinamultipleregressionmodelarehighlycorrelated.ThemodelmighthaveahighR2buttheexplanatoryvariablesmightfailthet-test.Itcanalsoresultinstrangeresultsforcorrelatedvariables.Autocorrelationisacharacteristicsofdatainwhichthecorrelationbetweenthevaluesofthesamevariablesisbasedonrelatedobjects.Itistypicallyatimeseriesissue.Heterscedasticityiswhenthevariabilityofavariableisunequalacrosstherangeofvaluesofasecondvariablethatpredictsit.Sometelltalesignsinclude:observationsaresupposedtohavethesamevariance.Examinescatterplotsandlookfor“fan-shaped”distributions.

LearningObjectives

• Understandhowtoworkwithmultiplevariables.• Beawareofdatalimitationswithsizeandrepresentationofpopulation.• Identifyhowtotestahypothesis.• Reviewandapplythestepsinthepracticeofregression.• Beabletoanalyzeregressionandrecognizeissues.

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 58

Simulation

SummaryThisreviewprovidesanoverviewofsimulation.Afterareviewofdeterministic,prescriptivemodeling(optimization,mathprogramming)andpredictivemodels(regression),simulationoffersanapproachfordescriptivemodeling.Simulationsletyouexperimentwithdifferentdecisionsandseetheiroutcomes.Supplychainmanagerstypicallyusesimulationstoassessthelikelihoodofoutcomesthatmayfollowfromdifferentactions.Thisreviewoutlinesthestepsinsimulationfromdefiningthevariables,creatingthemodel,runningthemodel,andrefiningthemodel.Itoffersinsightintothebenefitofusingsimulationforopenendedquestionsbutwarnsofitsexpensiveandtimeconsumingnature. Overthedurationofthecoursewehavereviewedseveraltypesofmodelsincludingoptimization,regression,andsimulation.Optimization(LP,IP,MILP,NLP)isaprescriptiveformofmodelthatfindsthe“bestsolution”and/orprovidesarecommendation.Regressionisapredictiveformofmodelthatmeasurestheimpactofindependentvariablesondependentvariables.Wenowcoversimulation,whichcapturestheoutcomesofdifferentpolicieswithanuncertainorstochasticenvironment.

SimulationSimulationcanbeusedinavarietyofcontexts;itismostusefulincapturingcomplexsysteminteractions,modelingsystemuncertainty,orgeneratingdatatoanalyze,describeandvisualizeinteractions,outcomes,andsensitivities.Thereareseveralclassesofsimulationmodelsincluding:systemdynamics;MonteCarloSimulation;discretetimesimulation;andagentbasedsimulations.Therearefivemainstepsindevelopingasimulationstudy.Formulateandplanthestudy;collectdataanddefineamodel;constructmodelandvalidate;makeexperimentalruns;andanalyzeoutput.Thefollowingwillreviewhoweachofthosestepscanbeconducted.

StepsinaSimulationStudyFormulate&planthestudyOnceithasbeendeterminedthatsimulationistheappropriatetoolfortheproblemunderinvestigation,thenextstepistoformulatetheplanandstudy.Thisinvolvesafewmainsteps:

• Definethegoalsofthestudyanddeterminewhatneedstobesolved• Developamodelwheredailydemandvaries,a“productionpolicy”willbeapplied• Basedondemandandpolicy–calculateprofitability• Assessprofitabilityandperformancemetricsofdifferentpolicies

Collectdata&defineamodel

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 59

Oncetheplanhasbeenformulated,thedataneedstobecollectedandamodeldefined.Ifyouarefacedwithalackofsampledata–youwillneedtodeterminethe“range”ofthevariable(s)bytalkingtostakeholdersorexpertstoidentifypossiblevalues.SomedatacanbederivedfromknowndistributionssuchasPoissonorUniform/TriangularDistributionswhenlittletonoinformationisavailable.Ifsampledataisavailable,conductstepsaswehavepreviouslyreviewedsuchashistograms,calculatingsummarystatistics.ThenconductaChi-Squaretesttofitthesampleto“traditional”distributions.Orusea“custom”empiricaldistributionsuchasdiscreteempirical(use%ofobservationasprobabilities),orcontinuous–usehistogramtocomputeprobabilitiesofeachrangeandthen“uniform”withintherange.InExcel:

=CHITEST(Observed_Range,Actual_Range)–returnsp-value=1-CHIDIST(Chi-square,Degreesoffreedom)–returnsthep-value

Nextstepsareto:

• Determinerelationshipbetweenvariousvariables• Determineperformancemetrics• Collectdata&estimateprobability

Constructmodel&validateMakenecessaryinputsrandom,addadatatabletoautomaterunsofmodel,addsummarystatisticsbasedonresultsfromdatatable.Generatingrandomvariableswiththeunderlyingprincipleofgeneratingarandom(orpseudo-random)numberandtransformittofitthedesireddistribution:

• ManualTechniques:rollingdie,turningaroulettewheel,randomnumbertables• Excel

o RAND()=continuousvariablebetween0and1§ Generaterandomnumberu§ Foreachrandomu,calculateavalueywhosecumulativedistribution

functionisequaltou;assignvalueyasthegeneratednumber:F(y)=P(y)=u

• UniformDistribution~U(a,b)o ~U(a,b)=a+(b–a)*RAND()

• NormalDistribution~N(μ,σ)o ~N(μ,σ)=NORMINV(RAND(),μ,σ)

Chi-SquareTest

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 60

ValidationofModel–istheprocessofdeterminingthedegreetowhichamodelanditsassociateddataareanaccuraterepresentationoftherealworldfortheintendeduseofthemodel.Differentwaysofvalidatingmodelincludingcomparingtohistoricaldataorgettingexpertinput.Oneprimarymethodisparametervariabilityandsensitivityanalysis:

• Generatestatisticalparameterswithconfidenceintervals• HypothesisTesting(seeWeek6)

MakeexperimentalrunsYouwillneedtomakemultiplerunsforeachpolicy;usehypothesistestingtoevaluatetheresults.Ifspreadsheetscontainarandominput,wecanuseourdatatabletorepeatedlyanalyzethemodel.Anadditionalcolumnforrunscanbemade.

AnalyzeoutputAnalyzingoutputdealswithdrawinginferencesaboutthesystemmodelbasedonthesimulationoutput.Needtoensurethatthemodeloutputhasmaintainedaproperbalancebetweenestablishingmodelvalidationandstatisticalsignificance.Dependingonthesystemexamined,simulationwillpotentiallybeabletoprovidevaluableinsightwiththeoutput.Abilitytodrawinferencesfromresultstomakesystemimprovementswillbediscussedfurtherinfuturecourses.

LearningObjectives• Reviewthestepstodevelopingasimulationmodel• Understandwhentouseasimulation,andwhentonot• Recognizedifferentkindsofsimulationsandwhentoapplythem

V1 Spring 2017・CTL.SC0x – Supply Chain Analytics Key Concepts・MITx MicroMasters in Supply Chain Management MIT Center for Transportation & Logistics・Cambridge, MA 02142 USA ・[email protected] This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 61

ReferencesAPICSSupplyChainCouncil-http://www.apics.org/sites/apics-supply-chain-council

Chopra,Sunil,andPeterMeindl."Chapter1."SupplyChainManagement:Strategy,Planning,andOperation.5thedition,PearsonPrenticeHall,2013.

CouncilofSupplyChainManagementProfessionals(CSCMP)https://cscmp.org/

HillierandLieberman(2012)IntroductiontoOperationsResearch,McGrawHill.Law&Kelton(2000).SimulationModeling&Analysis,McGrawHill.Taha,H.A.(2010).OperationsResearch.Anintroduction.9thedition.PearsonPrenticeHall.Winston(2003)OperationsResearch:ApplicationsandAlgorithms,CengageLearning.TherearemanydifferentbooksbyWayneWinston-theyareallprettygood.