cong zhentao — global irrigation requirement under the scenario of sra1 b

27
E d i t y o u r s l o g a n h e r e 1 Department of Hydraulic Engineering, Tsinghua University, China 2 International Food Policy Research Institute Global Irrigation Requirement under the scenario of SRA1B Zhentao Cong 1 , Jun Liu 1 , Tingju Zhu 2 ICCCFS 2011

Category:

Documents


0 download

DESCRIPTION

The Chinese Academy of Agricultural Sciences (CAAS) and the International Food Policy Research Institute (IFPRI) jointly hosted the International Conference on Climate Change and Food Security (ICCCFS) November 6-8, 2011 in Beijing, China. This conference provided a forum for leading international scientists and young researchers to present their latest research findings, exchange their research ideas, and share their experiences in the field of climate change and food security. The event included technical sessions, poster sessions, and social events. The conference results and recommendations were presented at the global climate talks in Durban, South Africa during an official side event on December 1.

TRANSCRIPT

Page 1: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

E d i t y o u r s l o g a n h e r e

1 Department of Hydraulic Engineering, Tsinghua University, China2 International Food Policy Research Institute

Global Irrigation Requirement under the scenario of SRA1B

Zhentao Cong1, Jun Liu1, Tingju Zhu2

ICCCFS2011

Page 2: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Background

Irrigation is by far the largest single user of water globally, accounting for approximately 70% of global water withdrawal and 90% of global consumptive water use (FAO, 2011)Irrigated land accounts for no more than 20% of the world's cultivated land, but contributes about 40% of all agricultural production and 60% of cereal production (FAO, 2011). Assessing irrigation water requirement under climate change is essential for understanding potential future water crisis and food security. Given the potential impacts of climate change on irrigation water uses, estimating climate change impacts on irrigation water requirements is a critical step towards evaluating how much water will be needed for irrigation in the future (Döll, 2002).

Page 3: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Framework

Rn, T, RH, u (monthly)

ET0 – Reference Evapotranspiration

Crop water requirement ETc = Kc*ET0

FAO-Penman-Monteith

FAO-KcSAGE

Net Irrigation RequirementIR = ETc-Pe

Pe – Effective Precipitation

IPCC Scenarios + GCMs

Page 4: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

IPCC Scenarios and GCMs

Scenarios1PTO2X CO2 concentration increase 1% /year, until DOUBLE; constant thereafter.

1PTO4X  CO2 concentration increase 1%/year, until QUADRUPLE; constant thereafter.

20C3M  Greenhouse gasses increasing as observed through the 20th century.

COMMIT  Atmospheric burdens of long‐lived greenhouse gasses are held fixed at AD2000 levels.

PICTL  Constant pre‐industrial levels of greenhouse gasses.

SRA1BRapid economic growth; Population peaks in mid‐century and declines thereafter; New and more efficient technologies; Balanced energy sources.

SRA2 Heterogeneous world: Continuously increasing population;  Regionally oriented economic growth(more fragmented and slower).

SRB1Convergent world: Same population as SRA1B; Rapid changes in economic structures(towards service and information); Reductions in material intensity; Clean and resource‐efficient technologies.

Baseline: 20C3M scenario, 1961-1990Climate change scenario: SRA1B scenario, 2046-2065

Page 5: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

IPCC Scenarios and GCMs

Scenarios

Source: Figure 10.4 in Meehl, et al. (2007)

Page 6: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

IPCC Scenarios and GCMs

GCMsBCC‐CM1 ECHAM5/MPI‐OM

BCM2 MRI‐CGCM2.3.2

CGCM3_1‐T47 AOM 4x3

CGCM3_1‐T63 GISS ModelE‐H 

CNRM‐CM3 GISS ModelE‐R

ECHO‐G  CCSM3

CSIRO Mark 3.0 PCM

CM2.0 ‐ AOGCM MIROC3.2‐HI

INMCM3.0 MIROC3.2‐MED

IPSL‐CM4 HadCM3

FGOALS1.0_g HadGEM1

1.125°×1.125°Japan

2.8125°×2.8125°Japan

4°×3°NASA, USA

1.125°×1.125°BCCR

4°×5°INM

Page 7: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Method to calculate ET0

FAO Penman-Monteith equation

Where:– ET0 : reference evapotranspiration [mm day-1]– T : mean daily air temperature [°C]– Rn : net radiation [MJ m-2 day-1]– G : soil heat flux density [MJ m-2 day-1]– es : saturation vapor pressure [kPa]– ea : actual vapor pressure [kPa]– Δ : slope of temperature-pressure curve [kPa °C-1]– γ : psychrometric constant [kPa °C-1]– u: wind speed [m/s]

Page 8: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

5 GCMs MIROC3_2-HI

BCM2 INMCM3

AOM MIROC3_2-MED

Change of ET0

Page 9: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

R

RH

T

U

The change of ET0 is similar to the air temperature in the future.

What caused the increasing of ET0 ?

Page 10: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

SAGEthe Center for Sustainability And the Global EnvironmentUniversity of Wisconsin-MadisonGlobal Land Use Database, 1992, 18 crops, 0.5°× 0.5°

Land use

Wheat

Rice

Maize

Cotton

Page 11: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Kc in FAOKöppen climate classification

Page 12: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Kc in FAO

Page 13: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Crop water requirement

Change of ETc of all crop in 5 GCMs

Change of ETc of rice in 5 GCMs

Change of ETc of maize in 5 GCMs

Change of ETc of wheat in 5 GCMs

Page 14: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Region MIROC3_2‐HI BCM2 INMCM3 AOM MIROC3_2‐MED

China +4.9% +2.6% +7.8% +4.7% +5.4%

USA +12.6% +8.8% +13.6% +4.9% +14.7%

India +4.4% +1.9% +1.2% +1.6% ‐3.2%

Australia +12.4% +6.5% +8.9% +6.8% +5.4%

Europe +10.9% +6.7% +8.8% +3.7% +17.9%

Russia +8.5% +4.6% +9.7% +0.5% +8.7%

Global +8.6% +5.2% +7.7% +4.4% +7.5%

Change of ETc

Page 15: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

5 GCMs MIROC3_2-HI

BCM2 INMCM3

AOM MIROC3_2-MED

Change of P

Page 16: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Region MIROC3_2‐HI BCM2 INMCM3 AOM MIROC3_2‐MED

China +12.1% +5.0% +4.3% +1.8% +6.6%

USA ‐2.5% ‐2.2% ‐5.0% +5.8% ‐11.3%

India +3.7% +9.4% +13.0% +11.4% +14.5%

Australia ‐2.0% +4.1% ‐7.1% ‐9.9% +7.6%

Europe +5.8% ‐0.8% ‐0.7% +0.5% +4.4%

Russia +13.0% +4.4% +8.4% +8.1% +10.5%

Global +3.1% +1.6% +1.8% +3.7% +3.0%

Change of P

Page 17: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Effective rainfall (USDA)

Time step: 10 days Random Matching with the ETc

Precipitation vs ETc

Page 18: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

5 GCMs MIROC3_2-HI

BCM2 INMCM3

AOM MIROC3_2-MED

Change of Irrigation Requirement (IR)

Page 19: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Region MIROC3_2‐HI BCM2 INMCM3 AOM MIROC3_2‐MED

China +3.7% +0.6% +10.1% +1.4% +5.7%

USA +30.6% +23.4% +27.9% +6.4% +33.6%

India +12.8% ‐1.1% ‐5.7% ‐1.6% ‐10.5%

Australia +15.0% +3.5% +8.3% +7.8% +1.9%

Europe +11.2% +17.1% +22.0% +13.9% +31.3%

Russia +6.2% +12.9% +22.7% +3.8% +5.8%

Global +14.8% +8.5% +11.6% +5.0% +12.1%

Change of Irrigation Requirement (IR)

Page 20: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

ETc

P

IR

China:

ETc - increasing

P - inceasing

IR - not obviously

USA, Mediterranean area

ETc - increasing

P - deceasing

IR - increasing obviously

IR‐Irrigation Requirement

Page 21: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Change of Irrigation Requirement (IR)

Doll, 2002, Figure1(C), 2020, ECHAM4

Page 22: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Change of Irrigation Requirement (IR)

Wheat

Rice

Maize

Food production of countries, FAO

It is a big challenge for future world food security.

Page 23: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Change of IR in China

5 GCMs MIROC3_2-HI

BCM2 INMCM3

AOM MIROC3_2-MED

Page 24: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

IR‐Irrigation Requirement

Change of IR in SRA1B 2046-2065 with MIROC3.2_HI

Page 25: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Conclusions

Trends of ET0, ETc, P and IR under climate changes depend on different GCMs and different regions.

ET0 and ETc would increase all over the world due to global warming.

IR would significantly increase in the Mediterranean area and in USA due to the increase in ET0 and the decrease in P.

Page 26: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

Outlook

More GCMs and RCM;

Coupling the crop growth model and hydrological model to predict the irrigation requirement under climate changes;

To consider the trend of precipitation frequency.

Page 27: Cong Zhentao — Global irrigation requirement under the scenario of sra1 b

E d i t y o u r s l o g a n h e r e

[email protected]

ICCCFS2011