cip latest technologies, typical errors and cip ... pi pi cip return cip return ti fi ci ti fi ci...

Download CIP Latest Technologies, Typical Errors and CIP ... PI PI CIP Return CIP Return TI FI CI TI FI CI CLEANING-IN-PLACE

Post on 23-Jul-2020

0 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    CIP – Latest Technologies, Typical Errors and CIP Assurance

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Influences on Cleaning (Sinner)

    Source: Natursteinpflege24.de

    Action

    Time

    Temperature

    Chemicals

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Applied Agents

    • Caustic cleaner (NaOH)

    • Combined cleaner (NaOH + detergent or hypochlorite)

    • Phosphoric acid or nitric acid (up to 5 %), better for

    environment: lactic acid or citric acid

    • Peracetic acid or hydrogen peroxide, chlorine

    dioxide, salicylic acid, etc. as disinfectant

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Detergents

    Surfactants

     decrease of surface tension

     lower adhesion of dirt to surfaces

     better swelling of dirt

     possibility of wetting gaps and cracks

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Penetration Behaviour of Liquids with different Surface Tensions

    water 72 mN/m

    milk 52 mN/m

    beer 43 mN/m

    quats 24...34 mN/m

    microorganism

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Disinfectants

    • type and degree of contamination

    • efficiency of disinfectant

    • temperature

    • nature and condition of the surface

    • time

    A proper disinfection is dependent on:

    Disinfectants are chemical compounds which

    are able to inactivate microorganisms due to

    different modes of action.

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Disinfectant Mode of Action Features Structure

    Peroxides e.g. peracetic acid

    Oxidation effect Sensitive to organic soils and copper, attacs rubber,

    Aldehydes Reaction with carbonyl-, amino-, hydroxyl- and sulfhydryl groups of cell proteins

    Sensitive to organic soils, limkted action on Gram-neg. MO

    Salicylic Acid Attacs membranes, replaces pantothenic acid, no CoA can be synthesized

    Stable, insensitive against organics, often used with acids

    Monobromatic Acid

    Reaction with SH-groups of enzyme proteins

    Stable, insensitive against organics, often used with acids

    Quats Destruction of semi- permeability of cell wall by lowering the charge and surface tension

    Non-corrosive; stable at high temperatures

    Guanidines Similar to Quats Deposits at pH 12; no surface activity

    Hypochlorite Oxidation effect Sensitive to org. soils; instable at high temp.

    NaOCl

    Iodophores Oxidation effect Problematic with copper and rubber

    N R

    R

    R

    R1

    1

    2

    1 N

    N

    R

    R

    R

    N

    R1

    2

    1

    2

    X X X

    a b c

    + -

    +

    - +

    -

    CH3 C

    O

    O OH

    OC

    H

    H

    C C

    O

    OH

    H

    Br

    H

    C NN

    NHR

    R1

    R2

    R3

    http://upload.wikimedia.org/wikipedia/commons/b/b5/Salicylic_Acid.svg

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Disinfectants - Oxidants

    Peracetic acid; H2O2:

    • Release of O-radicals (nascent oxygen)

     reaction with proteins and lipids of cell wall

     penetration of cell wall and denaturation of

    proteins

    • Mostly in final rinsing water

    • Also applied as cleaning booster (cracking)

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Wort Cooler – Cracking

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Deep Cleaning – Once a Year

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Sodium Hypochlorite

    Mode of action: NaOCl  NaCl + O

    Besides disinfection very good for periodic intensive deep cleaning

    To avoid corrosion (!):

    • pH of the cleaning solution > 11 (always in NaOH)

    • Concentration not above 5 %

    • Temperature not above 65 °C resp. 149 °F

    • Maximum contact time 1 hour

    • Unsuitable for rubber-containing gasket materials

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Disinfectants - Chlorine Dioxide

    4 HCL + 5 NaClO2 4 ClO2 + 5 NaCl + 2 H2O

    • Application in water disinfection

     brewing water

     bottle washer (cold water zone)

     bottle rinser (after crowning)

     belt lubricants

    • Organic residuals weaken the efficiency

    http://de.wikipedia.org/w/index.php?title=Datei:Chlorine_dioxide.svg&filetimestamp=20090107210029

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Source: Grundfoss Source: Dr. Wolf GmbH

    http://de.wikipedia.org/w/index.php?title=Datei:Chlorine_dioxide.svg&filetimestamp=20090107210029 http://www.haustechnikdialog.de/News/Images.aspx?ID=7692&Number=1

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    CIP-PLANTS

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Disinfectant

    concentrate

    LI

    TI

    LI

    LI

    LI

    TI

    LI

    LI

    LI

    TI

    LI

    LI

    LI

    TI

    LI

    LI

    LI

    TI

    LI

    LI

    Water

    Acid

    concentrate

    Caustic soda

    concentrate

    Fresh water

    Dis- infectant

    Acid Hot caustic

    Return water

    CI CI CI

    Steam

    Condensate

    Steam

    Condensate

    TICTIC

    Steam

    Condensate

    Steam

    Condensate

    CIP

    to plant

    CIP

    to plant

    TIC

    TIC

    TI

    TI

    PI

    PI

    CIP

    Return

    CIP

    Return

    CITI FI

    CITI FI

    CLEANING-IN-PLACE (CIP) INSTALLATION

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    • Cleaning times

    • Flow velocities

    • Conductivities

    • Temperatures

    • Cleaning of safety fittings and mountings

    • Cleaning of sample drawers

    • Frequency of jet cleaners if existent

    • Checking the change of medias

    Controlling CIP - Operations

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    CIP – Control System

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Mechanical Impact in CIP Systems

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Spraying Equipment for Tanks

    Spray Ball Jet Cleaner

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Atmospheric

    pressure

    T o

    ta l p

    re s s u

    re liq

    u id

    Course of pressure in pipe

    P re

    s s u

    re

    o f p

    u m

    p

    Pressure Loss in Pipes

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Pressure and Cleaning Effect

    Highest mechanical effect

    In sump 

    mechanical effect low

    Too low pressure  no

    mechanical Effect  no

    sufficient film at surface

    Sufficient flow rate results in

    a consistent liquid film on

    the walls surface

    Too high pressure  rebound

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Consistent Showering of the

    Vessel Wall *

    * Zürcher, Dresdner Brauertag 2003

    for a falling film thickness  1 mm  turbulent flow

    set point value: 25 – 30 l / (m * min)

    showering [ l /(m * min) ] =

    flow rate [ hl / h ] * 100 / 60 / circumference [ m ]

    Flow Showering

    hl/h l/m x min

    80 11.7

    171 25.0

    200 29.2

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Influences of CO2 on the Process

    http://auto.freenet.de/pictureshow/magazin/dossier/co2werte-in-der-diskussion_9260_556488_9252_0.html

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Tank - CO2 - Removal – Why?

    1. Loss of alkalinity by neutralization

    2. Risk of vacuum formation

    3. Precipitations interfering with the process

    4. Pit corrosion (Hypochlorite)

  • ■■ VLB Berlin, D. Bilge ■■ ■■■ CBC 2016 - Philadelphia ■■■

    Insufficient CO2-Removal - Carbonates

    2 NaOH + CO2  NaHCO3 + H2O

    Example: 3000 hl tank filled with 2500 hl

     500 hl head space

     At pop = 0.6 bar  ≈ 80 m 3 CO