color,gluons · the$posi1ons$of$the$three$ quarks$composing$the$proton$...

17
Color, Gluons Gluons are the exchange par1cles which couple to the color charge . They carry simultaneously color and an1color. What is the total number of gluons? According to SU 3 , 3x3 color combina1ons form a singlet and an octet. The octet states form a basis from which all other color states can be constructed. The way in which these eight states are constructed from colors and an1colors is a maEer of conven1on. One possible choice is: R G , R B , G B , G R , B R , B G , 1/2 R R G G ( ) , 1/6 R R + G G 2 B B ( ) The color singlet: is invariant with respect of a redefini1on of the color names (rota1on in color space). Therefore, it has no effect in color space and cannot be exchanged between color charges. 1/3 R R + G G + B B ( ) antigreen green blue antiblue red antired

Upload: others

Post on 19-Feb-2020

16 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

Color,  Gluons  Gluons  are  the  exchange  par1cles  which  couple  to  the  color  charge  .  They  carry  simultaneously  color  and  an1color.                What  is  the  total  number  of  gluons?  According  to  SU3,  3x3  color  combina1ons  form  a  singlet  and  an  octet.  The  octet  states  form  a  basis  from  which  all  other  color  states  can  be  constructed.  The  way  in  which  these  eight  states  are  constructed  from  colors  and  an1colors  is  a  maEer  of  conven1on.  One  possible  choice  is:  

RG , RB , GB , GR , BR , BG ,

1 / 2 RR − GG( ), 1 / 6 RR + GG − 2 BB( )The  color  singlet:    is  invariant  with  respect  of  a  re-­‐defini1on  of  the  color  names  (rota1on  in  color  space).  Therefore,  it  has  no  effect  in  color  space  and  cannot  be  exchanged  between  color  charges.  

1/ 3 RR + GG + BB( )

antigreen

green blue

antiblue

red

antired

Page 2: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

emission of a gluon by a quark

splitting of a gluon into a quark-antiquark pair

self-coupling of gluons

g→ g+ gg+ g→ g+ g

g→ q+ qq→ q+ g

hEp://www.par1clezoo.net/shop.html    

Page 3: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$
Page 4: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

hEp://commons.wikimedia.org/wiki/File:Neutron_QCD_Anima1on.gif  

Page 5: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

meson baryon

π + =

uRdR

uBdB

uGdG

!

"

##

$

##

Meson  can  exist  in  three  different  color  combina1ons.  The  actual  pion  is  a  mixture  of  these  color  states.  By  exchange  of  gluons,  the  color  combina1on  con1nuously  changes.   r

r _

b _

b

g _

g _

g

g

g _

r

g b _

g _

b

Page 6: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

In  QED  vacuum  polariza1on  effects  are  extremely  weak,  because  the  electron  has  a  small  charge  and  a  non-­‐zero  rest  mass.  On  the  other  hand,  the  QCD  gluons  are  massless,  and  their  strong  interac1on  is  not  damped  by  a  small  parameter.  As  a  result,  the  QCD  vacuum  polariza1on  effect  is  extremely  strong,  and  the  empty  space  is  not  empty  at  all  -­‐  it  must  contain  a  soup  of  spontaneously  appearing,  interac1ng,  and  disappearing  gluons.  Moreover,  in  the  soup  there  also  must  be  pairs  of  virtual  quark-­‐an1quark  pairs  that  are  also  color-­‐charged,  and  emit  and  absorb  more  virtual  gluons.  It  turns  out  that  the  QCD  ground  state  of  an  “empty”  space  is  extremely  complicated.  At  present,  we  do  not  have  any  glimpse  of  a  possibility  to  find  the  vacuum  wave  func1on  analy1cally.  Some  ideas  of  what  happens  are  provided  by  the  QCD  lamce  calcula1ons,  in  which  the  gluon  and  quark  fields  are  discre1zed  on  a  four-­‐dimensional  lamce  of  space-­‐1me  points,  and  the  differen1al  field  equa1ons  are  transformed  into  finite-­‐difference  equa1ons  solvable  on  a  computer.  

QCD vacuum

hEp://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html    

The  typical  four-­‐dimensional  structure  of  gluon-­‐field  configura1ons  averaged  over  in  describing  the  vacuum  proper1es  of  QCD.  The  volume  of  the  box  is  2.4  by  2.4  by  3.6  fm,  big  enough  to  hold  a  couple  of  protons.    

Page 7: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

•  Three  quarks  indicated  by  red,  green  and  blue  spheres  (lower  leb)  are  localized  by  the  gluon  field.  

•  A  quark-­‐an1quark  pair  created  from  the  gluon  field  is  illustrated  by  the  green-­‐an1green  (magenta)  quark  pair  on  the  right.  These  quark  pairs  give  rise  to  a  meson  cloud  around  the  proton.    

hEp://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html    

Page 8: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

The  posi1ons  of  the  three  quarks  composing  the  proton  are  illustrated  by  the  colored  spheres.  The  surface  plot  illustrates  the  reduc1on  of  the  vacuum  ac1on  density  in  a  plane  passing  through  the  centers  of  the  quarks.  The  vector  field  illustrates  the  gradient  of  this  reduc1on.  The  posi1ons  in  space  where  the  vacuum  ac1on  is  maximally  expelled  from  the  interior  of  the  proton  are  also  illustrated  by  the  tube-­‐like  structures,  exposing  the  presence  of  flux  tubes.  A  key  point  of  interest  is  the  distance  at  which  the  flux-­‐tube  forma1on  occurs.  The  anima1on  indicates  that  the  transi1on  to  flux-­‐tube  forma1on  occurs  when  the  distance  of  the  quarks  from  the  center  of  the  triangle  is  greater  than  0.5  fm.  Again,  the  diameter  of  the  flux  tubes  remains  approximately  constant  as  the  quarks  move  to  large  separa1ons.    

Page 9: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

Quarks  

Flavor A t tz S C B T Q(e) Mc2 (GeV)

u (up) 13

12 − 1

2 0 0 0 0 +23 0.002− 0.003

d (down) 13

12 + 1

2 0 0 0 0 − 13 0.004− 0.006

s (strange) 13 0 0 −1 0 0 0 − 1

3 0.08− 0.13

c (charm) 13 0 0 0 1 0 0 +2

3 1.2−1.3

b (bottom) 13 0 0 0 0 −1 0 − 1

3 4.1− 4.3

t (top) 13 0 0 0 0 0 1 +2

3 173±1

• The least massive are u- and d-quarks (hence the lightest baryons and mesons are made exclusively of these two quarks)

• Each quark has baryon number A=1/3. • Strange quark carries a quantum number called strangeness S.

Strange particles (such as kaons) carry this quark • Six antiquarks complement the list • Quarks are all fermions; they carry half-integer spins • d- and u-quarks form an isospin doublet • Strong interactions conserve the total number of each type of quarks.

However, quarks can be transformed from one flavor to another through weak interactions (CKM matrix!).

τ + u = d τ − d = u

In  1968,  deep  inelas5c  sca7ering  experiments  at  the  Stanford  Linear  Accelerator  Center  showed  that  the  proton  contained  much  smaller,  point-­‐like  objects  and  was  therefore  not  an  elementary  par1cle  

Page 10: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

1

10

100

1000

10000

100000

1000000

u d s c b t

QCD massHiggs mass

Mas

s (M

eV)

Nucl. Phys. A750, 84 (2005)

HOW does the rest of the proton mass arise? HOW does the rest of the proton spin (magnetic moment,…), arise?

GeV

Page 11: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

Dyson-Schwinger and Lattice QCD

Mass from nothing

It is known that the dynamical chiral symmetry breaking; namely, the generation of mass from nothing, does take place in QCD. It arises primarily because a dense cloud of gluons comes to clothe a low- momentum quark. The vast bulk of the constituent-mass of a light quark is contained in a cloud of gluons, which are dragged along by the quark as it propagates. In this way, a quark that appears to be absolutely massless at high energies acquires a large constituent mass at low energies.

Page 12: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

Chiral symmetry

For massless quarks, QCD Lagrangian preserves helicity. Indeed, since  a  massless  quark  travels  at  the  speed  of  light,  the  handedness  or  chirality  of  the  quark  is  independent  of  any  Lorentz  frame  from  which  the  observa1on  is  made.

LQCD = LQCD (ψL )+LQCD (ψR ) the QCD interaction does not couple the left and right-handed quarks

The mass term explicitly breaks the chiral symmetry as: The main origin of the chiral symmetry breaking, however, may be described in terms of the fermion condensate (vacuum condensate of bilinear expressions involving the quarks in the QCD vacuum) formed through nonperturbative action of QCD gluons. Spontaneous symmetry breaking due to the strong low-energy QCD dynamics, which rearranges the QCD vacuum:

mqψqψq =mqψqLψqR +mqψqRψqL

ψqLψqR ∝ΛQCD3 ≠ 0

Page 13: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

Spontaneous  Symmetry  Breaking  (SSB)  I  

In  this  case,  there  is  s8ll  rota8onal  symmetry  about  the  axis  of  the  direc8on  picked  out.  Now  think  of  the  lowest  energy  excita8ons.    If  we  imagine  a  long  wavelength  quan8zed  spin  wave,  in  which  the  direc8on  of  the  spin  changes  very  slowly,  then  within  the  wavelength,  the  energy  of  the  excita8on  is  near  zero,  because  they  are  simply  spins  poin8ng  in  another  direc8on.  

SSB  is  associated  with  the  observance  of  massless  excita8ons  called  Goldstone  bosons.    (In  prac8ce,  they  may  be  merely  unusually  light  rather  than  massless  if  there  is  also  explicit  symmetry  breaking;  this  is  the  case  for  pions.)      The  case  of  the  ferromagnet  with  spins  is  easiest  to  visualize.  Imagine  a  laGce  of  spins  at  high  temperatures,  which  fluctuate  in  direc8on  such  that  the  net  magne8za8on  is  always  zero.    The  Hamiltonian  for  this  system  respects  rota8onal  symmetry:  there  is  no  preferred  direc8on.    However,  the  lowest  energy  configura8on  would  have  all  spins  pointed  in    the  same  direc8on.    But  what  direc8on?    All  possible  choices  are  degenerate  in  energy.  If  we  cool  the  system  from  a  high  temperature,  below  a  cri8cal  temperature,  one  direc8on  will  be  picked  out.    This  is  spontaneous  symmetry  breaking:  the  vacuum  (ground  state)  of  the  system  breaks  the  symmetry  of  the  Hamiltonian,  at  least  in  part.  

Page 14: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

Spontaneous  Symmetry  Breaking  (SSB)  II  

The  more  formal  way  to  think  of  this  is  in  terms  of  an  effec8ve  poten8al,  e.g.,  for  a  scalar  field,  which  tells  us  about  possible  ground  states  for  a  field  theory.    The  Mexican  hat  poten8al  shown  above    manifests  SSB.    All  choices  in  the  boPom  of  the  valley  have  the  same  energy.    But  one  is  picked  out  in  the  vacuum  -­‐-­‐-­‐  this  is  spontaneously  symmetry  breaking.    But  then  low-­‐lying  excita8ons  in  the  original  symmetry  direc8on  cost  very  liPle.    Therefore  SSB  leads  to  massless  Goldstone  bosons.    Light  pions  are  the  Goldstone  bosons  of  chiral  symmetry  breaking  in  QCD.  

Page 15: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

Low-lying Hadron Spectrum Dürr, Fodor, Lippert et al., BMW Collaboration

Science 322, 1224 (2008) More than 99% of the mass of the visible universe is made up of protons and neutrons. Both particles are much heavier than their quark and gluon constituents, and the Standard Model of particle physics should explain this difference. We present a full ab initio calculation of the masses of protons, neutrons, and other light hadrons, using lattice quantum chromodynamics. Pion masses down to 190 mega–electron volts are used to extrapolate to the physical point, with lattice sizes of approximately four times the inverse pion mass. Three lattice spacings are used for a continuum extrapolation. Our results completely agree with experimental observations and represent a quantitative confirmation of this aspect of the Standard Model with fully controlled uncertainties

Page 16: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

How do the proton’s various constituents contribute to its overall spin? As illustrated by the diagram, the quarks, antiquarks, and gluons are all believed to have their own intrinsic spins, and these must contribute. But so also must the relative orbital motions of the quarks and gluons inside the proton. The first measurements of the proton’s spin substructure have been made recently, employing the technique of deep inelastic scattering with spin-polarized beams bombarding spin-polarized targets. By combining these measurements with constraints from other data, one can infer the fraction of the proton’s spin carried by the intrinsic spin of quarks (and antiquarks) of different flavors. The results of experiments performed at CERN, SLAC, and DESY, summarized in the graph, point to an unexpected outcome: all the quarks and antiquarks together account for no more than one-third of the total spin. More direct probes of the spin alignment of different flavors of quarks, separation of the contributions from quarks and antiquarks, and extraction of information on the gluon spin contributions are goals of ongoing and planned second-generation experiments.

http://physicsworld.com/cws/article/news/2014/jul/11/gluons-get-in-on-proton-spin http://www.scientificamerican.com/article/proton-spin-mystery-gains-a-new-clue1/

The spin structure of the nucleon Rev. Mod. Phys. 85, 655 (2013)

Page 17: Color,Gluons · The$posi1ons$of$the$three$ quarks$composing$the$proton$ are$illustrated$by$the$colored$ spheres.$The$surface$plot illustrates$the$reduc1on$of$the$

Where is the glue? Search for exotic particle 4

0.5

1.0

1.5

2.0

2.5

exotics

isoscalar

isovector

YM glueball

negative parity positive parity

?

FIG. 1. A compilation of recent lattice QCD computations for both the isoscalar and isovector light mesons from Ref. [1],including `¯

�|`¯i ⌘ (|uui+ |ddi)/

p2�and ss mixing angles (indicated in degrees). The dynamical computation is carried out

with two flavors of quarks, light (`) and strange (s). The s quark mass parameter is tuned to match physical ss masses, whilethe light quark mass parameters are heavier, giving a pion mass of 396 MeV. The black brackets with upward ellipses representregions of the spectrum where present techniques make it di�cult to extract additional states. The dotted boxes indicate statesthat are interpreted as the lightest hybrid multiplet – the extraction of clear 0�+ states in this region is di�cult in practice.

FIG. 2. Spectrum of gluonic excitations in hybrid mesons (gray) and hybrid baryons (red, green, and orange) for three lightquark masses. The mass scale is m�m⇢ for mesons and m�mN for baryons to approximately subtract the e↵ect of di↵eringnumbers of quarks. The left calculation is performed with perfect SU(3)-flavor symmetry, and hybrid members of the flavoroctets (8F ), decuplet (10F ), and singlet (1F ) are shown. The middle and right calculations are performed with a physical ssmass and two di↵erent values of m⇡.

•  Non-quark model mesons include exotic mesons, which have quantum numbers not possible for mesons in the quark model;

•  glueballs or gluonium, which have no valence quarks at all; •  tetraquarks, which have two valence quark-antiquark pairs; •  hybrid mesons, which contain a valence quark-antiquark pair and

one or more gluons.

http://www.symmetrymagazine.org/article/september-2006/the-rise-and-fall-of-the-pentaquark

Phys. Rev. D 84, 074023 (2011)

http://www.gluex.org