chapter 14. conjugated dienes and ultraviolet spectroscopy

58
Chapter 14

Upload: lionel-cain

Post on 18-Dec-2015

303 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Chapter 14

Page 2: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Conjugated Dienes and Ultraviolet Spectroscopy

Page 3: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Conjugated Dienes• Multiple Bonds Alternating with Single Bonds

1,3 Butadiene

H2C=CH-CH=CH2

1,4 Pentadiene

H2C=CH-CH2-CH=CH2

CONJUGATED NOT CONJUGATED !!!

Page 4: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

C O

CH3

CH3

CH3

O

Examples of Conjugated Dienes

Lycopene – a conjugated polyene

Progesterone – a conjugated enone

Benzene – a cyclic conjugated molecule

Page 5: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Preparation and Stability of Conjugated Dienes

Page 6: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Diene Preparation

H H

Cyclohexene 3-Bromocyclohexene 1,3-Cyclohexadiene

NBS

CCl4

Br+K -OC(CH3)3

HOC(CH3)3

•Based Induced Elimination of HX

Page 7: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Diene Preparation

• Thermal cracking of butane using a chromium oxide/aluminum oxide catalyst

CH3CH2CH2CH3

600 Oc

CatalystH2C=CHCH=CH2 +2 H2

Page 8: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Acid-catalyzed double dehydration

CH3 C

CH3

OH

CH2

CH2

OH Al203

HeatCH2 C

CH3

CH

CH2 +2 H20

Page 9: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Special Properties of Conjugated Dienes

• Length of the central single bond is shorter than non-conjugated similar molecule

• Comparison of 1,3-Butadiene and Butane

H2C=CH-CH=CH2 CH3-CH2-CH2-CH3

148 pm 153 pm

1,3-Butadiene Butane

ShorterBond

Page 10: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Special Properties of Conjugated Dienes

• Unusual stability evidenced by heats of hydrogenation• More highly substituted alkenes are more stable than less

substituted ones• More highly substituted alkenes release less heat on

hydrogenation because they contain less energy to start with

CH3 CH2

CH

CH2

CH3 C

CH3

CH2

CH2 CH

CH

CH2

CH2 CH

CH2

CH

CH2

CH3 CH2

CH2

CH3

CH3 CH

CH3

CH3

CH3 CH2

CH2

CH3

CH3 CH2

CH

CH3

CH3

CH3 CH2

CH2

CH2

CH3

CH2 CH

C CH2

CH3

Heats of Hydrogenation for Some Alkenes and Dienes

Alkene or Diene Product (kj/mol) (kcal/mol) HO

hydrog

-126 -30.1

-119 -28.4

-236 -56.4

-229 -54.7

-253 -60.5

Page 11: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Molecular Orbital Description of 1,3 Butadiene

Page 12: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Stability of Conjugated Dienes is due to orbital hybridization

• Typical C-C single bonds result from sigma overlap of sp3 orbitals on both carbons

CH3-CH2-CH2-CH3

Bonds formed by overlap of sp3 orbitals

• Conjugated dienes have a central C-C bond that results from sigma overlap of sp2 orbitals on both carbons

H2C=CH-CH=CH2

Bonds formed by overlap of sp2 orbitals

Page 13: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Stability of conjugated dienes is due to orbital hybridization

• Since sp2 orbitals have more s character (33%) than sp3 orbitals (25% s), the electrons in sp2 orbitals are closer to the nucleus and the bonds they form are shorter and stronger

• The “extra” stability of conjugated dienes result from the greater amount of s character in the bonds forming the C-C bond

Page 14: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Stability of conjugated dienes is due to orbital hybridization

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

Four isolated p orbitals

+

- +

-

+

- +

-

+

-

+

- +

-

+

-

+

- +

- +

- +

- Antibonding (3 nodes)

Antibonding (2 nodes)

Bonding (1 node)

Bonding (0 nodes)

ENERGY

Page 15: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Why is the conjugated bond stronger?

• П electrons are “delocalized” over the entire П framework rather than localized between two specific nuclei.

• П certain amount of double bond character exists in a conjugated bond over the single bond area.

Compare 1,3-Butadiene with 1,4 Pentadiene

C C C C

+

-

+

-

+

-

+

-C C C C C

+

-

+

-

+

-

+

-1,3-Butadiene

a conjugated diene

1,4-Pentadiene

a non-conjugated diene

Partial double bond character

Page 16: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Electrophilic Additions to Conjugated Dienes: Allylic

Carbocations

• Electrophilic addition to 1,3-Butadiene yields a mixture of two products:

• 1,2 addition

• 1,4 addition

Page 17: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Non-conjugated alkene addition reactions

CH3 C+

CH3

CH3HCl

EtherCH3 C

CH3

CH2

CH3 C

CH3

CH3

Cl

2-Methylpropene Tertiary Carbocation

2-Chloro-2-methylpropane

CH2 CH

CH2

CH

CH2

HCl

EtherCH3 C

HCH2

CH

CH3

Cl Cl

Page 18: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Conjugated diene 1,2 and 1,4 addition reactions

CC

CCH

H

H

HH

H

+ HBrC

CC

CH

H

H

HH

H

Br

H

3-Bromo-1-butene (71%; 1,2 addition)

CC

CCH

H

H

HH

H

Br

H

1-Bromo-2-butene (29%; 1,4 addition)

CH2 CH

CH

CH2

Br2

25oC

CH2

CH

CH

CH2

Br BrCH2

CH

CH

CH2Br

Br

+

+

1,3-Butadiene (a conjugated

diene)

1,3-Butadiene1,4-Dibromo-2-butene

(45%; 1,4 addition)3,4-Dibromo-1-butene

(55%; 1,2 addition)

Page 19: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

1,4 addition products are due to allylic carbocation intermediates

CC

CCH

H

H

HH

H

CC

C+

CH

H

H

HH

HH

C+

CC

CH

H

H

HH

HH

Br-

Secondary, allylic

CC

CC

+H

H

H

HH

H

H Br-

Primary, nonallylic (NOT formed)

HBr

Page 20: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Kinetic versus thermodynamic control of

reactions

Page 21: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

• At room temperature, electrophilic addition to a conjugated diene leads to a product mixture where the 1,2 adduct predominates over the 1,4 adduct.

• At high temperatures, the product ratio changes and the 1,4 adduct predominates

CH2 CH

CH

CH2 + HBr CH2 CH

CH

CH3

Br

CH3 CH

CH

CH2

Br+

1,2 adduct 1,4 adduct

At 0oC: 71% 29%

At 40oC: 15% 85%

Page 22: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Kinetic Versus Thermodynamic Control

• Kinetic control dominates reactions where the product of an irreversible reaction is the one that forms fastest

• Thermodynamic control dominates reactions where the product of a readily reversible reaction depends on thermodynamic stability

Page 23: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

A Kinetic Control Reaction

• B forms faster because it requires less energy• C is more stable, but requires more energy• The reaction occurs under mild conditions and is

irreversible• No equilibrium is reached

Page 24: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

A Thermodynamic Control Reaction

• This reaction is held under higher temperatures and equilibrium is reached

• Since C is more stable than B, C is the major product• The product of a readily reversible reaction depends only on

thermodynamic control

Page 25: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

The Diels-AlderCycloaddition Reaction

• Conjugated diene

• Dienophile

• Diels-Alder reaction:

* Stereospecific

* Prefer Endo product to Exo product

Page 26: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Conjugated diene• Contain alternating double and single bond:

• Adopt S-cis conformation :

• More stable than non-conjugated diens.

Page 27: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Examples of conjugated diens• 1,3-Butadiene

• 1,3-Pentadiene

• 1,3-Cyclopentadiene

H

C C C

H

CH2H2

Page 28: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Conjugated diene VS. Non-conjugated diene

Page 29: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Non-conjugated diene

Conjugated diene

Page 30: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Non-conjugated diene

Conjugated diene

Page 31: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Non-conjugated diene

Conjugated diene

Page 32: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

S-cis conformation of diens

H

HS-cis

S-trans

S-cis

Page 33: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

H

CC

C

CH3

CH3C

H

C

C

H

H

H

H

H3CCH3

Severe steric strain in s-cis form S-trans

Page 34: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Dienophile

• Has carbon carbon double or triple bond that is next to the positively polarized carbon of a electron-withdrawing substituent group

• Reactive and uncreative

Page 35: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

C

C

C

O

H

HH

H

_

+

Propena(Acrolein)

Reactive

Page 36: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

C

C

C

O

HH

H OCH2CH3+

_

Ethyl propenoate (Ethyl acrylate)

Reactive

Page 37: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Maleic anhydride

Reactive

H

C

O

O

C

C

C

H

O

_

_

+

+

Page 38: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Benzoquinone

Reactive C

C

CC

C

C

H

H

O

O

H

H +

_

+

_

Page 39: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Propenenitrile (Acrylonitrile)

Reactive

C

C

C

HH

H

N+

_

Page 40: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

O

C

C

C

H

OCH3

Methyl propynoate

Reactive

+

_

Page 41: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

C

C

C

CH2CH3

O

HH

H

Unreactive

Page 42: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

N

Unreactive

Page 43: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

O

Unreactive

Page 44: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Diels-Alder reaction

C

C

C

CC

C

C

H

H

H

H

H

H

O

H

H H

CH3 CCH3

O

+ Benzene

Heat

Conjugated diene

Dienophile

Page 45: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Stereospecific

• The stereochemistry of the starting dienophile is maintained during the reaction, and a single product stereoisomer results.

• Example:

C

C

C

C

H CH2

CH2

CH3

H

H

H

+

CO2CH3 H

HCH3

CO2CH3

Page 46: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

CH3

H

HCO2CH3

C

C

C

C

H CH2

CH2HH

HH3C

+

CO2CH3

Page 47: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

CHO

+CHO

Page 48: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Endo & Exo product

O

O

O+

Endo

Exo

O

O

OH

H

O

O

OH

H

Page 49: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Diene Polymers

1,3-Butadiene

cis-Polybutadiene

trans-Polybutadiene

In

Page 50: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

In

Isoprene

Natural rubber (Z)

Gutta-percha (E)

Page 51: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

In

Chloroprene Neoprene (Z)

Cl Cl ClCl

Page 52: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Ultraviolet Spectrum of 1,3-Butadiene

Page 53: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Ultraviolet Excitation of 1,3- Butadiene

ENERGY Four p atomic orbitals

Ψ4*

Ψ3*

Ψ2

Ψ1

LUMOhv

UV irradiationHOMO

Ground State Excited State

П *

П

When irradiated with UV energy, electrons absorb the energy and arePromoted from a П bonding molecular orbital to an antibonding П *Molecular orbital

(lowest unoccupied molecular orbital)

(highest occupied molecular orbital)

Page 54: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Ultraviolet Spectrum

• A UV spectrum is recorded by irradiating a sample with UV light of continously changing wavelength.

• When the wavelength corresponds to the energy level required to excite an electron to a higher level, energy is absorbed

• This absorption is detected and displayed on a chart that plots wavelength versus absorbance

Page 55: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy
Page 56: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Structure determination in Conjugated systems

• Ultraviolet Spectroscopy

X-raysVacuumultraviolet

Visible

Visible

Near

infrared

InfraredU

ltraviolet

Energy

= 200nm = 400nm

Page 57: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

H2C C CH

CH3

CH2

H2C CH CH2CH CHCH

H2C CHCH CHCH CH2CHCH

H2C CH C

CH3

O

Ultraviolet Absorptions of Some Conjugated Molecules

Name Structure max(nm)

2-methyl-1,3-butandiene

1,3-Cyclohexandiene

1,3,5-Hexatriene

1,3,5,7-Octatetraene

2,4-Cholestadiene

3-Buten-2-one

Benzene

Naphthalene

220

256

258

290

275

219

203

220

Page 58: Chapter 14. Conjugated Dienes and Ultraviolet Spectroscopy

Ultraviolet spectrum of Beta-carotene

The absorption occurs in the visible region