combinatorics, modular forms, and discrete geometry...combinatorics, modular forms, and discrete...

54
Geometric and Enumerative Combinatorics, IMA University of Minnesota, Nov 10–14, 2014 Combinatorics, Modular Forms, and Discrete Geometry Peter Paule (joint work with: G.E. Andrews, S. Radu) Johannes Kepler University Linz Research Institute for Symbolic Computation (RISC)

Upload: others

Post on 26-Aug-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / 1

Geometric and Enumerative Combinatorics, IMAUniversity of Minnesota, Nov 10–14, 2014

Combinatorics, Modular Forms,

and Discrete Geometry

Peter Paule(joint work with: G.E. Andrews, S. Radu)

Johannes Kepler University LinzResearch Institute for Symbolic Computation (RISC)

Page 2: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 2

Partition Analysis

Page 3: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 3

“The no. of partitions of N of the formN = b1 + · · ·+ bn satisfying

bnn≥ bn−1n− 1

≥ · · · ≥ b22≥ b1

1≥ 0

equals the no. of partitions of N into odd parts each ≤ 2n− 1.

This problem cried out for MacMahon’s Partition Analysis, . . .

Given that Partition Analysis is an algorithm for producingpartition generating functions, I was able to convince Peter Pauleand Axel Riese to join an effort to automate this algorithm.”

Page 4: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 3

“The no. of partitions of N of the formN = b1 + · · ·+ bn satisfying

bnn≥ bn−1n− 1

≥ · · · ≥ b22≥ b1

1≥ 0

equals the no. of partitions of N into odd parts each ≤ 2n− 1.

This problem cried out for MacMahon’s Partition Analysis, . . .

Given that Partition Analysis is an algorithm for producingpartition generating functions, I was able to convince Peter Pauleand Axel Riese to join an effort to automate this algorithm.”

Page 5: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 7

How Zeilberger tells the story of partition analysis (and more):

Page 6: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 8

Example (PA and the Omega package)

Find a suitable closed form of

L(x1, x2, x3) :=∑

b1,b2,b3∈N s.t. 2b3 − 3b2 ≥ 0, b2 − 2b1 ≥ 0

xb11 xb22 x

b33

= Ω=

∑b1,b2,b3≥0 λ

2b3−3b21 λb2−2b12 xb11 x

b22 x

b33

Page 7: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 8

Example (PA and the Omega package)

Find a suitable closed form of

L(x1, x2, x3) :=∑

b1,b2,b3∈N s.t. 2b3 − 3b2 ≥ 0, b2 − 2b1 ≥ 0

xb11 xb22 x

b33

= Ω=

∑b1,b2,b3≥0 λ

2b3−3b21 λb2−2b12 xb11 x

b22 x

b33

Page 8: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 8

Example (PA and the Omega package)

Find a suitable closed form of

L(x1, x2, x3) :=∑

b1,b2,b3∈N s.t. 2b3 − 3b2 ≥ 0, b2 − 2b1 ≥ 0

xb11 xb22 x

b33

= Ω=

∑b1,b2,b3≥0 λ

2b3−3b21 λb2−2b12 xb11 x

b22 x

b33

= Ω=

1

1− x1λ22

1

1− λ2x2λ31

1

1− λ21x3

Page 9: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 8

Example (PA and the Omega package)

Find a suitable closed form of

L(x1, x2, x3) :=∑

b1,b2,b3∈N s.t. 2b3 − 3b2 ≥ 0, b2 − 2b1 ≥ 0

xb11 xb22 x

b33

= Ω=

∑b1,b2,b3≥0 λ

2b3−3b21 λb2−2b12 xb11 x

b22 x

b33

In[1]:= << Omega2.m

Omega Package by Axel Riese (in cooperation with George E. Andrewsand Peter Paule) - c©RISC, JKU Linz - V 2.47

Page 10: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 9

In[2]:= LCrude = OSum[ x1b1 x2b2 x3b3,

2 b3 - 3 b2 ≥ 0, b2 - 2 b1 ≥ 0 , b1 ≥ 0, λ]

Out[2]= Ω≥

λ1, λ2

1(1− x1

λ22

)(1−λ2 x2

λ31

)(1−λ21 x3)

In[3]:= L=OR[LCrude]

Out[3]= 1+x2 x32

(1−x3)(1−x22 x33)(1−x1 x22 x33)

In[4]:= L /. x1->q, x2->q, x3->q

Out[4]= 1+q3

(1−q)(1−q5)(1−q6)

Page 11: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 9

In[2]:= LCrude = OSum[ x1b1 x2b2 x3b3,

2 b3 - 3 b2 ≥ 0, b2 - 2 b1 ≥ 0 , b1 ≥ 0, λ]

Out[2]= Ω≥

λ1, λ2

1(1− x1

λ22

)(1−λ2 x2

λ31

)(1−λ21 x3)

In[3]:= L=OR[LCrude]

Out[3]= 1+x2 x32

(1−x3)(1−x22 x33)(1−x1 x22 x33)

In[4]:= L /. x1->q, x2->q, x3->q

Out[4]= 1+q3

(1−q)(1−q5)(1−q6)

Page 12: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 9

In[2]:= LCrude = OSum[ x1b1 x2b2 x3b3,

2 b3 - 3 b2 ≥ 0, b2 - 2 b1 ≥ 0 , b1 ≥ 0, λ]

Out[2]= Ω≥

λ1, λ2

1(1− x1

λ22

)(1−λ2 x2

λ31

)(1−λ21 x3)

In[3]:= L=OR[LCrude]

Out[3]= 1+x2 x32

(1−x3)(1−x22 x33)(1−x1 x22 x33)

In[4]:= L /. x1->q, x2->q, x3->q

Out[4]= 1+q3

(1−q)(1−q5)(1−q6)

Page 13: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 9

In[2]:= LCrude = OSum[ x1b1 x2b2 x3b3,

2 b3 - 3 b2 ≥ 0, b2 - 2 b1 ≥ 0 , b1 ≥ 0, λ]

Out[2]= Ω≥

λ1, λ2

1(1− x1

λ22

)(1−λ2 x2

λ31

)(1−λ21 x3)

In[3]:= L=OR[LCrude]

Out[3]= 1+x2 x32

(1−x3)(1−x22 x33)(1−x1 x22 x33)

In[4]:= L /. x1->q, x2->q, x3->q

Out[4]= 1+q3

(1−q)(1−q5)(1−q6)

Page 14: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 10

GENERAL THEME: linear Diophantine constraints

I Find b1, . . . bn ∈ N such thatc1,1 · · · c1,nc2,1 · · · c2,n

.... . .

...cm,1 · · · cm,n

b1...bn

≥c1c2...cm

I New algorithm by F. Breuer & Z. Zafeirakopolous [poster:“A Linear Diophantine System Solver”, Lind Hall 400, 4 pm]Polyhedral Omega is a new algorithm for solving linear Diophantine systems (LDS), i.e., for computing a

multivariate rational function representation of the set of all non-negative integer solutions to a system of

linear equations and inequalities. Polyhedral Omega combines methods from partition analysis with

methods from polyhedral geometry. In particular, we combine MacMahon’s iterative approach based on the

Omega operator and explicit formulas for its evaluation with geometric tools such as Brion decompositions

and Barvinok’s short rational function representations. In this way, we connect two recent branches of

research that have so far remained separate, unified by the concept of symbolic cones which we introduce.

Page 15: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 10

GENERAL THEME: linear Diophantine constraints

I Find b1, . . . bn ∈ N such thatc1,1 · · · c1,nc2,1 · · · c2,n

.... . .

...cm,1 · · · cm,n

b1...bn

=

c1c2...cm

I New algorithm by F. Breuer & Z. Zafeirakopolous [poster:“A Linear Diophantine System Solver”, Lind Hall 400, 4 pm]Polyhedral Omega is a new algorithm for solving linear Diophantine systems (LDS), i.e., for computing a

multivariate rational function representation of the set of all non-negative integer solutions to a system of

linear equations and inequalities. Polyhedral Omega combines methods from partition analysis with

methods from polyhedral geometry. In particular, we combine MacMahon’s iterative approach based on the

Omega operator and explicit formulas for its evaluation with geometric tools such as Brion decompositions

and Barvinok’s short rational function representations. In this way, we connect two recent branches of

research that have so far remained separate, unified by the concept of symbolic cones which we introduce.

Page 16: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Partition Analysis 10

GENERAL THEME: linear Diophantine constraints

I Find b1, . . . bn ∈ N such thatc1,1 · · · c1,nc2,1 · · · c2,n

.... . .

...cm,1 · · · cm,n

b1...bn

=

c1c2...cm

I New algorithm by F. Breuer & Z. Zafeirakopolous [poster:

“A Linear Diophantine System Solver”, Lind Hall 400, 4 pm]Polyhedral Omega is a new algorithm for solving linear Diophantine systems (LDS), i.e., for computing a

multivariate rational function representation of the set of all non-negative integer solutions to a system of

linear equations and inequalities. Polyhedral Omega combines methods from partition analysis with

methods from polyhedral geometry. In particular, we combine MacMahon’s iterative approach based on the

Omega operator and explicit formulas for its evaluation with geometric tools such as Brion decompositions

and Barvinok’s short rational function representations. In this way, we connect two recent branches of

research that have so far remained separate, unified by the concept of symbolic cones which we introduce.

Page 17: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery11

Omega and Mathematical Discovery

Page 18: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery12

ca1

AAA

U ca2

-

ca3AAAAAA

-

U

ca4

-

ca5AAAAAA

-

U

ca6

. . . . . . . . . .

ca7 . . . . . . . . . . ca2k−1

AAAAAA

-

U

ca2k−2

-

ca2k+1

AAAU

ca2k

c a2k+2

A k-elongated partition diamond of length 1

ca1

AAA

U ca2

. . . . . . . .ca3

. . . . . . . . ca2k

AAA

ca2k+1

U ca2k+2 cAAA

U ca2k+3

. . . . . . . .ca2k+4

. . . . . . . . ca4k+1

AAA

ca4k+2

U ca4k+3 . . . . . . cAAA

U c

. . . . . . . .c

. . . . . . . . ca(2k+1)n−1

AAA

ca(2k+1)n

U ca(2k+1)n+1

A k-elongated partition diamond of length n

1

Page 19: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery13

Generating function for k-elongated diamonds of length n:

hn,k(q) =

∏n−1j=0 (1 + q(2k+1)j+2)(1 + q(2k+1)j+4) · · · (1 + q(2k+1)j+2k)∏(2k+1)n+1

j=1 (1− qj)

Andrews’ great idea: delete the source:

h∗n,k(q) =

∏n−1j=0 (1 + q(2k+1)j+1)(1 + q(2k+1)j+3) · · · (1 + q(2k+1)j+2k−1)∏(2k+1)n

j=1 (1− qj)and glue the diamonds together:

cb(2k+1)n+1

AAAc

b(2k+1)n−1

. . . . . . . .cb(2k+1)n

. . . . . . . . cAAA

c

c

K

K

. . . cAAA

c. . . . . . . .

c. . . . . . . .K

cb7AAAAAA

cb6

K

cb5

Kc

b4

AAAAAA

cb3

cb2

b2k+2

b2k+1

b2k

ca1

AAA

U ca2

. . . . . . . .ca3

. . . . . . . . ca2k

AAA

ca2k+1

U ca2k+2 . . . cAAA

U c

. . . . . . . .c

. . . . . . . . ca(2k+1)n−1

AAA

ca(2k+1)n

U ca(2k+1)n+1

A broken k-diamond of length 2n

1

Page 20: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery13

Generating function for k-elongated diamonds of length n:

hn,k(q) =

∏n−1j=0 (1 + q(2k+1)j+2)(1 + q(2k+1)j+4) · · · (1 + q(2k+1)j+2k)∏(2k+1)n+1

j=1 (1− qj)

Andrews’ great idea: delete the source:

h∗n,k(q) =

∏n−1j=0 (1 + q(2k+1)j+1)(1 + q(2k+1)j+3) · · · (1 + q(2k+1)j+2k−1)∏(2k+1)n

j=1 (1− qj)and glue the diamonds together:

cb(2k+1)n+1

AAAc

b(2k+1)n−1

. . . . . . . .cb(2k+1)n

. . . . . . . . cAAA

c

c

K

K

. . . cAAA

c. . . . . . . .

c. . . . . . . .K

cb7AAAAAA

cb6

K

cb5

Kc

b4

AAAAAA

cb3

cb2

b2k+2

b2k+1

b2k

ca1

AAA

U ca2

. . . . . . . .ca3

. . . . . . . . ca2k

AAA

ca2k+1

U ca2k+2 . . . cAAA

U c

. . . . . . . .c

. . . . . . . . ca(2k+1)n−1

AAA

ca(2k+1)n

U ca(2k+1)n+1

A broken k-diamond of length 2n

1

Page 21: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery13

Generating function for k-elongated diamonds of length n:

hn,k(q) =

∏n−1j=0 (1 + q(2k+1)j+2)(1 + q(2k+1)j+4) · · · (1 + q(2k+1)j+2k)∏(2k+1)n+1

j=1 (1− qj)

Andrews’ great idea: delete the source:

h∗n,k(q) =

∏n−1j=0 (1 + q(2k+1)j+1)(1 + q(2k+1)j+3) · · · (1 + q(2k+1)j+2k−1)∏(2k+1)n

j=1 (1− qj)and glue the diamonds together:

cb(2k+1)n+1

AAAc

b(2k+1)n−1

. . . . . . . .cb(2k+1)n

. . . . . . . . cAAA

c

c

K

K

. . . cAAA

c. . . . . . . .

c. . . . . . . .K

cb7AAAAAA

cb6

K

cb5

Kc

b4

AAAAAA

cb3

cb2

b2k+2

b2k+1

b2k

ca1

AAA

U ca2

. . . . . . . .ca3

. . . . . . . . ca2k

AAA

ca2k+1

U ca2k+2 . . . cAAA

U c

. . . . . . . .c

. . . . . . . . ca(2k+1)n−1

AAA

ca(2k+1)n

U ca(2k+1)n+1

A broken k-diamond of length 2n

1

Page 22: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery14

∞∑m=0

∆k(m)qm:= limn→∞

hn,k(q)h∗n,k(q)

=

∏∞j=1(1 + qj)∏∞

j=1(1− qj)2∏∞j=1(1 + q(2k+1)j)

=

∏∞j=1(1 + qj)(1− qj)∏∞

j=1(1− qj)3∏∞j=1(1 + q(2k+1)j)

=∞∏j=1

(1− q2j)(1− q(2k+1)j)

(1− qj)3(1− q(4k+2)j)

cb(2k+1)n+1

AAAc

b(2k+1)n−1

. . . . . . . .cb(2k+1)n

. . . . . . . . cAAA

c

c

K

K

. . . cAAA

c. . . . . . . .

c. . . . . . . .K

cb7AAAAAA

cb6

K

cb5

Kc

b4

AAAAAA

cb3

cb2

b2k+2

b2k+1

b2k

ca1

AAA

U ca2

. . . . . . . .ca3

. . . . . . . . ca2k

AAA

ca2k+1

U ca2k+2 . . . cAAA

U c

. . . . . . . .c

. . . . . . . . ca(2k+1)n−1

AAA

ca(2k+1)n

U ca(2k+1)n+1

A broken k-diamond of length 2n

1

Page 23: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery15

Consequently,

∞∑m=0

∆k(m)qm = limn→∞

hn,k(q)h∗n,k(q)

=

∞∏j=1

(1− q2j)(1− q(2k+1)j)

(1− qj)3(1− q(4k+2)j)

= q(k+1)/12 η(2τ)η((2k + 1)τ)

η(τ)3η((4k + 2)τ)

with η the Dedekind eta function:

η(τ) := q124

∞∏n=1

(1− qn) (q = e2πiτ )

NOTE. η24 is a modular form of weight 12 for SL2(Z), because of

η

(aτ + b

cτ + d

)= ε(a, b, c, d)

√−i(cτ + d)η(τ)

where a d− b c = 1 and c > 0.

Page 24: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery15

Consequently,

∞∑m=0

∆k(m)qm = limn→∞

hn,k(q)h∗n,k(q)

=

∞∏j=1

(1− q2j)(1− q(2k+1)j)

(1− qj)3(1− q(4k+2)j)

= q(k+1)/12 η(2τ)η((2k + 1)τ)

η(τ)3η((4k + 2)τ)

with η the Dedekind eta function:

η(τ) := q124

∞∏n=1

(1− qn) (q = e2πiτ )

NOTE. η24 is a modular form of weight 12 for SL2(Z), because of

η

(aτ + b

cτ + d

)= ε(a, b, c, d)

√−i(cτ + d)η(τ)

where a d− b c = 1 and c > 0.

Page 25: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery16

Recall

η

(aτ + b

cτ + d

)= ε(a, b, c, d)

√−i(cτ + d)η(τ).

Hence, for τ ∈ H (upper half complex plane):

η(τ + 1)24 = η

(1 τ + 1

0 τ + 1

)24

= ε(1, 1, 0, 1)24√−i(0 τ + 1)

24η(τ)24

= η(τ)24

The Fourier series expansion (“q-series expansion”, q = e2πiτ ) is

η(τ) = q

∞∏n=1

(1− qn)24.

WHY η-QUOTIENTS?

Page 26: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery17

Page 27: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery18

Congruences for ∆k(n)

Theorem [Andrews & P, Partition Analysis XI]. For all n ∈ N,

∆1(2n+ 1) ≡ 0 (mod 3).

Proof.

Because of (1− qj)3 ≡ 1− q3j (mod 3),

∞∑m=0

∆1(m)qm =∞∏j=1

(1− q2j)(1− q3j)(1− qj)3(1− q6j)

≡∞∏j=1

(1− q2j)(1− q3j)(1− q3j)(1− q6j)

(mod 3).

Hence the coefficients of odd powers of q have to be zero.

Page 28: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery18

Congruences for ∆k(n)

Theorem [Andrews & P, Partition Analysis XI]. For all n ∈ N,

∆1(2n+ 1) ≡ 0 (mod 3).

Proof. Because of (1− qj)3 ≡ 1− q3j (mod 3),

∞∑m=0

∆1(m)qm =

∞∏j=1

(1− q2j)(1− q3j)(1− qj)3(1− q6j)

≡∞∏j=1

(1− q2j)(1− q3j)(1− q3j)(1− q6j)

(mod 3).

Hence the coefficients of odd powers of q have to be zero.

Page 29: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery19

Recall:

Theorem. For all n ∈ N,

∆1(2n+ 1) ≡ 0 (mod 3).

Algorithmic Proof [Radu 2014]:

∞∑n=0

∆1(2n+ 1)qn = 3∞∏j=1

(1− q2j)2(1− q6j)2

(1− qj)6

NOTE. Human proof [Hirschhorn & Sellers, 2007]

Page 30: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery19

Recall:

Theorem. For all n ∈ N,

∆1(2n+ 1) ≡ 0 (mod 3).

Algorithmic Proof [Radu 2014]:

∞∑n=0

∆1(2n+ 1)qn = 3

∞∏j=1

(1− q2j)2(1− q6j)2

(1− qj)6

NOTE. Human proof [Hirschhorn & Sellers, 2007]

Page 31: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery19

Recall:

Theorem. For all n ∈ N,

∆1(2n+ 1) ≡ 0 (mod 3).

Algorithmic Proof [Radu 2014]:

∞∑n=0

∆1(2n+ 1)qn = 3

∞∏j=1

(1− q2j)2(1− q6j)2

(1− qj)6

NOTE. Human proof [Hirschhorn & Sellers, 2007]

Page 32: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery20

Some conjectures [Andrews & P, PA XI]: For all n ∈ N,

∆2(10n+ 2) ≡ 0 (mod 2)

and∆2(25n+ 14) ≡ 0 (mod 5).

S.H. Chan [2008] proved this and also

∆2(10n+ 6) ≡ 0 (mod 2)

and∆2(25n+ 24) ≡ 0 (mod 5).

NOTE. First proof of the 10-case [Hirschhorn & Sellers, 2007]

Page 33: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery20

Some conjectures [Andrews & P, PA XI]: For all n ∈ N,

∆2(10n+ 2) ≡ 0 (mod 2)

and∆2(25n+ 14) ≡ 0 (mod 5).

S.H. Chan [2008] proved this and also

∆2(10n+ 6) ≡ 0 (mod 2)

and∆2(25n+ 24) ≡ 0 (mod 5).

NOTE. First proof of the 10-case [Hirschhorn & Sellers, 2007]

Page 34: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery20

Some conjectures [Andrews & P, PA XI]: For all n ∈ N,

∆2(10n+ 2) ≡ 0 (mod 2)

and∆2(25n+ 14) ≡ 0 (mod 5).

S.H. Chan [2008] proved this and also

∆2(10n+ 6) ≡ 0 (mod 2)

and∆2(25n+ 24) ≡ 0 (mod 5).

NOTE. First proof of the 10-case [Hirschhorn & Sellers, 2007]

Page 35: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery21

Recall [S.H. Chan, 2008]:

∆2(25n+ 14) ≡ ∆2(25n+ 24) ≡ 0 (mod 5).

Algorithmic Proof [Radu 2014].

Human preprocessing:since (1− qj)5 ≡ 1− q5j (mod 5),

∆2(n) ≡ d(n) (mod 5),

where∞∑m=0

∆2(n)qn =∞∏j=1

(1− q2j)(1− q5j)(1− qj)3(1− q10j)

and∞∑m=0

d(n)qn:=∞∏j=1

(1− q2j)(1− qj)2

(1− q10j)

Page 36: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery21

Recall [S.H. Chan, 2008]:

∆2(25n+ 14) ≡ ∆2(25n+ 24) ≡ 0 (mod 5).

Algorithmic Proof [Radu 2014]. Human preprocessing:since (1− qj)5 ≡ 1− q5j (mod 5),

∆2(n) ≡ d(n) (mod 5),

where∞∑m=0

∆2(n)qn =

∞∏j=1

(1− q2j)(1− q5j)(1− qj)3(1− q10j)

and∞∑m=0

d(n)qn:=

∞∏j=1

(1− q2j)(1− qj)2

(1− q10j)

Page 37: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery22

Radu’s program “Ramanujan-Kolberg” delivers:

q32η(2τ)η(5τ)10

η(τ)6η(10τ)20

( ∞∑m=0

d(25n+ 14)qn

)( ∞∑m=0

d(25n+ 24)qn

)= 25(2t4 + 28t3 + 155t2 + 400t+ 400)

where

t =η(τ)3η(5τ)

η(2τ)η(10τ)3∈M(Γ0(10)).

NOTE 1.

The program computes a similar identity also for ∆2(n)instead of d(n), but the output is much bigger.

NOTE 2. There are numerous other congruences for brokendiamonds and generalizations.

Page 38: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery22

Radu’s program “Ramanujan-Kolberg” delivers:

q32η(2τ)η(5τ)10

η(τ)6η(10τ)20

( ∞∑m=0

d(25n+ 14)qn

)( ∞∑m=0

d(25n+ 24)qn

)= 25(2t4 + 28t3 + 155t2 + 400t+ 400)

where

t =η(τ)3η(5τ)

η(2τ)η(10τ)3∈M(Γ0(10)).

NOTE 1.The program computes a similar identity also for ∆2(n)instead of d(n), but the output is much bigger.

NOTE 2. There are numerous other congruences for brokendiamonds and generalizations.

Page 39: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Omega and Mathematical Discovery22

Radu’s program “Ramanujan-Kolberg” delivers:

q32η(2τ)η(5τ)10

η(τ)6η(10τ)20

( ∞∑m=0

d(25n+ 14)qn

)( ∞∑m=0

d(25n+ 24)qn

)= 25(2t4 + 28t3 + 155t2 + 400t+ 400)

where

t =η(τ)3η(5τ)

η(2τ)η(10τ)3∈M(Γ0(10)).

NOTE 1.The program computes a similar identity also for ∆2(n)instead of d(n), but the output is much bigger.

NOTE 2. There are numerous other congruences for brokendiamonds and generalizations.

Page 40: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package24

Radu’s Ramanujan-Kolberg Package

Page 41: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package25

Back to Euler (= limit of Lecture Hall)

Define∞∑n=0

Q(n)qn:=

∞∏j=1

1

1− q2j−1:

Radu’s “Ramanujan-Kolberg” package delivers (computing overE∞(14)):

∞∑n=0

Q(7n+ 3)qn ·∞∑n=0

Q(7n+ 4)qn ·∞∑n=0

Q(7n+ 6)qn

= 8 q5∞∏j=1

(1− q2j)5(1− q14j)16

(1− qj)13(1− q7j)8(−16E1 + 9E2

1 + 2E1E4)

NOTE. This implies:

Q(7n+ 3) ≡ Q(7n+ 4) ≡ Q(7n+ 6) ≡ 0 (mod 2).

Page 42: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package25

Back to Euler (= limit of Lecture Hall)

Define∞∑n=0

Q(n)qn:=

∞∏j=1

1

1− q2j−1:

Radu’s “Ramanujan-Kolberg” package delivers (computing overE∞(14)):

∞∑n=0

Q(7n+ 3)qn ·∞∑n=0

Q(7n+ 4)qn ·∞∑n=0

Q(7n+ 6)qn

= 8 q5∞∏j=1

(1− q2j)5(1− q14j)16

(1− qj)13(1− q7j)8(−16E1 + 9E2

1 + 2E1E4)

NOTE. This implies:

Q(7n+ 3) ≡ Q(7n+ 4) ≡ Q(7n+ 6) ≡ 0 (mod 2).

Page 43: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package26

Radu’s “Ramanujan-Kolberg” package also delivers:

∞∑n=0

Q(7n)qn ·∞∑n=0

Q(7n+ 1)qn ·∞∑n=0

Q(7n+ 5)qn

= q6∞∏j=1

(1− q2j)5(1− q14j)16

(1− qj)13(1− q7j)8(3E3

1 + 24E21 + 64E1)

and

∞∑n=0

Q(7n+ 2)qn

= q3∞∏j=1

(1− q14j)8

(1− qj)3(1− q2j)(1− q7j)4(8E1 + E4 − 8)

Page 44: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package27

I STEP 1. Find generators of the multiplicativemonoid E∞(14):

Solving a problem for nonnegative integers with linear Diophantineconstraints, we obtain the generators

E1 =

(η(2τ)

η(τ)

)1(η(7τ)

η(τ)

)7(η(14τ)

η(τ)

)−7∈ E∞(14),

E2 =

(η(2τ)

η(τ)

)8(η(7τ)

η(τ)

)4(η(14τ)

η(τ)

)−8∈ E∞(14),

E3 =

(η(2τ)

η(τ)

)−5(η(7τ)

η(τ)

)5(η(14τ)

η(τ)

)−13∈ E∞(14),

and

Page 45: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package28

E4 =

(η(2τ)

η(τ)

)1(η(7τ)

η(τ)

)3(η(14τ)

η(τ)

)−7∈ E∞(14),

E5 =

(η(2τ)

η(τ)

)5(η(7τ)

η(τ)

)7(η(14τ)

η(τ)

)−11∈ E∞(14),

and

E6 =

(η(2τ)

η(τ)

)−2(η(7τ)

η(τ)

)6(η(14τ)

η(τ)

)−10∈ E∞(14).

Summary: STEP 1 computes generators E1, . . . , E6 of themultiplicative monoid E∞(14) consisting of eta quotients whichare modular functions with poles only at infinity.

Page 46: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package29

A crucial FINITE representation

I GOAL: We want to represent our object as an element in theinfinite dimensional vectorspace

〈E∞(14)〉Q = c1 e1 + · · ·+ ck ek : ci ∈ Q, ej ∈ E∞(14)= Q[E1, . . . , E6].

I STEP 2. Represent E∞(14) as a Q[E1]-module which isfreely generated by 1 and E4; i.e.,

〈E∞(14)〉Q = 〈1, E4〉Q[E1].

Page 47: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package30

NOTE 1. Ramanujan [1919] proved for

∞∑n=0

p(n)qn:=

∞∏j=1

1

1− qj:

∞∑n=0

p(5n+ 4)qn = 5

∞∏j=1

(1− q5j)5

(1− qj)6

and

∞∑n=0

p(7n+ 5)qn

= 7

∞∏j=1

(1− q7j)3

(1− qj)4+ 49q

∞∏j=1

(1− q7j)7

(1− qj)8.

Page 48: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package31

NOTE 2. An alternative formulation in terms of

z5:=q

∞∏j=1

(1− q5j)6

(1− qj)6=

(η(5τ)

η(τ)

)6

and

z7:=q

∞∏j=1

(1− q7j)4

(1− qj)4=

(η(7τ)

η(τ)

)4

:

q

∞∏j=1

(1− q5j)∞∑n=0

p(5n+ 4)qn = 5 z5

and

q

∞∏j=1

(1− q7j)∞∑n=0

p(7n+ 5)qn = 7 z7 + 49 q z27 .

Page 49: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package32

NOTE 3.

∞∑n=0

p(5n+ 4)qn = 5

∞∏j=1

(1− q5j)5

(1− qj)6

“It would be difficult to find more beautiful formulaethan the ‘Rogers-Ramanujan’ identities . . . ; but hereRamanujan must take second place to Prof. Rogers;and, if I had to select one formula from allRamanujan’s work, I would agree with MajorMacMahon in selecting . . . ” [G.H. Hardy]

Page 50: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package33

NOTE. The “Ramanujan-Kolberg” package computes in E∞(22):∞∑n=0

p(11n+ 6)qn = q14∞∏j=1

(1− q22j)22

(1− qj)10(1− q2j)2(1− q11j)11

×(1078t4 + 13893t3 + 31647t2 + 11209t− 21967

+z1(187t3 + 5390t2 + 594t− 9581)

+z2(11t3 + 2761t2 + 5368t− 6754)

with

t:=3

88w1 +

1

11w2 −

1

8w3, z1:=−

5

88w1 +

2

11w2 −

1

8w3 − 3,

z2:=1

44w1 −

3

11w2 +

5

4w3,

where

w1:=[−3, 3,−7], w2:=[8, 4,−8], w3:=[1, 11,−11] ∈ E∞(22)

and

[r2, r11, r22]:=∏δ|22

(η(δτ

η(τ)

)rδ∈ E∞(22).

Page 51: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package33

NOTE. The “Ramanujan-Kolberg” package computes in E∞(22):∞∑n=0

p(11n+ 6)qn = q14∞∏j=1

(1− q22j)22

(1− qj)10(1− q2j)2(1− q11j)11

×(1078t4 + 13893t3 + 31647t2 + 11209t− 21967

+z1(187t3 + 5390t2 + 594t− 9581)

+z2(11t3 + 2761t2 + 5368t− 6754)

with

t:=3

88w1 +

1

11w2 −

1

8w3, z1:=−

5

88w1 +

2

11w2 −

1

8w3 − 3,

z2:=1

44w1 −

3

11w2 +

5

4w3,

where

w1:=[−3, 3,−7], w2:=[8, 4,−8], w3:=[1, 11,−11] ∈ E∞(22)

and

[r2, r11, r22]:=∏δ|22

(η(δτ

η(τ)

)rδ∈ E∞(22).

Page 52: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package33

NOTE. The “Ramanujan-Kolberg” package computes in E∞(22):∞∑n=0

p(11n+ 6)qn = q14∞∏j=1

(1− q22j)22

(1− qj)10(1− q2j)2(1− q11j)11

×(1078t4 + 13893t3 + 31647t2 + 11209t− 21967

+z1(187t3 + 5390t2 + 594t− 9581)

+z2(11t3 + 2761t2 + 5368t− 6754)

with

t:=3

88w1 +

1

11w2 −

1

8w3, z1:=−

5

88w1 +

2

11w2 −

1

8w3 − 3,

z2:=1

44w1 −

3

11w2 +

5

4w3,

where

w1:=[−3, 3,−7], w2:=[8, 4,−8], w3:=[1, 11,−11] ∈ E∞(22)

and

[r2, r11, r22]:=∏δ|22

(η(δτ

η(τ)

)rδ∈ E∞(22).

Page 53: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package33

NOTE. The “Ramanujan-Kolberg” package computes in E∞(22):∞∑n=0

p(11n+ 6)qn = q14∞∏j=1

(1− q22j)22

(1− qj)10(1− q2j)2(1− q11j)11

×(1078t4 + 13893t3 + 31647t2 + 11209t− 21967

+z1(187t3 + 5390t2 + 594t− 9581)

+z2(11t3 + 2761t2 + 5368t− 6754)

with

t:=3

88w1 +

1

11w2 −

1

8w3, z1:=−

5

88w1 +

2

11w2 −

1

8w3 − 3,

z2:=1

44w1 −

3

11w2 +

5

4w3,

where

w1:=[−3, 3,−7], w2:=[8, 4,−8], w3:=[1, 11,−11] ∈ E∞(22)

and

[r2, r11, r22]:=∏δ|22

(η(δτ

η(τ)

)rδ∈ E∞(22).

Page 54: Combinatorics, Modular Forms, and Discrete Geometry...Combinatorics, Modular Forms, and Discrete Geometry = 1 Geometric and Enumerative Combinatorics, IMA University of Minnesota,

Combinatorics, Modular Forms, and Discrete Geometry / Radu’s Ramanujan-Kolberg Package34

Reference

I Cristian-Silviu Radu: An Algorithmic Approach toRamanujan-Kolberg Identities. Journal of SymbolicComputation, 2014.