chromium impact on strontium and manganese-free cathode ... · - direct solid state diffusion -...

38
Chromium impact on Strontium and Manganese-free cathode materials M.K. Stodolny a B.A. Boukamp b D.H.A. Blank b G. Rietveld a F.P.F. van Berkel a a University of Twente, Department of Science and Technology & MESA + , Institute for Nanotechnology b Energy Research Centre of the Netherlands Presented at the 2 nd International Workshop on Degradation Issues of Fuel Cells,21-23 September 2011, Thessaloniki, Greece ECN-L--11-118 NOVEMBER 2011

Upload: others

Post on 30-Oct-2019

3 views

Category:

Documents


0 download

TRANSCRIPT

Chromium impact on Strontium and Manganese-free cathode materials

M.K. Stodolnya B.A. Boukampb D.H.A. Blankb G. Rietvelda

F.P.F. van Berkela

aUniversity of Twente, Department of Science and Technology & MESA

+, Institute for

Nanotechnology

bEnergy Research Centre of the Netherlands

Presented at the 2

nd International Workshop on Degradation Issues of Fuel Cells,21-23 September

2011, Thessaloniki, Greece

ECN-L--11-118

NOVEMBER 2011

Chromium impact on Strontium and Manganese-free cathode materials

Maciej K. Stodolnya,*, B. A. Boukampb, D. H. A. Blankb, G. Rietvelda, F. P. F. van Berkela

aEnergy research Centre of the Netherlands (ECN)

bDept. of Science and Technology & MESA+ Institute for Nanotechnology, University of Twente

2nd International Workshop On Degradation Issues Of Fuel Cells; Thessaloniki, Greece; 21-23.09.2011

* [email protected]

PhD research: LNF stability in the presence of Cr species

Solid-state reactivity of LNF+Cr2O3

Gas transport of Cr and impact on LNF

Aim:

Understanding degradation mechanisms of the Cr-poisoned LNF cathode

Explanation of the Cr-poisoning mechanism

Introduction:

Cost-effective SOFC stack – cheap metallic interconnects

Cr-poisoning of SoA SOFC cathodes

Promises of the La(Ni,Fe)O3 material

Outline

PROBLEM:

• Cr-species originating from the Fe-Cr interconnects poison SoA SOFC cathodes

SOFC stack design

cathode: (La,Sr)MnO3

(La,Sr)(Co,Fe)O3

Cr-poisoningsusceptible

SOFC cells

interconnect Fe-Cr alloy

cost-effectiveness , workability, corrosion resistance , TEC

Stack Industrial CHP

4

Perovskites:

La(Ni,Fe)O3 (Komatsu et al., Zhen et al., Stodolny et al., …)

Ruddlesden-Popper nickelates:

- La2NiO4 (Hildenbrand et al., Bassat et al., …)- Nd2NiO4 (Schuler et al., Bucher et al., …)

(authors taking Cr-poisoning into account)

Strontium and Manganese-free cathode materials

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I-V

air

fuel

stable and well performing

Optimised LNF

LaNi0.6Fe0.4O3 cathode was reported to have high Cr-resistance [Komatsu et al., Zhen et al.]

Improved electrochemical performance of LNF [Stodolny et al.]

Promises of La(Ni,Fe)O3 material:

Endurance LNF testing in all ceramic housing

Endurance LNF testing with metallic interconnect

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I-V

air

fuel

Ferritic steel interconnect

performance degradation

Cr tolerance questionable !?!

M. K. Stodolny, F. P. F. van Berkel, J. P. Ouweltjes,

ECN Internal Communication,

to be submitted for publication.

post-test

analysis

?!?

Optimised LNF

Promises of La(Ni,Fe)O3 material:?!?

LaNi0.6Fe0.4O3 cathode was reported to have high Cr-resistance [Komatsu et al., Zhen et al.]

Improved electrochemical performance of LNF [Stodolny et al.]

SEM micrograph

Complex!

[Cr] ~ f (T, t, j, flow, pO2 pH2O,…)

anode

electrolyte

cathode

SEM-EDX Cr mapping

barrier layer

Cr tolerance questionable !?!

Post-test analysis of a Cr-poisoned LNF cathode

120 mm

Lit: Transport of Cr-species via:

- direct solid state diffusion

- vapor phase transport vapor transport of Cr-species and impact on LNF properties

Understanding of the LNF chemical stability

in the presence of Cr species

Explanation of the Cr-poisoning mechanism

solid-state reactivity between LNF and Cr2O3

To investigate:

PhD research aims

Current Density [mA/cm2]

Ce

ll V

olt

ag

e [

V]

solid-state reactivity

Cr gas transport

solid-state reactivity:

LaNi0.6Fe0.4O3+Cr2O3 ?

solid-state reactivity

Cr gas transport and impact on:

f (t)

conductivity f (microstructure)

f (gas atmosphere)

electrochemistry f (t, V(J))

ROAD MAP of experimentsTo investigate:

½ Cr2O3

½ Fe2O3

NiO

½ La2O3

La-Cr-Fe-Ni-O system

phase diagram - tetrahedron

composition expressed as the mole fractions of the metallic components

LaNi

LaCr

LaFe

10LNF + 5Cr2O3

10LNF + 3Cr2O3

10LNF + 1Cr2O3

LaNi0.6Fe0.4O3

Cr

addition

solid-state reactivity:

solid-state reactivity:

LaNi0.6Fe0.4O3+Cr2O3 ?

½ Fe2O3

NiO

½ La2O3

predicted phases Check experimental

XRD

10LNF + 1Cr2O3

LaCr

LaNi

LaNi0.28Fe0.4Cr0.32O3

solid-state reactivity:

LaNi0.6Fe0.4O3+Cr2O3 ?

J. Cheng et al., J. Mater. Res., 20, No.1, 191 (2005).

Relative stability

of the perovskites:

LaCrO3 > LaFeO3 > LaNiO3

½ Cr2O3

LaFe

10LNF+1Cr2O3 200h/800°C

Perovskite: orthorhombic

rhombohedral

precipitated NiO •

10LNF+1Cr2O3 only mixed

Perovskite: rhombohedral

unreacted Cr2O3 ٠

M.K. Stodolny, B.A. Boukamp, D.H.A. Blank, F.P.F. van Berkel,

J. Electrochem. Soc. 158 (2), B112 (2011).

M. Stodolny, F.P.F. van Berkel, B.A. Boukamp,

ECS Transactions, 25 (2) 2915-2922 (2009).

LNF and Cr2O3 reactivity at 800ºC for 200h

LNF and Cr2O3 reactivity

Thermodynamic equilibrium verification

rhombohedral

orthorhombic +rhombohedral

LNF (LaNi0.6Fe0.4O3)

10LNF + 1Cr2O3

orthorhombic

orthorhombic

LaNi0.28Fe0.4Cr0.32O3

X-ray Diffraction spectra Le Bail fit

ORTHORHOMBIC

~La(Fe,Cr)O3

RHOMBOHEDRAL

LaNiO3 ÷ LaNi0.6Fe0.4O3

Ni ↓ Cr ↑ e ↓ (!)

10LNF + 1Cr2O3

In

itia

lT

he

rmo

dyn

am

ic

eq

uil

ibri

um

Re

acti

vit

y

in p

rog

ress

Current Density [mA/cm2]

Ce

ll V

olt

ag

e [

V] solid-state reactivity

Cr gas transport and impact on:

f (t)

conductivity f (microstructure)

f (gas atmosphere)

electrochemistry

Cr gas transport

@ OCV

800oC

air

solid-state reactivity:

LaNi0.6Fe0.4O3+Cr2O3

f (t, V(J))

ROAD MAP of experiments

The electronic conductivity measurements while exposed to a Cr-source (ITM-14 porous foam)

Gas transport of Cr-species – experimental approach

The fractured cross-section of the as-prepared LNF-GDC-3YSZ

Conductivity evolution at 800 ºC

for the Cr-free and Cr-exposed LNF layers

M.K. Stodolny, B.A. Boukamp, D.H.A. Blank, F.P.F. van Berkel,

Journal of Power Sources 196 (2011) 9290– 9298

LNF-A

Resistance increase at 800 ºC in correlation

with the amount of deposited Cr

pCrOx <pCrOx >

ICP

-OE

S

~(Mn,Cr)2O4

~Cr2O3

Cr distribution in a Cr-exposed LNF layer

SEM-EDX

Cr distribution in a Cr-exposed LNF grain

Relative stability of the perovskites: LaCrO3 > LaFeO3 > LaNiO3

TEM-EDX

J. Cheng et al., J. Mater. Res., 20, No.1, 191 (2005).

Rhombohedral Orthorhombic

~La(Fe,Cr)O3(LaNiO3 ÷ La Ni0.6Fe0.4O3 )

Cr-exposed LNF grain - electron diffraction

Similarly to solid state reactivity of LNF with chromia:

M. Stodolny, F.P.F. van Berkel, B.A. Boukamp,

ECS Transactions, 25 (2) 2915-2922 (2009).

M.K. Stodolny, B.A. Boukamp, D.H.A. Blank, F.P.F. van Berkel,

J. Electrochem. Soc. 158 (2), B112 (2011).

Conductivity loss triggered by the Cr-intrusion

LNFLNF

Cr-substituted LNF

LNF LNF

Cr-LNF

LNF

Cr-LNF

LNF

Current Density [mA/cm2]

Ce

ll V

olt

ag

e [

V] solid-state reactivity

Cr gas transport and impact on:

f (t)

conductivity f (microstructure)

f (gas atmosphere)

electrochemistry

Cr gas transport

@ OCV

air

800oCf (t, V(J))

ROAD MAP of experiments

Influence of LNF microstructure on the Cr-poisoning impact(800 ºC)

fine particles

coarse particles

D(50)=0.38 µm

D(50)=0.54 µm

LNF

LNF

LNF-A

LNF-D

Influence of LNF microstructure on the Cr-poisoning impact(800 ºC)

fine particles

coarse particles

D(50)=0.38 µm

Aff

ec

ted

Are

a

70%

33%

Cr-

co

nte

nt

4.3at%

0.8at%

Time [h]

LNF

LNFLNF

Cr-LNF

LNF

Cr-LNF

D(50)=0.54 µm

M.K. Stodolny, B.A. Boukamp, D.H.A. Blank, F.P.F. van Berkel,

Solid State Ionics, submitted for publication

LNF-A

LNF-D

Current Density [mA/cm2]

Ce

ll V

olt

ag

e [

V] solid-state reactivity

Cr gas transport and impact on:

f (t)

conductivity f (microstructure)

f (gas atmosphere)

electrochemistry

Cr gas transport

@ OCV

800oC

air f (t, V(J))

various [CrOx(OH)y]

ROAD MAP of experiments

[CrO

x (OH

)y ]

Influence of gas atmosphere on the Cr-poisoning impact(800 ºC)

dry N2 + 0.4% O2high flow

dry airsemi-stagnant

humid airsemi-stagnant

Cr 0.2 at%

Cr 3.8 at%

Cr 5.9 at%

LNF-B

M.K. Stodolny, B.A. Boukamp, D.H.A. Blank, F.P.F. van Berkel,

to be submitted for publication.

Current Density [mA/cm2]

Ce

ll V

olt

ag

e [

V] solid-state reactivity

Cr gas transport and impact on:

f (t)

conductivity f (microstructure)

f (gas atmosphere)

electrochemistry

Cr gas transport

@ OCV

f (t, V(J))

Cr gas transport

@ load

complete SOFC

3-electrode testing

Preliminary results only!

Not published yet!

ROAD MAP of experiments

Typical 3-electrode geometries

3-electrode setup(Square planar geometry with coplanar reference electrodes)

Screen design

Electrolyte

Cr

I V

I V

VV

V V

RE RE

WE

CEon the backside

WE

CE

idea: 3-el. cell preparation dedicated cell-housing

Counter electrode block

Working electrode block

Cr

I V

I V

VV

V V

RE RE

WE

CEon the backside

WE

CE

CEon the backside

Laser added electrode alignment

misalignment <10μm !!!

alignment deviation <10μm!

line straightness <5μm !

um DEV

5.1 4.4

2.9 4.4

10.0 5.1

2.9 9.2

6.8 4.9

8.9 2.9

-1100

-900

-700

-500

-300

-100

100

300

500

700

900

1100

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456 480 504 528 552 576 600

SO06_V_CEL_A_2

SO06_V_CEL_A_3

-1100

-900

-700

-500

-300

-100

100

300

500

700

900

1100

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456 480 504 528 552 576 600

SO06_V_CEL_A_2

SO06_V_CEL_A_3

SO06_V_CEL_A_2

SO06_V_CEL_A_3

With Cr source

Cr

I V

I V

VV

V V

RE RE

WE

CEon the backside

WE

CE

Burn-in; non-linear linearity region

400mA/cm2 at 800oCReference test (all ceramic)

Ove

rpo

ten

tia

l[m

V]

Time [h]

-400

-350

-300

-250

-200

-150

-100

-50

0

200 h 200 h 400 h 400 h

Ove

rpo

ten

tial

[mV

]

WE-REF1

WE-REF2

Proof of principle

Overp

ote

ntial[m

V]

Endurance LNF testing with/without Cr source

Rpol↑

Rohm↑

With Cr source

Cr

I V

I V

VV

V V

RE RE

WE

CEon the backside

WE

CE

Cr-poisoning impact on the electrochemistry of LNF

M.K. Stodolny, B.A. Boukamp, D.H.A. Blank, F.P.F. van Berkel,

to be submitted for publication.

Both solid Cr2O3 and Cr vapor species directly reacts with LNF at 800 oC

The Cr-attack results in a replacement of Ni by Cr in the LNF perovskite lattice

The segregated nickel forms Ni-rich metal oxide precipitates in the pores

The drop of the LNF conductivity is due to formation of a low-conductive Cr-rich phase

Summary of the proposed Cr-poisoning mechanism

1000 h at 600oC no reaction detected!

10LNF + 3Cr2O3

10LNF + 5Cr2O3

10LNF + 1Cr2O3

Promising...

LNF and Cr2O3 reactivity at 600ºC

M.K. Stodolny, B.A. Boukamp, D.H.A. Blank, F.P.F. van Berkel,

J. Electrochem. Soc. 158 (2), B112 (2011).

(600 and 800 ºC case)

Influence of temperature on the Cr-poisoning impact

Promising...

M.K. Stodolny, B.A. Boukamp, D.H.A. Blank, F.P.F. van Berkel,

J. Power Sources 196 (2011) 9290– 9298

Understanding of solid-state reactivity between LNF and Cr2O3

Gas transport of Cr and its impact on the LNF properties established

Cr-poisoning is dependent on:

LNF microstructure

Operating temperature

Cr atmosphere

Cr-tolerant? SOFC:

Coarse cathode microstructure (+activation)

Low operating temperature

Low Cr-evaporation (coatings,…) Outlook

Impedance data deconvolution

In-depth explanation of Cr-poisoning on LNF

Suggestions for Cr-resistant cathode

Summary and outlook

Research priorities on the degradation issues

Cr-poisoning may not be fully avoidable…

Synergetic approach:

Minimize presence of Cr volatile species

• Interconnect protective coatings

• Dry air at high flow velocities

seek for a more Cr-tolerant cathode

• Reconsider thermodynamics

• Comparative unified testing procedure