chemistry of tasmanian inland waters

18
I Int. Revue ges. Hydrobiol. I 68 I 1 1 1973 1 61-78 I R. T. BUCKNEY and P. A. TYLER Department of Botany, University of Tasmania Chemistry of Tasmanian Inland Waters Abstract A few of Tasmania's several thousand lakes and rivers have been sampled in a preIiminary survey of water chemistry. They range in concentration from extremely dilute glacial lakes (TDS < I0 ppni) to hypersaline lagoons (TDS > 85";0), the majority being dilute (TDS < 50 ppm). The 3 mechanisms controlling water chemistry proposed by GIBBS (1970) are seen to operate and the 3 terminal water types showing precipitation-dominance, roclr-dominance and solubility- limited composition are found, together with a range of intermediates. The majority of waters have seawater ionic composition or moderate geochemical modification of this. Contents 1. Introduction ................................. 2. Methods ................................... 3. General descriptive background ......................... 4. Results ................................... a) Province I - the South-West and West .................... b) Province I1 - The Central Plateau ...................... c) Province 111 - The North-West ....................... d) Province IV - The Midlands, East and North ................. e) Province V - The Bass Strait Islands ..................... 5. Discussion .................................. 6. Acknowledgenierits .............................. 7. References .................................. 61 62 62 63 63 65 67 67 69 69 77 77 1. Introduction Most of Tasmania's several thousand lakes have never been investigated chemi- cally or biologically. The only previous survcy is that of WILLIAMS (1964, 1967) though scattered information on various waters is contained in the publications of BAYLY et al. (1966), NICHOLLS (1958), POWELL (1945) and WEATHERLEY (1958). This survey aimed to investigate the chemical nature of as many Tasmanian waters as possible. In this paper we have divided Tasmania into 5 Provinces based partly on climatic or geological criteria but mainly on topographic or arbitrary grounds. The latter was unavoidable for areas of complex geology or sparse information and such Provinces contain a mosaic of different water types. Nonetheless, some are real water chemistry provinces where distinctive water types predominate over large areas, determined by predominance of one environmental factor.

Upload: r-t-buckney

Post on 11-Jun-2016

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Chemistry of Tasmanian Inland Waters

I Int. Revue ges. Hydrobiol. I 68 I 1 1 1973 1 61-78 I

R. T. BUCKNEY and P. A. TYLER

Department of Botany, University of Tasmania

Chemistry of Tasmanian Inland Waters

Abstract

A few of Tasmania's several thousand lakes and rivers have been sampled in a preIiminary survey of water chemistry. They range in concentration from extremely dilute glacial lakes (TDS < I0 ppni) to hypersaline lagoons (TDS > 85";0), the majority being dilute (TDS < 50 ppm). The 3 mechanisms controlling water chemistry proposed by GIBBS (1970) are seen to operate and the 3 terminal water types showing precipitation-dominance, roclr-dominance and solubility- limited composition are found, together with a range of intermediates. The majority of waters have seawater ionic composition or moderate geochemical modification of this.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. General descriptive background . . . . . . . . . . . . . . . . . . . . . . . . . 4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a) Province I - the South-West and West . . . . . . . . . . . . . . . . . . . . b) Province I1 - The Central Plateau . . . . . . . . . . . . . . . . . . . . . . c ) Province 111 - The North-West . . . . . . . . . . . . . . . . . . . . . . . d) Province I V - The Midlands, East and North . . . . . . . . . . . . . . . . . e) Province V - The Bass Strait Islands . . . . . . . . . . . . . . . . . . . . .

5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Acknowledgenierits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

61 62 62 63 63 65 67 67 69 69 77 77

1. Introduction

Most of Tasmania's several thousand lakes have never been investigated chemi- cally or biologically. The only previous survcy is that of WILLIAMS (1964, 1967) though scattered information on various waters is contained in the publications of BAYLY et al. (1966), NICHOLLS (1958), POWELL (1945) and WEATHERLEY (1958).

This survey aimed to investigate the chemical nature of as many Tasmanian waters as possible. In this paper we have divided Tasmania into 5 Provinces based partly on climatic or geological criteria but mainly on topographic or arbitrary grounds. The latter was unavoidable for areas of complex geology or sparse information and such Provinces contain a mosaic of different water types. Nonetheless, some are real water chemistry provinces where distinctive water types predominate over large areas, determined by predominance of one environmental factor.

Page 2: Chemistry of Tasmanian Inland Waters

62 It. T. BIJPKNEY and P. A. TYLEII

2 . Methods

Water samples were collected in polyethylene bottles and stored a t 4 "C for 1-6 weeks before analysis. Colour was measured with a comparator and p H and conductivity (K18) electrometrically. Bicarbonate was determined titrimetricslly on unflltered samplcs (AMERICAN PUBLIC HEALTH ASSOCIATION, 1965). All other analyses were of water filtered through 0.45 p membranes. Chloride was determined by conductornetric titration (GOLTERMAN, lY69), sulphate by the method of MACKERETH (1955) and silica by the molybdate yellow method (AMERICAN PUBLIC HEALTH ASSOCIATION, 1965). Cations were determined by atomic absorption spectroscopy. Total Dissolved Solids (TDS) and Total Fixed Solids (TFS) were determined by evaporation in platinum dishes followed by ignition at GOO "C.

3. General Descriptive Background

Tasmania lies ~ i t h i n latitudes affected by the wcstcrly air stream of the Roaring Fortics. This fact, arid thc disposition of mountain ranges, accounts for the west-east rainfall gradient (Fig. 1) . Mean July temperatures range froin 0 "C-10 "C while

R U IEF RA fNFALL

GEOt OG Y VEGETATION

Fig. 1. The general pattern of relief, rainfall, geology and vegetation of Tasmania. Simplified from several authors in DAVIES (1965)

Page 3: Chemistry of Tasmanian Inland Waters

Chemistry of Tasmanian Inland Waters 63

thosc for January vary frcni 10 "C-18 'C. More than half the island lies at, an ele- vation greater t,lian 300 m, t,he only extensive lowland plains occuring in northern coastal and Midland areas (Fig. 1). Therc is a major geological discontinuity from west to east, the metamorphosed pre-Permian rocks of t'he western regions cont'rasting with the Cent'ral Plateau and drier eastern areas which are dominated by Jurassic doleritc (Fig. 1). This climatic and geological discontinuit'y is reflected in pronounced vegetat,ional differences, temperate rain-forest, or sedgelaEd dcminating the a-et arcas while dry scltrophyll or epacrid heat'h covers the drier East (Fig. 1).

Most of thc scveral t>houeand lakes lie within the a,reas occupied b y Pleistocene ice sheets or cirquc glaciers (DERRYSHIRB et al., 1965). The large shallow lakes of the eastern Central Plateau were subject, t.o periglacial activity.

The clirnat'e, geomorphology, geology and vcgetat,ion of Tasmania have been treated in detail by the aut,hors BANKS, DAVIES, JACKSON and LANCFORD in I)AVIES (1965), and by JACKSON (1968) and SPRY and BAKKS (1962).

I n a general way Taemania can be divided into 5 water chemistry provinces re- fle,ct,ing these prevailing environmental features. Inevitably, thtre is sume overlap but' such a division seems to represent broad differences and a t the same time facili- tat,es discussion of a large amount of data.

4. Results

a ) Pruvincr I - the South-West and West

Analyses of sampks from lotic and lcntic localities shonn in Fig 2 are given in Table 1.

The South-Wcst a t t rs vary in ccimpsition dcptnding on the nature and degree of geological influenccs. At the one end of the spectIurn are bionn, acid maters (Sam- ples 1-15a, 28-32) with thc bea water order of cationic and anionic dominance i. e. Na > Mg > Ca > K : C1> SO4 > I-ICO,. Ionic proportions o f thew are near those of stawater (Fig. 3). At the othcr end of the spectrum arc the Ttaters shoming the marked geochemical influence of weatherablc rocks not covered by d ~ e p pcats. Sarn- ples 33 and 34 drain the serpentenite of the Sawback Range and are magnesium- calcium-hicarLonate dominated. Samples 35-37 are influenced by the dolomite on the northern flanks of the Mt. Anne massif. Between thcse extremes are diverse u aters shov ing various degrees of geochcmical influence. Square Lakc (Xamplc 14) and Hanging Lake (Sample 13) are high altitude lakcs on the pre-Cambrian yuarti- zites of the Arthur Range. Gtochemical influence is minimal and they resemble the acid, rtc..natcr type cxcept tha t humic influences are absent. We expect many cirque lakes in the metarnorphoscd fold ranges of the South-West to be of this type. Samples 25-27 arc high altitude watc rs of uncertain status from the geologically-complex Mt. La Perousc. Samples 18-24 taken from lakes on the dolerite of Mt. Picton and Mt. Ficld show alight geochemical modification of atmospheric supply and rpscmble closely the dolerite waters of the Central Plateau (Province 11) while Nos. 38-54, all rivers, show various influrnces which r i f f d further investigation.

Thc geology of the West Coast area is complex and sedgeland peats are replaccd generally by yellow podzolic soils (NICOLLS and DIMMOCK, 1965). Only 4 lakes were sampled. Lake Rolleston (Sample 15) (Tyndall Range) and Lake Bellinger (Sample 15 a) (coastal dunes) both have near-seawater ionic proportions. On Frenchman's Cap, Lake Vera (Sample 16) shows only slight geochemical influence but Lake Tahune is calcium-magncsiurn-bicarbonate dominated. Only one lotic water retains the sea- water dominance order, the others showing various degrees of calcium and bicar- bonate additions.

Page 4: Chemistry of Tasmanian Inland Waters

Tab

le 1

. C

hem

ical

ch

arac

teri

stic

s of

sur

face

wat

ers

of th

e S

outh

-Tes

t an

d W

est

of T

asm

ania

. The

sam

ple

num

bers

ref

er

to th

e lo

cati

ons

indi

cate

d in

Fig

. 2. +

indic

ates

a t

race

, - in

dica

tes

unde

tect

able

L

ocat

ion

NO

. T

F S

Ppn1

C

olou

r P

t rn

iits

S;L+ t-

K+

Qua

rtz

Dra

inag

e,

Port

Dav

ey

Peat

Bog

, P. D

avey

M

ine

Pool

, P. D

avey

Pe

at P

ool,

Bla

kes

Ope

ning

L

ake

Pedd

er

Lak

e M

aria

1

Lak

e M

aria

3

Lak

e M

aria

4

Lak

e M

aria

5

Lak

e M

aria

6

Lak

e M

aria

7

Peat

seep

age,

Str

athg

ordo

n H

angi

ng L

ake

Squa

re L

ake

(Art

hur R

a.)

Lak

e R

olle

ston

L

ake

Bel

linge

r L

ake

Ver

a L

akeT

ahun

e N

orth

Lak

e L

ake

Pict

on

Lak

e R

ivea

ux

Lak

e D

obso

n Ja

mes

Tar

n L

ake

Seal

L

ake

Web

ster

O

use

Lak

e T

arn,

Lea

ning

Tre

e Sa

ddle

Pi

gsty

Pon

ds

Mel

aleu

ca C

k., P

. Dav

ey

Lou

isa

Riv

er

Ck.

2 L

. Ped

der,

Ck.

5, L

. Ped

der

Hon

eym

oon

Ck.

-,

L. P

edde

r C

k. o

n Sa

wba

ck R

ange

A

dam

Riv

er

Wel

d R

iver

Sa

ndfl

y C

k.

Lit

tle

Flor

entin

e R

iver

H

uon

Riv

er

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

15a

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

65.2

67

.2

56.2

76

.0

38.1

54

.1

32.5

63

.0

37.4

51

.2

48.2

35

.2

21.8

80.4

38

.4

26.8

34

.8

18.3

24

.8

27.6

17

.4

23.8

24

.6

62.4

71

.8

31.4

37

.8

50.4

41

.6

109.

2 21

1.0

142.

4 15

2.2

64.1

30.0

26

.0

24.2

6.

0 17

.7

21.0

17

.1

21.2

17

.4

20.2

18

.3

17.4

13

.6

46.2

17

.6

12.8

21

.4

9.0

17.0

18

.1

5.8

14.0

12

.6

23.0

29

.8

14.0

13

.8

17.8

30

.8

92.2

14

8.2

88.6

12

1.4

28.1

70.8

4.

5 66

.1

4.5

59.0

4.

9 53

.0

4.2

35.4

4.

8 41

.9

4.8

36.5

5.

2 22

.2

4.8

41.4

4.

8 58

.3

4.8

41.3

4.

5 32

.4

4.7

2.5.1

6.0

28.6

5.

6 27

.3

5.1

99.5

5.

6 28

.8

7.0

26.3

6.

8 28

.9

7.3

31.0

6.

8 30

.2

7.2

31.7

6.

5 14

.0

6.9

21.6

7.

2 22

.4

7.2

36.8

6.

7 34

.4

6.4

34.6

6.

5 71

.8

4.3

67.4

5.

3 40

.3

4.5

34.9

4.

8 39

.8

4.9

63.0

7.

7 16

7.9

7.6

309.

2 7.

7 21

4.5

7.9

245.

6 7.

8 57

.8

7.0

140

160

100

280

120

200 60

20

0 60

80

100

100

<5

30

50

10

0 70

30

10

< .5

<5

<

5

<5

<

5

15

15

70

50

140

160

100

120

150

<5

60

40

20

15

12

0

304

283

266

239

140

152

133

167

1.53

18

9 14

5 11

8 10

4 10

3 98

68

3 12

2 78

126 94

100

57

74

70

87

187

163

183

313

287

129

121

154

135

183

187

152

135

183

17

15

23

24 8 13

6 11

9 9 3 21

12 8 10

34

13

8 15 8 13

5

14

3 3 20

18

19

19

37 8 5 10

16

16

302 14

14

17

42

60

42

13

52

60

33

47

39

33

37

35

35

28

39

67

8 5

100 55

27

95

135 55

80

75

43

30

33

42

74

26

24

45

95

1255

20

00

1550

17

60

206

103

100

93

23

61

83

49

85

53

69

73

58

42

36

45

197

101

92

50

56

67

100 38

58

58

6 5

38

53

103

145

44

74

74

325

708

2055

12

50

1558

18

0

472

460

420

315

200

324

251

234

244

271

241

248 86

18

1 18

1 72

7 15

0 11

4 16

9 17

5 14

8 12

6 90

147

153

295

210

250

472

495

211

220

287

190

300

450

255

199

255

0 27

0

32

0 80

0

33

15

37

0 35

9

12

36

69

0 23

0

27

0 27

0

21

16

30

5 26

3

28

35

76

96

11

120

13

51

11

14

53

95

8 20

5 8

70

20

105

85

2%

160

118 0

27

0 44

0

19

0 23

0

48

338

56

1610

17

36

20

22

2170

16

24

80

16

271

37

0.20

0.

2 -

0.2

0.12

-

0.46

-

0.32

-

-

-

0.05

-

+?

j

-

0.09

3 2

0.7

-

d R

2.0

-

.'d

2.0

-

?

3.1

-

2.7

-

6.8

-

f *I

-

-

0.14

-

0.34

0.

3 -

0.3

0.05

-

-

-

2.1

0.30

2.

8 -

2.6

-

5.9

-

2.5

0.12

Page 5: Chemistry of Tasmanian Inland Waters

Pict

on R

iver

St

yx R

iver

Sa

vage

Riv

er

Farm

Ck.

B

ulgo

bac

Cre

ek

gr Po

ssey

Riv

er

5 H

atfi

eld

Riv

er

6

D

War

atah

Cre

ek

a Q

ue R

iver

M

agne

t Ck.

Res

'r *g

Hen

ty R

iver

b~

M

acki

ntos

h R

iver

p.

u1

Yol

land

e R

iver

-

Mur

chis

on R

iver

w 3

Why

teR

iver

- K

ing

Riv

er

5 0,

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

53.4

31

.0

46.5

92

.2

68.4

14

8.7

71.2

64

.8

125.

4 53

.4

29.2

46

.1

41.8

24

.2

39.6

34

.2

24.2

39

.3

33.2

22

.6

38.2

29

.2

29.6

40

.5

35.6

21

.2

36.3

32

.2

21.0

40

.5

37.8

19

.6

39.8

36

.6

19.6

36

.0

28.2

16

.6

32.4

32

.6

14.8

21

.1

57.4

30

.4

58.0

29

.8

16.4

34

.3

* Bic

arbo

nate

con

cent

ratio

n re

duce

d fo

r fu

rthe

r ca

lcul

atio

ns

7.1

60

170

7.7

15

252

7.1

50

326

6.5

5 19

2 6.

2 50

15

7 5.

6 20

14

4 6.

8 50

12

2 7.

4 <

5 13

9 6.

8 30

13

5 6.

5 15

15

2 7.

4 50

14

8 7.

5 70

10

0 6.

2 50

12

2 7.

5 50

78

6.

8 40

18

7 6.

4 30

96

12

215

28

450

28

240

31

75

23

65

23

53

10

70

20

185

18

65

19

65

15

95

20

130

15

45

13

45

8 11

0 13

90

133

709

500

104

92

101

104

98

104

185

94

61

73

37

221

249

269

39

4.1

+ 41

0 12

00*

39

516

583*

16

0 4.

2 0.

15

342

31

29

4.2

0.30

25

6 22

31

4.

2 0.

20

200

110

13

4.5

-

231

129

10

25.0

0.

10

245

102

16

3.5

-

254

67

25

3.1

0.35

27

5 60

23

3.

1 -

266

74

23

1.9

-

163

170

19

1.8

0.10

23

0 33

23

1.

0 0.

25

174

33

20

2.0

0.10

24

9 23

1 51

0.

20

-

65

175

89

32

1.6

-

Page 6: Chemistry of Tasmanian Inland Waters

Fig.

3.

Ter

nary

dia

gram

s sh

owin

g io

nic

prop

ortio

ns o

f w

ater

s fr

om P

rovi

nce

I-th

e So

uth-

Wes

t and

Wes

t of T

asm

ania

. T

he n

umbe

rs r

efer

to

sam

ple

num

bers

in

Tab

le 1

. + i

ndic

ates

sea

wat

er p

ropo

rtio

ns.

Page 7: Chemistry of Tasmanian Inland Waters

Chemistry of Tasmanian Inland Waters 67

Fig. 4. The location of sample sites in Province 11-The Central Plateau of Tasmania.

c) Province 111 - The North- West

The geology of the North-West is complex and a wide variety of waters is found. The majority sampled (Fig. 6) have the dominance order Na > Mg > Ca > K: HCO, > C1> SO, (Table 3). The anionic order suggests geochemical contribution but there are considerable ion imbalances which may be attributed to over-estimation of bicarbonate in the solid phase (GOLTERMAN, 1969). If bicarbonate is calculated as HCO, = Z+ - (SO, + C1) then the C1> HCO, > SO, order is restored.

A few lotic samples show considerable enrichment by calcium or magnesium bicar- bonate (Samples 8-13). Maracoopa Creek drains limestone caves and limestone also outcrops in the Mersey catchment. Magnesium dominance in some creeks may be derived from Tertiary olivine basalts.

Waters draining coastal heaths (Samples 5,21) resemble the brown waters of the South-West in dominance order but are more concentrated. Humic coastal waters of this type also occur on the Bass Strait Islands and the North East.

It seems likely that atmospheric ions form the main supply in this area except where readily-soluble rocks are exposed.

d) Province I V - The Midlands, East and North

Most of the eastern part of Tasmania is dry (mean annual rainfall < 75 cm), especially in the far North-East and Midlands where evaporation may exceed precipitation and closed lakes occur. There are many shallow lagoons in this Province (Fig. 7), 5.

Page 8: Chemistry of Tasmanian Inland Waters

68 R. T. BUCKNEY and P. A. TYLER

\

most of which have not been sampled. The ones sampled (Table 4) wcre saline (Samples 1-6) as recorded by WILLIAMS (1964). The Tunbridge Lagoons (Samples 3,4) appeared to be closed lakes and were highly saline. Sodium chloride dominance was usual but Tnnbridge No. 4 was magnesium chloride dominated. The coastal lagoons of the North-East have seawater-type composition but they differ from the South-West waters and Bass Strait Islands lagoons in having low colour, high pH, relatively high calcium and high salinity. Many of the eastern rivers had the excess bicarbonate phenomenon noted in the North-West.

Page 9: Chemistry of Tasmanian Inland Waters

69 Chemistry of Tasmanian Inland Waters

Fig. 6. The location of sample sites in Province 111-the North-West of Tasmania.

The Ben Lomond massif is a special case within this Province. It is a high-elevation granite block capped with dolerite. I t s waters (Table 4) (Samples 11-19,21) have seawater-type dominance orders typical of inert rocks, though there is some enrichment by calcium and bicarbonate. Not surprisingly, they resemble the waters of the western Central Plateau.

e) Province V - The Bass Strait Islands

The waters of the Bass Strait Islands (Fig. 8) present a range of types (Table 5 ) from dilute, acid, huinic waters (Samples 1, 7, 8) with seawater dominance, through types with apparent geochemical influences, to the high salinity lagoons (Samples 6,13). The former are similar to the waters of the South-West and the Queensland coastal lagoons (BAYLY, 1964) while the colourless, high-salinity lagoons are like the saline lagoons of the Midlands. They are, however, dominated by bicarbonate, not chloride. Chain of Lagoons (Sample 2) appears to bc sulphate dominated, the only such water in this survey. Although rare, sulphate dominance has been reported elsewhere (RODHE, 1949, TALLINC and TALLING, 1965).

5 . Discussion

In a recent paper GIBBS (1970) concluded that three major mechanisms control thc chemistry of surface waters throughout the world - atmospheric precipitation, geochemical processes and evaporation-crystallisation. Each process leads to a well-defined type of water with a continuum of variation between the extremes.

Page 10: Chemistry of Tasmanian Inland Waters

Tab

le 2

. C

hem

ical

cha

ract

eris

tics

of s

urfa

ce w

ater

s of

th

e C

entr

al P

late

au o

f T

asm

ania

. T

he s

ampl

e nu

mbe

rs r

efer

to

the

loca

tions

ind

icat

ed i

n Fi

gure

4.

+ in

dica

tes

a tr

ace,

- in

dica

tes

unde

tect

able

Loc

atio

n N

o.

TD

S T

FS

K

i8

pH

Col

our

NA

’ K

f C

at+

Mg++

C1

- H

CO

d-

SOc-

- Si

Oz

Fe

pprn

pp

rn

pS

.cn

~-~

P

t un

its

+

Iceq

/l

+

pprn

pp

m

Lak

e D

ove

Lak

e A

yr

Lag

oon

on M

t. Pi

lling

er

Tar

n on

Pad

dy’s

Nut

L

abyr

inth

No.

1

Lab

yrin

th N

o. 2

L

abyr

inth

No.

3

Lab

yrin

th N

o. 3

A

Lab

yrin

th N

o. 4

L

abyr

inth

No.

5

Lak

e H

elio

s L

ake

St. C

lair

Lak

e T

hor

Lak

e Sa

lom

e L

ake

Bal

l Po

ol o

f B

ethe

sda

“Lak

e A

lliso

n”

Lak

e M

acke

nzie

N

ew Y

ear L

ake

“Lak

e Iv

o”

Tal

inah

Lag

oon

Lak

e A

da

Car

ter’

s Lag

oon

Lak

e A

ugus

ta

Pine

Lak

e G

reat

Lak

e Sh

anno

n L

agoo

n A

rthu

rs L

ake

Lit

tle

Lak

e G

unn’

s Lak

e L

ake

Ech

o B

ront

e L

agoo

n T

unga

tinah

Lag

oon

Lag

oon

of Is

land

s W

oods

Lak

e L

ake

Sore

11

1

2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

17.0

7.

9 28

.6

17.8

21

.4

12.4

20

.6

4.4

16.8

9.

0 18

.4

11.2

8.

8 4.

8 21

.0

12.8

20

.2

11.4

9.

8 4.

6 11

.4

7.0

20.8

11

.0

13.0

9.

2 20

.0

11.6

16

.0

8.8

20.0

15

.2

18.4

10

.8

15.4

11

.0

21.8

12

.2

17.0

8.

4 17

.8

14.0

18

.0

9.6

19.6

7.

5 17

.6

6.5

12.7

6.

3 20

.1

9.0

25.7

16

.1

27.9

15

.7

17.0

10

.2

18.6

12

.6

21.6

13

.4

27.8

16

.0

24.8

14

.4

155.

7 98

.4

58.7

41

.6

36

57.8

41

.8

12.4

31

.3

21.9

12

.6

16.1

13

.3

19.0

19

.0

13.9

11

.8

16.8

21

.6

15.5

15

.7

17.8

23

.2

17.8

12

.8

21.5

19

.3

20.0

17

.7

22.5

23

.4

14.8

20

.1

38.6

26

.6

18.9

16

.3

28.6

31

.0

35.1

20

4.4

57.3

51

.2

7.0

7.1

7.3

6.8

6.5

6.6

6.3

5.9

6.1

5.8

7.4

6.2

6.9

6.9

7.6

6.8

7.2

6.8

6.9

6.9

6.7

7.1

6.9

6.5

7.8

6.3

7.3

6.5

7.3

7.4

7.2

7.1

7.2

7.7

7.1

7.0

20

<5

<

5

20

<5

<

5

<5

<

5

<5

<

5

<5

<

5

<5

10

5 <

5

10

<5

<

5

<5

<

5

<5

<

5

<5

<

5

<5

<

5

<5

<

5

<5

<

5

<5

<

5

10

<5

<

5

48

10

83

10

78

8 44

10

57

15

52

18

57

26

70

28

48

18

61

19

44

5

78

5 48

20

48

10

48

12

52

13

65

12

61

6

96

5 65

5

52

8 48

3

52

64

52

26

30

15

57

8 96

8

78

17

52

8 57

15

78

14

74

13

83

10

45

7 38

14

8 16

40

135 75

65

30

25

25

35

35

45

40

50

50

60

45

90

65

50

90

70

95

75

55

85

45

69

135

131 60

60

90

290

115

919

162

187

18

189

25

75

50

25

42

25

33

50

33

33

67

42

25

42

33

66

42

50

67

58

67

50

42

32

17

60

184 80

42

33

83

75

83

584

110

138

97

15

75

156

83

91

103

23

152

21

83

20

105

18

128

35

64

30

111

22

109

17

113

64

60

60

13

88

54

79

49

143

77

51

74

97

92

135

81

80

70

120

38

104

160

89

98

73

50

34

73

110

140

281

177

68

91

70

63

95

92

125

181

209

138

230

726

1422

* 24

2 36

8

45

26

24

18 8 7 9 8 12 8 16

13

19

22

19

45

23 7 7 7 38 6 10

28

21

11

38

10

9 11

48

74

44

27

1.2

-

3.4

-

2.3

-

0.7

-

1.2

-

0.3

-

0.8

-

0.7

-

1.4

-

0.4

-

1.3

-

2.9

0.09

1.

2 -

2.7

-

1.1

-

4.0

-

1.0

-

0.1

-

0.5

-

0.1

-

0.5

-

0.1

-

1.8

-

2.3

-

1.6

-

1.2

-

7.1

-

2.6

-

1.7

-

3.3

-

3.9

-

5.1

-

5.1

-

10.6

-

0.14

20

0 30

0 90

12

.9

1.56

Page 11: Chemistry of Tasmanian Inland Waters

37

61.2

42

.9

86.0

7.

0 <

5

278

20

211

203

469

300

40

- 0.

08

Lak

e C

resc

ent

Bro

wnw

ater

Lag

oon

38

66.2

25

.1

42.8

5.

9 80

10

9 38

14

9 12

8 20

5 20

0 95

0.

9 0.

10

Iris R

iver

39

28

.4

18.4

27

.7

7.2

< 5

87

5 70

75

17

1 11

5 8

5.1

-

Wea

ning

Pad

dock

Ck.

40

42-2

31

.2

42.7

7.

2 <

5 11

3 5

130

188

168

435*

6

10.4

-

Tar

rale

ah C

anal

41

24

.8

8.5

27.4

5.

5 15

96

17

32

23

23

0 104*

18

2.9

0.15

R

ippl

es C

k.

42

35.4

24

.2

35.3

7.

4 <

5 96

14

13

1 70

48

45

6*

11

9.6

+ “W

oods

Ck.

” L

ake

Riv

er

43

75.4

44

.6

111.

5 7.

9 <

5

174

18

650

320

129

1010

23

13

.5

-

45

65.0

37

.6

68.7

7.

4 15

16

5 19

24

2 18

5 96

0 0.

22

* Bic

arbo

nate

red

uced

for

furt

her

calc

ulat

ions

.

Page 12: Chemistry of Tasmanian Inland Waters

Tab

le 3

. C

hem

ical

cha

ract

eris

tics

of

surf

ace

wat

ers

of t

he N

orth

-Wes

t of

Tas

man

ia.

The

sam

ple

num

bers

ref

er t

o th

e lo

ca-

tion

s in

dica

ted

in F

ig. 6

. + in

dica

tes

a tr

ace,

- in

dica

tes

unde

tect

able

. L

ocat

ion

So.

T

DS

TF

S

K,,

pH

Col

our

Nat

K

t C

a++

Mg+

+ C1

- H

CO

J-

SO

c--

SiO

L F

e pp

in

pp

in

p,S.

c

mi'

Pt

uni

ta

c

pe

dl

- pp

m

ppm

Lak

e R

owal

lan

1

26.5

15

.6

Lak

e Pa

rang

ana

2 22

.1

12.8

L

ake

Bar

ring

ton

3 32

.6

21.0

D

am, E

lliot

Res

. Far

m

4 70

.2

49.6

D

am, D

eten

tion

5 16

4.4

88.2

P.

R.

Bau

ld's

Dam

6

58.2

35

.4

Cre

ek o

n R

,oun

d M

t. 7

45.0

35

.4

Cas

tra

Rvt

. 8

32.8

23

.0

Mer

sey

Riv

er

9 10

8.8

71.8

M

arac

oopa

Cre

ek

10

78.6

53

.8

Mea

nder

Riv

er

11

66.2

55

.6

Qua

mby

Bro

ok

12

162.

2 72

.4

Rub

icon

Riv

er

13

156.

4 11

8.8

Saxo

n's

Cre

ek

14

84.4

60

.4

Flow

erda

le R

iver

15

74

.6

43.4

B

ig C

reek

16

64

.8

43.4

In

glis

Riv

er

17

72.4

45

.8

Bla

ckfis

h C

reek

18

81

.0

56.6

W

ilson

's C

reek

19

13

5.8

69.8

B

auld

's C

reek

20

10

3.2

92.2

H

eath

Dra

inag

e, D

eten

tion

21

193.

4 92

.6

* Bic

arbo

nate

red

uced

for

fur

ther

cal

cula

tion

25.2

20

.7

32.2

70

.5

167.

2 76

.1

42.7

40

.6

173.

6 11

3.6

95.1

14

2.5

187.

4 11

1.9

84.5

83

.0

87.0

11

0.2

132.

0 16

1.2

182.

3

6.2

6.2

6.3

7.0

4.8

7.0

7.5

7.5

7.8

7.7

6.8

7.0

7.5

6.0

5.8

6.6

7.0

6.6

5.3

6.9

4.8

<5

<

5

<5

<

5

280 5

<5

20

5 <

5

<5

15

10

50

70

10

80

<

5

240

<5

56

0

61

9 11

5 52

6

140

96

18

110

298

62

153

566

105

283

231

68

131

130

11

133

118

18

110

139

23

750

104

13

1060

12

2 23

33

0 29

5 31

28

0 39

5 46

42

5 40

9 46

16

0 28

3 58

14

0 28

7 47

14

5 29

6 24

14

8 38

7 65

15

8 52

2 10

5 14

2 61

0 55

22

5 61

0 10

5 55

63

58

100

253

400

198

192

133

283

125

267

616

1125

24

8 22

5 22

8

238

253

188

327

277

90

163

120

131

117

180

382

3860

* 84

2 0

415

1144

* 15

6 34

9 18

6 20

1 17

9 17

63*

132

1151

12

8 87

9*

469

1084

* 58

1 19

60*

677

231*

48

0 94

0*

445

1223

* 46

8 10

21*

644

1860

* 81

9 42

0*

1019

204

1*

1430

0

11

26

39

46

320 18

9 21

36

25

29

36

43

71

37

32

47

32

81

73

11

5

4.8

0.05

4.

4 -

4.1

-

0.18

0.

7 0.

26

- 9.

8 -

Y 10

.2

-

i2 L?l 4.

1 -

5.8

-

* .w 6.

1 -

.p 10

.0

-

20.0

-

M

-

a 2

-

0.18

m

0.14

'

19.6

0.

20

2.0

0.58

1.4

0.52

+ 8.

8 -

Page 13: Chemistry of Tasmanian Inland Waters

Tab

le 4.

Che

mic

al c

hara

cter

istic

s of

surf

ace

wat

ers

of

the

Mid

land

s, E

ast

and

Nor

t,h-

Eas

t Tas

man

ia.

Sam

ple

num

bers

re

fer

to t

he l

ocat

ions

ind

icat

ed i

n Fi

g. 7

. +

indi

cate

s a

t,rac

e, - in

dica

tes

unde

tect

able

Cal

vert

s Lag

oon

Lak

e T

ihrr

ias

Tun

brid

ge N

o. 1

T

unbr

idge

No.

4

Ula

ckni

ans L

agoo

n L

ittl

e L

. Wat

erho

use

Ben

achi

's C

reek

Dam

L

ake

Lea

ke

Lak

e To

oms

Ris

don

Bro

ok D

am

Bri

seis

Dam

Fr

ome

Dam

C

asca

de R

. G

room

R.

N.

Geo

rge

R.

Geo

rge

R.

Wel

d R

iver

(N. E.

) St

ory'

s C

reek

A

herf

oyle

Cre

ek

Bre

ak O

'Day

Riv

er

Sout

h E

sk R

., M

athi

iina

Sout

h E

ak R

., P

erth

Sh

eepw

ash

Cre

ek

Riu

garo

oma

R.

Fore

ster

R.

Bri

d. R

. C

rk. o

il Si

delii

ig

St..

Pat

rick

s K.

Dis

tille

ry C

k.

Blu

e T

ier

Ck.

C

lyde

Riv

er

Lis

dillo

n R

iver

A

pslc

y R

iser

M

ount

ain

Riv

er

Rus

sell

Riv

er

Sand

fly

Rvt

. iY. W

. Bay

Riw

r

1

2 3

4 5 6 8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

2i

28

29

30

31

32

33

31

35

36

37

I

463.

6 25

092

8638

4 23

81.0

12

53.2

23

8.4

42.2

32

.1

34.6

43

.4

39.2

50

.6

41.2

44

.4

42.8

18

.8

33.8

12

6.2

32.4

80

.0

214.

4 58

.4

42.0

56

.4

33.6

38

.0

41.0

li

i.0

12

8.4

li1.

4 68

.8

76.8

51

.4

86.8

95

.0

90.8

319.

8

191.

6 27

.0

22.1

68

.5

21.4

31

.2

29.8

38

.4

33.6

34

.4

28.8

51.6

17

3.4

47.2

32

.0

40.4

24

.8

26.4

29

.6

132.

0 91

.4

152.

5 48

.6

52.0

33

.2

62.2

60

.4

5950

0 17

1500

363.

2 44

.0

24.6

13

2.2

52.1

56

.4

52.4

59.0

71

.2

21.4

41

.5

203.

9 37

.0

91.0

66.6

46

.3

57.8

37

.1

39.4

44

.0

245.

0 18

1.0

252.

3 89

.5

107.

5 61

.7

111.

6 11

1.6

7.6

8.5

8.3

8.2

i.9

8.3

6.6

6.8

7.1

7.3

7.3

6.9

7.9

7.1

6.7

7.1

7.4

6.9

5.7

i.1

6.8

6.8

7.0

i.3

6.

9 6.

9 6.

9

7.0

7.4

7.6

7.6

7.5

6.9 -..

I .3

140

50

20

50

60 5

<5

<

5

<5

20

40

<

5

20

<5

<

5

<5

5 5 5 5 20

12

0 <

5

<5

<

5

<5

<

5

<5

60

20

10

<5

<

5

5 30

30

6951

0 43

50

6400

00

8100

00

1131

0 95

62

930

139

161

278

165

244

213

256

218

244

244 50

83

56

2 15

9 25

0 16

17

261

183

218

144

148

935

530

1042

29

2 29

2

3i9

33

0

148

183

2281

10

24

2560

20

500 5

385 48

23

38

31

15

18

21

23

1

5

15

17

8

24

11

40

33

33

31

26

15

20

82

45

51

15

42

16

38

46

28

108

4400

13

0 25

000

3500

00

4050

44

50

1900

16

5 10

8 46

5 50

55

70

55

95

85

105

210

820

80

229

115

100 i0

10

5 49

90

95

750

750

7 50

200

290

189

245

390 ao

2000

0 21

66

1420

00

1600

000

6917

45

83

317

100

113

776 58

100

108 83

125

142

142

63

138

509

250

667

117 92

10

8 75

83

100

605

467

816

243

257

195

258

284

ioa

7360

48

iOO

O

1587

000

3440

0 17

320

1425

25

5 26

1 46

0 26

9 44

3 35

5 44

0 34

3 34

2 30

5 56

84

4il

16

9 44

0 28

74

407

274

340

255

180

205

1632

10

45

1294

55

5 46

6 31

0 60

5 51

5

2160

99

90

236

3990

' 23

i 64

0'

156'

15

0 34

45

14

4'

80

200

* 31

2'

180

139

308

I070

14

0 12

43'

121

104

187'

20

0 '

50

152

203

869.

15

50.

1261

38

60 *

i10'

35

2 45

6

5809

9x1 *

589

8390

0 49

6 94

0 i0

13

31

600 40

32

34

43

36

25

45

38

95

38

49

110 16

37

15

23

8

70

17

204 22

42

20

64

68

za

28

- .6

.5

18.0

i.

6

6.3

4.5 -

10.9

9.2

8.0

13

2.3

10.1

6.

5

9.6

8.8

11.7

.15

.29

.95

.30 -

-

-

-

-

-

.20

.15

.10

.I0

.1

0 -

-

-

-

.16

.20

.20 -

- - -

-

- - -

.16 -

-

.10 + .05 -

* Bic

arbo

nate

red

uced

for

furt

her

calc

ulat

ions

Page 14: Chemistry of Tasmanian Inland Waters

74 R. T. BUCKNEY and P. A. TYLER

FLINDERS I S L A N D

Fig. 8. The location of sample sites in Province V-the Bass Strait Islands of Tasmania

weathering of these rocks (HOLMES, 1965) and (d) the large areas of peat soil derived from Gymnoschoenus sphaerocephalus (Cyperaceae) which isolatcs the water from underlying rock. Supply of ions is mainly from airborne sea spray. The lack of significant geochemical influence can be gauged froin the low silica concentrations.

Rock-dominance waters (the second terminal typc of GIBBS) occur in all Provinces where easily-weathered rocks such as dolomite occur. Within the South-West, where seawater ionic proportions are usual, outcropping dolomite and serpentenite dramati- cally change the ionic composition as in the case of waters draining the northern slopes of Mt. Anne. The alkaline earth-bicarbonate dominance of such waters is usual wherever minerals are readily soluble in weakly acid rainfall (GORHAM, 1961 : HOLMES, 1965).

Most of Tasmania’s dilute waters (< 800 ppm TDS) are intermediate between precipitation-dominant and rockdominant. The varying degrees of modification of seawater ionic proportions arc shown by the ternary diagrams (Fig. 9). Waters on dolerite usually lie within the dotted line in the ternary diagrams (Fig. 9). Since dolerite is so abundant, most of Tasmania’s lakes will be of this type.

Evaporation-crystallization processes lead to the third end type of the GIBBS scheme, where composition is determined by the ion source and by crystallization as concentration of saline waters proceeds. In Tasmania waters of this type are restricted to the Midlands and North-East in areas with high evaporation preci- pitation ratios so that closed lakes may occur (LANGBEIN, 1961). Even the magnesium chloride dominance of Tunbridge Lagoon No. 4 can be explained by this phenomenon.

Though the chemistry of Tasmanian waters is explicable in terms of the three processes outlined by GIBBS (1970) they do not fall entirely within the boomerang

Page 15: Chemistry of Tasmanian Inland Waters

Tab

le 5

. C

hem

ical

cha

ract

eris

tics

of s

urfa

ce w

ater

s of

the

Bas

s S

trai

t Is

land

s. T

he s

ampl

e nu

mbe

rs r

efer

to

the

loca

tions

in

dica

ted

in F

ig. 8

. - in

dica

tes

unde

tect

able

L

ocat

ion

No.

T

DS

T

FS

K

IR

pH

Col

our

Na+

K’

C

a++

Mgf

f C

l- H

C03

- SO

1--

SiO

, F

e 0

- ppm

pp

m

B K

ing

Isla

nd

Z’

$

Pear

shap

e L

agoo

n 3

279.

9 21

0.4

367.

7 7.

0 25

0 16

22

258

1690

70

0 38

20

1055

70

4 -

- 6 c

ppm

pp

m

&S

.cm

-1

Pt

unit

s C-

wed

l

Lak

e M

arth

a L

avin

ia

1

393.2

23

8.2

404.

0 5.

1 50

0 21

75

100

245

866

3751

17

2 80

0 0.

4 0.

35

Cha

in of

Lag

oons

2

394.

3 27

6.6

426.

8 6.

7 10

00

2428

12

0 29

5 78

3 39

20

468

4800

-

1.30

Nar

acoo

pa R

utile

Dam

5

315.

2 23

6.5

397.

1 7.

1 15

0 15

88

95

340

759

3584

32

1 80

0 5.7

0.

50

5 L

ake

Flan

igan

6

1463

.2

1249

.3

8.8

40

8235

55

3 19

00

4220

18

84

3190

10

35

0.1

0.15

$‘

Big

Ree

dy L

agoo

n 7

538.

4 -

5.3

600

4080

30

8 22

00

1250

66

10

0 50

9 0.

50 ’

Penn

y L

agoo

n 4

419.

8 53

2.4

7.0

30

4173

26

9 36

5 15

24

7755

52

5 36

00

0.3

-

Cap

e B

arre

n Is

land

J”

Big

Gra

ssy

Lag

oon

8 21

4.2

128.

4 23

4.0

5.7

400

1304

31

12

0 29

2 17

63

71

140

0.80

?L

Lag

oon

on C

row

s P

t. 9

834.

6 -

7.0

30

8300

38

5 22

50

200

1236

0 52

0 46

8 0.

20

3 C

reek

at H

alf

Moo

n B

ay

10

243.

6 18

3.4

306.

0 7.

0 20

0 20

43

97

100

458

2747

16

7 11

5 0.

30

Ft? D

over

Riv

er

11

155.

6 12

5.6

216.

0 7.

3 10

0 16

45

62

85

350

1933

14

0 65

0.

30

t! H

ome

Hill

Lag

oon

12

563.

8 46

0.2

7.3

350

5090

21

3 16

5 68

3 60

70

753

381

0.50

M

odde

r Lag

oon

13

998.

0 -

8.5

70

1142

0 38

5 42

00

2167

71

20

8782

51

1 -

Page 16: Chemistry of Tasmanian Inland Waters

76 R. T. BUCKNEY and P. A. TYLER

_.

\ O :

distribution of his Fig. 1. Our data would fill in between thc arms of the boomerang. A statement better describing the Tasmanian case is that when concentration in- creases beyond a certain value (c. 850 ppm TDS) the maximum attainable proportion of divalrnt ions decreases. At hypersaline concentrations, however, salting out of monovalent cations may lead to Mg or Ca dominance (e. g. Tunbridge No. 4).

The relationship between conductivity and total ionic concentration, TDS and TFS is approximately linear, the best correlation being between K,, and TFS where TFS = 0.5 Ki8. Other relationships are TFS = 0.72 TDS and Z+ (peqil) = 8.8 Ki8.

Page 17: Chemistry of Tasmanian Inland Waters

Chemistry of Tasmanian Inland Waters 77

The relationships hold for waters with concentrations up to 300 mg/l. The only waters with greater concentrations are the saline lagoons and some Bass Strait Islands lagoons and for these the relationships have not been investigated. The contribution of organic matter to TDS values, and of the H+ ion to conductivity, is significant in the case of dilute brown waters.

Silica concentrations in most lakes are low but in rivers they may be as high as 20 ppm. Rivers also tend to be more enriched in bicarbonate than do lakes and fre- quently display an anion excess. This may be caused by contribution of HCO, in the solid phase ( GOLTERMAN, 1969).

Tasmania is the richest state, limnologically, of the Commonwealth of Australia. It has most of the country’s lakes and also a greater range of type than other states. It is the only state where glacial lakes are well developed. Whereas in most states saline or hypersaline waters predominate the vast majority of Tasmania’s lakes are likely to contain less than 50 ppm TDS. It is a pure water state.

6. Acknowledgements

This work was carried out under a grant from the Australian Research Grants Committee. We thank also the Nuffield Foundation for a grant to provide atomic absorption facilities. We thank the numerous persons who collected water samples.

7 . References

AMERICAN PUBLIC HEALTH ASSOCIATION, 1965 : Standard Methods for Examination of Water and Wastewater, 12th ed., New York.

BAYLY, I. A. E., 1964: Chemical and biological studies on some acidic lakes of East Australian sandy coastal lowlands. - Bust. J. Mar. Freshwat. Res. 15: 56-72.

- J. A. PETERSON, P. A. TYLER, and W. D. WILLIAMS, 1966: Preliminary limnological in- vestigation of Lake Pedder, Tasmania, March 1-4, 1966. - Aust. SOC. Limnol. Newsl. 5: 30-41.

DAVIES, J. L. (Ed.), 1965: Atlas of Tasmanis. - Lands and Surveys Department, Hobart, DERBYSHIRE, E., M. R. BANKS, J. L. DAVIES and J. N. JENNINGS, 1965. Glacial Map of Tasmania.

GIBBS, R. J., 1970: Mechanisms controlling world water chemistry. - Science 170: 1088-1090. GOLTERMAN, H. L. (Ed.), 1969. Methods for Chemical Analysis of Freshwaters. - I B P Handbook

GORHAM, E., 1955: On the acidity and salinity of rain. - Acta Geochem. Cosmochim 7: 231-239. - 1958: The influence and importance of daily weather conditions in the supply of chloride,

sulphate and other ions to freshwaters from atmospheric precipitation. - Phil. Trans. Roy.

- 1961 : Factors influencing the supply of major ions to inland waters, with special reference to

HOLXES, A., 1965: Principles of Physical Geology. - Thomas Nelson and Sons Ltd., London. JACKSON, W. D., 1968: Fire, air, water and earth - an elemental ecology of Tasmania. - Proc.

LANGBEIN, W. B., 1961: The salinity and hydrology of closed lakes. - U. 8. Biol. Surv. Prof. Pap. No. 412.

MACKERETH, F. J. H., 1955: Ion-exchange procedures for the estimation of (I) total ionic con- centration, (11) chlorides and (111) suIphates in natural waters. - Mitt. int. Ver. Limnol. No. 4:

NICHOLLS, A. G., 1958: The population of a trout stream and the survival of released fish. - Aust.

- Roy. SOC. Tas., Special Publ. No. 2.

No. 8. Blackwell Scientific Publications, Oxford and Edinburgh.

SOC. B. 247: 147-178.

the atmosphere. - Geol. SOC. Amer. Bull. 72: 795-840.

Eco~. SOC. Aust. 3: 9-16.

16 PP-

J. Mar. Freshwat. Res. 9: 319-350.

Page 18: Chemistry of Tasmanian Inland Waters

78 R. T. BUCKNEY and P. A. TYLER

NICOLLS, K. D., and G. M. DIMMOCK, 1965: Soils. In: J. L. DAVIES (Ed.), Atlas of Tasmania. - Lands and Surveys Dept., Hobart.

POWELL, A. W. G., 1945: Ecology of the freshwater fauna of Lake St. Clair, particularly the Copepoda, with special reference t o diurnal and seasonal variations. - Pap. Proc. Roy. SOC. Tas. 1945: 62-124.

RODHE, W., 1949: The ionic composition of lake waters. - Verh. int. Ver. Limnol. 10: 377-386. SOLOMON, M., 1962: The tectonic history of Tasmania. I n A. SPRY and M. R. BANKS (Eds.) The

SPRY, A., and M. R. BANKS, 1962: The geology of Tasmania - J. Geol. SOC. Aust. 9: 107-362. TALLING, J. F., and I. B. TALLINC, 1965. The chemical composition of African lake waters. -

TOLPA, S., and E. GORHAM, 1961: The ionic composition of waters from three Polish bogs. -

TYLER, P. A., 1972: Reconnaissance lininology of Sub-Antarctic Islands. I. Chemistry of lake waters from Macquarie Island and the Iles Kerguelen. - Int . Rev. ges. Hydrobiol. 57: 759.

WEATHERLEY, A. H., 1958: Tasmanian farm dams in relation to fish culture. - C. S. I. R. 0. Aust. Div. Fish. Oceanogr. Technical Paper No. 4.

WILLIAMS, W. D., 1964: Some chemical features of Tasmanian Inland Waters. - Aust. J. Mar. E’reshwat. Res. 16: 107-122.

- 1967 : The cheniical characteristics of lentic surface waters in Australia. I n : -A. H. WEATHERLEY (Ed.) : Australian Inland Waters and their Fauna. - Australian National University Press, Canberra.

Geology of Tasmania. - J. Geol. SOC. Aust. 9: 311-339.

Int. Rev. ges. Hydrobiol. 50: 421463.

J. Eco~. 49: 127-133.

Mr. R. T. BUCKNEY Dr. P. A. TYLER Department of Botany University of Tasmania G. P. 0. Box 252C Hobart, Tasmania, Australia 7001