confidential quantrainx50 module 3.1 electron optics 1-2011 place photo here

110
Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

Post on 19-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

Confidential

Quantrainx50 Module 3.1 Electron

Optics1-2011

place photo here

Page 2: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

2

2

SEM Main Components

Electron Gun

Demagnification system

Scan Unit

Detecting Unit

Wehnelt cylinderor FEG unit

Condenser lenses

Scan generator

Objective andStigmation lenses

Electron detector

Focus Unit

Scan generator

Page 3: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

3

3

SEM Main Components

Electron GunWehnelt cylinderFEG Electron Gun

Page 4: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

4

4

Electron Gun Emitters

• Tungsten filament (W)

• Lanthanum Hexaboride filament (LaB6)(obsolete)

• Cerium Hexaboride (CeB6)

• Field emission filament (FEG)

Page 5: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

5

Electron Gun Animation *

5

* Video courtesy of Oxford Instruments

Page 6: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

6

6

Electron Source Properties• Current density (brightness)

• Emission current

• Stability of source

• Lifetime of filament

• Design of electron source assembly

• Ease of operation

• Costs involved

ą

ip

do

specimen

Page 7: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

7

7

Emission Area For Tungsten (W)

Filament

Wehnelt cap

Anode

Cross-over plane

Filament heating supply

High voltage supply (200 v- 30 kV)

70 A

Page 8: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

8

8

Bias on Wehnelt Cap

Equipotential lines of the Voltage Field

High emissionlarge spot

Sufficient emission

small spot

Low bias voltage

0+

Optimum bias voltage

0+

High bias voltage

No emission

+0

Page 9: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

9

9

Bias 255 ……………………………….. Bias 1

110 µA

90 µA 1 kV 30 kV

Emission : Autobias control

9

Autobias keeps emission between 90-110 µA for all kV

Page 10: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

10

10

W Filament Saturation

filament current

emis

sion

cur

rent

Saturation point

False peak / Misalignment

Page 11: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

11

11

Tungsten Filament

Page 12: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

12

12

High Resolution, High Brightness FEG source…

Tungsten LaB6 FEGNormalized Brightness (-) 1 10 1000Maximum probe current (nA) 2000 500 100Life time (hrs) 60-200 200-1000 > 10000Beam current stability (10 hrs) <1% <1% <0.4%Resolution 30kV (nm) 3.0 2.0 1.2Resolution 1kV (nm) 25 15 3.0Cost source (USD) 20 900 26000

Page 13: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

1414

XL Schottky FEG Theory

• The Boersch Effect

• A) Perfect beam: no interactions

• B) Random beam: one dimension

• C) Random beam: two dimensions

• It is actually three

dimensional

ooooooooo

oo

o

ooo

o

oo

oo

o o

o o

o oo o

A B C

Page 14: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

1515

XL Schottky FEG Theory

• The Lateral Effect

• lateral trajectory displacement

• This effect results in a larger final spot

• The diameter of the circle of confusion due to this effect.

o o o o o o

o o oo o o

Page 15: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

16

16

Lens Defects

image plane

Spherical aberration

Chromatic aberration

Aperture

Diffraction

optical axis

Page 16: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

17

17

Spherical Aberrations

• Electrons entering into a lens at different points get focused at different points

Disc of Least Confusion

Page 17: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

18

18

Chromatic Aberrations

• Electrons of differing energies will be focused at different places

Disc of Least Confusion

Page 18: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

19

19

Diffraction

• The wave nature of electrons cause diffraction limitations

Page 19: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

20

20

XL Schottky FEG Theory

• Design Limitations

• Longer electron-electron interaction times and smaller electron-electron distances lead to higher statistical aberrations at low KV

• Chromatic aberration is more dominant at low voltages.

Page 20: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

21

21

XL Schottky FEG Theory

• Innovative solutions to reduce design limitations

• A Coulomb tube designed into the column to reduce aberrations and interactions by keeping a high beam energy in the tube

• Effective aperturing of the beam to remove those electrons not contributing to the probe

Page 21: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

22

22

FEG Column Principle Diagram

Scan Coils

Gun Alignment Coils

Objective Aperture

10KVDriftSpace(Coulomb Tube)

C1

C2

Objective Lens

Page 22: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

23

23

FEG gun (electron source)

Emitter Schottky Cold

Scource size 20nm 2nm

Beam current stability

<1%/hour decreases steadily 10-50%/hour

Flashing not required always needed (daily) depends on vacuum quality

Page 23: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

24

24

Emission Area for FEG

Extractor systemC1 static lens

Anode

Filament heating supply

High voltage supply (200 v- 30 KV)

150 A

Page 24: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

2525

Schottky Gun Design

• Fil = Filament current input (2.4 Ampere)

• S = Suppressor (-500V)

• E = Extractor (+5000V)

• C1 = Electrostatic Condenser lens

S

E

C1

Fil

E

Page 25: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

26

26

Schottky Tip design

• M = Tip module

• W = Welded tungsten Tip

• Fil = Tungsten wire filament

• T = Sharpened Tip

• Zr = Zirconium reservoir Zr

T

Fil

W

M

Page 26: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

27

27

FEG Startup Steps

• Warmstart / Coldstart

• Gun conditioning

Page 27: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

28

28

Beam Menu

Final operation status

Page 28: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

29

29

FEG Column Double condenser lens

• Extraction voltage changes not necessary, beam current is set by condenser lenses

• C1 is electrostatic

• C2 is electromagnetic

• Variable lens strengths:

A = high beam current mode

B = low beam current mode

• Final beam energy 30keV down to 200eV

A B

C1

C2

Page 29: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

30

30

FEG Column Double Condenser Lens

• Extraction voltage changes not necessary, beam current is set by condenser lenses

• C1 is electrostatic

• C2 is electromagnetic

• Variable lens strengths:

A = high beam current mode

B = low beam current mode

• Final beam energy 30keV

down to 200eV

A B

C1

C2

InternalSpray

Aperture

Page 30: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

31

31

• Different paths for low

and high beam current

conditions through the

coulomb tube, but

common path to objective

Small Spot Large Spot

C1

C2

Aperture

DecelerationLens

FEG Column

Page 31: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

3232

Comparison of Columns(20KV)

Spot W LaB6 FEG

5 1nA-100nM 2Na-59nM 2.4nA- 5nM

6 4nA- 200nM 8nA-100nM 9.5nA-10nM

7 16nA-400nM 30nA-200nM 35nA-20nM

8 64nA-800nM 100nA-400nM NA

Page 32: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

33

33

Beam Current: Spotsize 30kV 20kV 10kV 5kV 2kV 1kV 500V

1 21 p 13 p 8 p 5 p 2.5 p 1.4 p 0.7 p

2 44 p 40 p 33 p 25 p 13 p 7 p 4 p

3 154 p 148 p 130 p 98 p 53 p 30 p 16 p

4 625 p 617 p 538 p 398 p 211 p 116 p 62 p

5 2.41 n 2.39 n 2.11 n 1.57 n 840 p 464 p 249 p

6 9.54 n 9.45 n 8.37 n 6.27 n 3.37 n 1.86 n 1.00 n

7 36.9 n 36.5 n 32.4 n 24.3 n 13.1 n 7.24 n 3.89 n

Probe Current for FEG

Page 33: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

34

34

Spotsize 30kV 20kV 10kV 5kV 2kV 1kV 500V

1 0.4 0.4 0.4 0.5 0.5 0.5 0.6

2 0.6 0.7 0.8 1.0 1.2 1.3 1.3

3 1.0 1.3 1.7 2.1 2.4 2.5 2.6

4 2.1 2.6 3.4 4.1 4.8 5.0 5.2

5 4.1 5.0 6.7 8.2 9.5 10.0 10.4

6 8.2 10.0 13.4 16.4 19.0 20.0 20.7

7 16.0 19.6 26.3 32.3 37.4 39.4 40.9

*Source = 20KV and WD = 10mm (spot diameters in nm).

FEG Spot Size (nM)

Page 34: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

35

35

SEM Main Components

Electron Gun

Demagnification system

Scan Unit

Wehnelt cylinder

Condenser lenses

Scan generator

Demagnification system

Page 35: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

36

36

Magnification

l

M=L/l

L

L

***-important

Page 36: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

37

37

Scan Size Vs. Magnification

• Low Mag.

• Med Mag.

• Hi Mag.

Page 37: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

38

38

Magnifying Your Sample on Quantax50

M= L

l

_

lL

Page 38: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

39

39

Low Magnification

Scan Here

Display Here

Page 39: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

40

40

Intermediate Magnification

Scan Here

Display Here

Page 40: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

41

41

Higher Magnification

Scan Here

Display Here

Page 41: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

42

42

• The viewed area (L) is fixed

Scan Size Vs. Magnification

• The smaller the area scanned on the sample results in higher viewed magnification

Page 42: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

43

43

A Focused Vs. An Unfocused Beam

Page 43: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

44

44

The Crossover point on the Beam is of a Finite Size

D= Spot Size

I = Beam Current

ą = Measurement of the ‘cone’

Page 44: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

45

45

Current Density

• Current Density remains constant through the optical path of the electron beam

=4 X I Amps

π X d o X a( ) Cm Steradians2β

Page 45: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

46

46

Current Density (remove constants)

• Current and Spot size are directly proportional

=I Amps

d o ( ) Cm 2β

Page 46: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

47

47

Resolution

The resolution of the microscope

is a measure of the smallest separation

that can be distinguished in the image

resolved unresolved

Page 47: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

48

48

The Diameter of the Electron Beam Must Be Smaller Than the Feature to Be Resolved

Page 48: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

49

49

The Electron Beam Scans From Left to Right

• There can be from 512 to 4096 scan lines, at all magnifications

Page 49: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

50

50

The Electron Beam Spot Size Must Be Smaller Than the Features Being Resolved

• The ideal spot size

Page 50: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

51

51

Too Large of Spot Size Looks Out of Focus

• Too big of spot size creates an out of focus image

Page 51: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

52

52

Scan Size Vs. Magnification

• Spot size for low mag is not acceptable for higher mag

***-important

Page 52: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

53

53

Scan Size Vs. Magnification

• Spot size for medium mag is not acceptable for highest mag

***-important

Page 53: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

54

54

Obtaining an Image

• The SEM operator needs to do two things:

1- find the correct focus

2- determine the correct spot size

Page 54: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

55

55

Obtaining an Image

• Focusing moves the crossover point of the beam up and down, trying to place the focal point onto the sample

• Spot size controls the lateral size of the focused beam on the sample

Page 55: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

56

56

Electro-magnetic Condenser Lens

metal jacket

copper windings

Optic axis

Air gap

Cross-over

e-

Page 56: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

58

58

Aperture

Condenser lens

Electron beam In

Electron spray

Electron beam Out

Condenser Lens Action on Beam

Page 57: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

59

59

Condenser Lens Action on Beam

• Decreased lens current creates more beam current

Page 58: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

60

60

• Increased lens current creates less beam current

Condenser Lens Action on Beam

Page 59: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

61

61

Spot Size Summary

• Smaller spot sizes for higher magnification

• Larger spot size for x-ray analysis

• Too large of spot may result in a de-focused image

• Too small of spot may result in poor S/N

Page 60: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

62

62

How to get High Resolution (100.000 - 150.000x) (Tungsten)

• Use 20-30 kV

• Use spot 1

• Use WD 5 mm

• Tilt stage 10°

• Take BSE detector out

• Lock stage

• Use image definition of 1024x884 or 2048x1768

• Take 1 Frame, frametime min. 60 seconds

• Move to new area after focusing/stigmation

Page 61: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

63

63

Summary of Spot Size Affecting SEM Image

• The electron column is designed to produce smallest spot containing highest possible probe current

• Spot size limits minimum size of objects that can be separated

• Higher probe current improves the signal to background ratio

Page 62: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

64

64

SEM Main Components

Electron Gun

Demagnification system

Scan Unit

Wehnelt cylinder

Condenser lenses

Scan generator

Focus UnitObjective andStigmation lenses

Page 63: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

65

65

Focusing the Beam Onto the Sample Uses the Objective Lens

objective lensfinal lensaperture

pole piece

sample

Page 64: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

66

66

Focusing the Beam Onto the Sample

pole piece

objective lensfinal lensaperture

sample

Page 65: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

67

67

Focusing the Beam Onto the Sample

pole piece

objective lensfinal lensaperture

sample

Page 66: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

68

68

Focusing the Beam Onto the Sample

objective lensfinal lensaperture

pole piece

sample

Page 67: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

69

69

Working Distance (WD)

OWDFWD

pole piece

objective lensfinal lensaperture

specimen

Page 68: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

70

70

Synchronizing Stage Height With WD

Z

Z

WD

WD

specimen specimen

Page 69: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

71

71

WD Vs. Gas Path Length(GPL)

EDS

WD

Final Lens Pole Piece

Hi-Vac

GPL

Page 70: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

72

72

WD Vs. Gas Path Length(GPL)

Final Lens Pole Piece

EDS

WD= 10 mmGPL= 2MM

EDS Cone(8mm)

Hi-Vac Intermediate Vacuum

Page 71: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

7373

Low noise EDS Mapping in Low-vacuum with use of EDS ConeLow noise EDS Mapping in Low-vacuum with use of EDS Cone

Using the EDS Cone..

Page 72: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

74

74

Focus and Stigmation• Focusing brings the beam crossover up or

down

• Stigmation controls the ovalness of the beam

Page 73: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

75

75

Astigmation Is an Un-oval Beam

Page 74: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

76

76

Astigmatism

disc of least confusionmagnified point source

Page 75: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

77

77

Astigmatism...Continued

You have to see it to believe it…

Page 76: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

78

78

SEM Main Components

Electron Gun

Demagnification system

Scan Unit

Detecting Unit

Wehnelt cylinder

Condenser lenses

Scan generator

Specimen + detector Detector

Objective andStigmation lenses

Page 77: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

79

79

Different Types of Electron Detectors

Electron Detector

SEM

:Quantax50

A detector is a detector to the SEM

Page 78: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

80

80

High Vacuum Everhardt-Thornley Secondary Electron Detector

Photomultiplier

Light guide

glass target

Phosphorousscreen (Al-coated)( +10 kV)

Faraday cage(-250 - +250 V)

Scintillator

Page 79: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

81

81

Solid State Backscattered Detector

Backscattered electrons

Surface electrode

Silicon dead layer

SemiconductorBase plate

+++++++++++++----------------------

Page 80: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

82

82

The Solid State BSD

Page 81: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

83

83

The Gaseous Analytical Detector (GAD)

Page 82: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

84

84

Low voltage high Contrast Detector (vCD)

Backscattered electrons

Surface electrode

Silicon dead layer

SemiconductorBase plate

+++++++++++++----------------------

Page 83: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

85

85

The best imaging conditions at LV Low KeV: flat cone short beam gas path length, low pressures and long amplification path

Electron beam

EDX

Detector

Sample

Detected electron signal

5 mm WD

Page 84: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

86

86

LF (Large Field) Detector

• Large field of view SE detector for LV based on gas amplification

• Excellent signal yield at low pressures

• Works from 0.5 to 1 Torr (2-3T with PLA)

• Detects primarily: SE1, SE2, SE3

• Not too sensitive to light or temperature

• Can be used with x-ray cone for low KeV or x-ray analysis

Page 85: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

87

87

The Large Field (LF) Detector

Page 86: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

88

88

Gaseous Secondary Electron Detector

non-conductive specimen

GSED

Primary beam

Signal amplification by gas ionisation

Collection area at high positive voltage

Detected electron signal

Page 87: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

89

89

GSED (Gaseous Secondary Electron Detector)• Second generation SE detector for ESEM based on gas

amplification

• Works from 0.5 to 20 Torr

• Not too sensitive to light or temperature

Page 88: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

90

90

GSED (Gaseous Secondary Electron Detector)

Page 89: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

91

91

Available SE Gas Amplification Detectors & Cones

Low KV Cap

GSEDLFD GBSDX-RayCone

Page 90: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

92

92

HighVac / LowVac: LF-GSE + SS-BSE

Changing modes without detector change

LFD

BSE

Page 91: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

93

93

LF-Detector + Low KV Cap

Low kV imaging with Low KV Cap

LFD

Low KV Cap

Page 92: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

94

94

X-Ray Cone

LF-Detector + X-Ray cone: no BSE detection

LFD

X-Ray Cone

Page 93: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

95

95

GaseousAnalyticalDetector

• The GAD is a

SS-BSED + X-Ray cone

• Optimised low vacuum microanalysis and imaging

(SE and BSE) at the analytical WD

• Minimum Magnification 250 x

LFD

GAD

Page 94: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

96

96

GBSD (Gaseous Backscattered Electron) Detector

Page 95: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

97

97

The GBSD

---

BSE Converter Plate

BSE Generated by Primary Beam

PLA

SE Collection Grid

SE 3

Buried Signal Track

++

+

Page 96: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

98

98

GBSD (Gaseous Backscattered Electron) Detector• Specialized detector allows BSE imaging at higher

pressures >4T

• SE & BSE detector for ESEM based on gas amplification

• Works from 4-10 Torr

• Detects SE or BSE Signal in a gas

• Not sensitive to light or temperature

Page 97: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

99

99

GBSD Optimized for High Pressures

Signal vs Pressure

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

Pressure

Sig

na

l (A

rbitr

ary

)

BC

Page 98: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

100

100

Oil in Water

Secondary Mode

Backscattered Mode

Page 99: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

101

101

When to use what detector…

Detector SE BSE Pressure Lowest kV X-ray Area

GSED YES NO 1.0-20T 3kV up BULK

LF/SS BSE YES YES .1-1.0T(.1-1.5 FEG) 5kV up BULK

LF/GAD YES YES 0.1-4T 3kV up POINT

GBSD YES YES 4-10T 10KV up BULK

ET SE/ SSBE YES YES Hi-VAC 1KV up POINT

ICD YES NO Hi-VAC no insert 1 KV with BD POINT

Page 100: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

102

102

Hot Stage “Hook” (ESD)

Page 101: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

103

103

Hot Stage ‘Hook” and Detector

Page 102: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

104

104

Through The Lens Detector (TLD)

Specimen

PMT

E.T. SED

TLD

Page 103: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

105

105

Scintillator-type Backscattered Detector (Robinson & Centaurus)

specimen

Aluminium

P-scintillator

through light guide toPhotomultiplier tube

Page 104: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

106

106

Cathodoluminescence Detector

Polished Aluminium Light guide

Photomultiplierspecimen

Page 105: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

107

107

Electron Backscatter Pattern (EBSD) Detector

Final Lens

Primary Beam

BSE

EBSD

Page 106: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

108

108

EBSD Applications

1m = 50 steps

OIM from 1000 Å PVD Copper Damascene lines

Page 107: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

109

109

Specimen Current Detector

iPC

iSE

iBSE

iSC

specimen

Page 108: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

110

110

Electron Beam Induced Current (EBIC)

PE

SCA

P N P

Page 109: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

111

111

CCD Camera - Quantax50 View

As viewed from under the EDS detector

LFD

E.T. SED

BSD

Sample

Page 110: Confidential Quantrainx50 Module 3.1 Electron Optics 1-2011 place photo here

112

112

The end QUANTRAINx50 3.2PPT- Optics