ch4 - ee 382v - ut austin

Upload: trashdnp

Post on 14-Apr-2018

230 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/29/2019 ch4 - ee 382v - ut austin

    1/69

    NanSun

    UniversityofTexasatAustin

    [email protected]

    NyquistRateDACs

    1EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    2/69

    Overview Topologies

    ResistorstringDAC

    VoltageswitchingDAC

    CurrentsteeringDAC

    SwitchedcapacitorDAC

    R2R

    DAC

    CurrentsteeringDACarchitectures

    Staticerrors

    Dynamicerrors

    Exampleimplementations

    2EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    3/69

    Resistor

    String

    Voltage

    DAC Digitallycontrolledpotentiometer

    Advantages

    Simple

    Monotonic

    Unsuitableforhighspeed

    Treetypeofdecoderhasa

    largeresistance

    LargeandunequalRCtimeconstantattheoutput

    Addanopampwillhelp

    Highpower

    &

    low

    speed

    Unsuitableforhighresolution

    Toomanyresistors&switches

    3EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    4/69

    Voltage

    Switching

    DAC

    4

    Useanalog

    adders

    Nonlinearityduetononzeroswitchturnonresistance

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    5/69

    Current

    Steering

    DAC

    5

    MOSswitchesaremuchbetteratswitchingcurrentthanvoltage!

    Canbuild

    very

    good

    current

    sources

    with

    high

    impedances

    Suitableforhighspeed

    Avoidtheuseofopamps

    SmallRCtimeconstantsattheoutput

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    6/69

    Switched

    Capacitor

    DAC

    6EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    7/69

    Initialization

    Phase

    (=Vdd)

    7

    0Qout

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    8/69

    Evaluation

    Phase

    (=0)

    8

    Dueto

    charge

    conservation:

    0C2)VD(VCVQ i1-B

    0i

    refioutoutout

    1-B

    0ii

    -Bi

    refoutD2VV

    NonlinearcapatVout isabigproblem

    Useanopampwithafeedbackcap

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    9/69

    R

    2R

    DAC

    Concept

    9

    Aforementionedtechniquesallrequirelargedeviceratios

    Assumingthesizeofthesmallestdeviceisfixedbymatching

    requirement,

    a

    large

    device

    ratio

    leads

    to

    a

    large

    area Isitpossibletogetexponentiallyweightedvoltage/currentsbyusing

    similarsizeddevices?

    R2Rladder

    Howtopullthecurrentout?

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    10/69

    R

    2R

    DAC

    Implementation

    10

    OTAscanbeusedtoremoveVGS variations

    Extrapower,area,andslow

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    11/69

    Drain

    R

    2R

    Ladder

    11

    Thistopologyensuresthesamecurrent

    Lowoutput

    impedance

    of

    R

    2R

    ladder

    necessitate

    opamp

    unsuitableforhighspeed

    Nowadays,mosthighspeedDACsarecurrentsteeringDACs

    WewillfocusoncurrentsteeringDACsfromnowon

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    12/69

    Overview

    Topologies

    CurrentsteeringDACarchitectures

    BinaryweightedDAC

    ThermometerDAC

    SegmentedDAC

    Staticerrors

    Dynamicerrors

    Exampleimplementations

    12EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    13/69

    BinaryWeightedCurrentSteeringDAC

    Simplestructure

    Noencoderneeded

    Howtomatchthecurrentsources?

    13EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    14/69

    HowtoAchieveGoodMatching

    Allcurrentsourcesaremadebyidenticalunitcurrentsourcesputin

    parallel.

    14EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    15/69

    BinaryWeightedDACPrinciple

    15EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    16/69

    MSBTransitionProblem

    16

    MSBtransition

    problem

    Cannotensuremonotonicity

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    17/69

    ThermometerCurrentSteeringDAC

    Inherentlymonotonic

    Needlargeencoderwith2B1outputs

    ImpracticalforlargeB

    17EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    18/69

    ThermometerDACPrinciple

    18EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    19/69

    MonotonicityGuaranteed

    19

    Always

    monotonic

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    20/69

    SegmentedDAC

    BinarysegmentwithBb bits;thermometersegmentwithBt =B Bb bits EasiertoensuremonotonicitythanpurelybinaryDAC

    SmallerencoderthanpurelythermometerDAC

    20EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    21/69

    SegmentedDAC(22)

    21EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    22/69

    EasiertoEnsureMonotonicity

    22

    Stillmonotonic

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    23/69

    Overview

    Topologies

    CurrentsteeringDACarchitectures

    Staticerrors

    Mismatch

    Finiteoutputimpedance

    Dynamicerrors

    Exampleimplementations

    23EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    24/69

    SystematicMismatch

    DNLandINLduetounitelementmismatch

    Systematicmismatches

    IRdropduetocontactandwiringresistance

    Processartifact

    Edgeeffects

    Gradients Systematicmismatchescanbemitigatedthroughproperlayout

    Adddummycell

    Commoncentroidlayout

    24EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    25/69

    Layout

    25EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    26/69

    RandomMismatch

    Randommismatchesaremorefundamentalandcannotbeimprovedthroughlayout

    Random

    number

    of

    dopants

    (Vt variation) Randometching(W&Lvariation)

    ForawelldesignedDAC,itsnonlinearityshouldbelimitedbyrandommismatch,notsystematicmismatch

    Whatisthedistributionoftherandommismatch:

    Normaldistribution

    (central

    limit

    theorem)

    ForaunitcurrentsourceI[k]

    Mean:I

    Standarddeviation:

    Wecan

    write

    I[k]

    =I(1+I/I),thenthepercentagemismatchI/I has: Mean:0

    Standarddeviation:I/I

    26EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    27/69

    MismatchinMOSCurrentSources

    Example

    W=10m,L=0.1m,gm/I=10S/A,AVt=5mVm,A=1%m

    MismatchisusuallydominatedbyVt mismatch.

    27

    I

    Vg

    I

    I tm

    WL

    A

    Vt

    Vt WL

    A

    / LW

    C2

    1 ox

    2

    /

    2

    Vtm

    I/I I

    g

    %1.5%)1(%)5()01.0()005.00(1 2222uI/I

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    28/69

    HowtoReduceRandomMismatch

    UselargertransistorswithbiggerWandbiggerL

    Largerarea

    Largerparasitics

    Reducegm/I

    Biasinstronginversion largeVov reducedoutputswing

    Reduce

    Avt and

    A Betterprocess increasedcost

    28EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    29/69

    DACINL/DNLAnalysis

    Questiontoask:

    Givenu,howlargeareDAC INLandDNL?

    Itdependsondifferentarchitectures

    ThermometerDAC

    BinaryweightedDAC

    Segmented

    DAC

    29EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    30/69

    ThermometerDACDNLAnalysis

    ForthermometerDAC,thestepsizeforcodekequalsthemagnitudeof

    thekth currentsource.

    30

    I

    I

    I

    II

    Step

    StepStep[k]DNL[k] k

    avg

    avg

    uI/IDNL[k]

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    31/69

    ThermometerDACDNLYield

    Questiontoask:

    Wehavea8bitthermometerDACwithu =1%.WewanttheDACDNLtobewithin0.03LSB.Whatistheyieldafterfabrication?

    Analysis

    0.03LSB=3%=3u Foronecode,itswidthfallsinbetween3 is99.73%,accordingto

    normal

    distribution. Wewantall28=256codessatisfytherequirement,thus,theyieldis:

    (99.73%)256 50%

    Howabouta12bitDAC?

    All4096

    codes

    satisfy

    the

    requirement

    yield

    =(99.73%)4096

    0 LetusrelaxtheDNLrequirementto0.05LSB yield 99%

    Abigchange,why?

    31EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    32/69

    ThermometerDACINLAnalysis

    kY

    XNk

    I

    I

    N

    IN

    1

    IN

    kI

    Step

    [k]I[k]IINL[k]

    N

    1jj

    k

    1j

    j

    N

    1jj

    k

    1j

    N

    1j

    jj

    avg

    out

    0

    Y

    XvarNk

    Y

    XNvarINL[k]var 2

    32

    YXY

    2

    Y

    X

    2

    X

    2

    Y

    X

    Y)cov(X,2

    Y

    Xvar

    2uk/N)k(1INL[k]var k/N)k(1[k] uINL

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    33/69

    ThermometerDACINL

    Plot

    INL ismaximumatmidscale(k=N/2=2B1)

    ThisisaBrownianbridge:summationofrandomDNLs

    UnlikeDNL,INL growsasBincreases.

    33

    1-B/2u

    uuINL 2N

    2

    NN/21

    2N[N/2]

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    34/69

    ThermometerDACINL

    34

    1runfora10bDACwithu=1%

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    35/69

    ThermometerDACINL

    Plot

    35

    100runs,plotINL Matchwellwiththeory

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    36/69

    ThermometerDACINLYield

    Questiontoask:

    Wehavea8bitthermometerDACwithu =1%.WewanttheDACINLto

    be

    within

    0.03LSB.Whatistheyieldafterfabrication? Itturnsoutthatthisisnoteasytosolveanalytically

    Unlike{DNL[k]},{INL[k]}arenotindependent

    Ingeneral,DACdesignerswillrelyonnumericalMonteCarlosimulations

    toestimate

    the

    DNL/INL

    yield

    instead

    of

    solving

    analytical

    solutions

    Thismethodisconceptuallyverysimple

    ItworksforalltypesofDACs(thermometer,binary,andsegmented)

    Yet

    a

    basic

    understanding

    will

    be

    very

    helpful

    for

    finding

    errors

    in

    the

    simulation

    36EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    37/69

    BinaryWeightedDACDNLAnalysis

    {DNL[k]}aredifferentanddependontransition

    Worst case:01111111 1000000

    Turningoff

    all

    LSBs

    and

    turn

    on

    the

    MSB

    Forexample,B=10, u =1% DNL,worst =0.32LSB MuchlargerthanthatofthethermometerDAC(DNL=0.01LSB).

    37

    1-2

    2i

    1-2

    1j

    ji

    1-B

    B

    1B

    1B

    II]Step[2

    1-2

    2i

    1-2

    1j

    ji

    avg

    avg

    1-B

    1-B

    B

    1B

    1B

    II

    II

    StepStep]Step[2]DNL[2

    2

    u

    B2

    u

    1B2

    u

    1B2

    worstDNL, 12122

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    38/69

    BinaryWeightedDACDNL

    38

    1runfora10bDACwithu=1%

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    39/69

    BinaryWeightedDACDNL

    39

    Anotherrun,worstDNLdoesnothappenattheMSBtransition

    Duetorandomness

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    40/69

    BinaryWeightedDACDNL

    40

    100runs,plotDNL Matchwellwiththeory

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    41/69

    BinaryWeightedDACINLAnalysis

    INL isthesameasthatforathermometerDAC

    Why?

    INLis

    the

    overall

    deviation

    from

    the

    ideal

    straight

    line

    Itdoesnotmatterhowweselecttheelements

    WhatisthedifferenceintheINLofabinaryweightedDAC?

    TherearelargediscontinuitiesduetolargeDNLs

    41

    avg

    out

    Step

    [k]I[k]IINL[k] 0

    k/N)k(1[k] uINL

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    42/69

    BinaryWeightedDACINL

    42

    1runfora10bDACwithu=1%

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    43/69

    BinaryWeightedDACINL

    Plot

    43

    100runs,plotINL Matchwellwiththeory

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    44/69

    SegmentedDACDNL/INLAnalysis

    WorstcaseDNL

    WhenallLSBDACelementsturnoffand1MSBDACelementturnson

    SameDNL

    as

    abinary

    weighted

    DAC

    with

    Bb+1bits

    INL

    INL isthesameasthatofthermometerDAC

    44EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    45/69

    SegmentedDACDNL

    45

    1runfora10bsegmentedDAC(3bMSBand7bLSB)withu=1%

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    46/69

    SegmentedDACDNL Plot

    46

    100runs,plotDNL Matchwellwiththeory

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    47/69

    SegmentedDACINL

    47

    1runfora10bsegmentedDAC(3bMSBand7bLSB)withu=1%

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    48/69

    SegmentedDACINL Plot

    48

    100runs,plotINL Matchwellwiththeory

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    49/69

    Summary

    Thermometer SegmentedBinary

    Weighted

    INL

    DNL(worstcase)

    u 2(Bb+1)/2u 2B/2u

    #elements 2B1 Bb

    +2Bt1 B

    49

    k/N)k(1[k] uINL

    SegmentedDACingeneralachievesthebesttradeoff.

    MosthighperformanceDACsadoptsegmentedDACstructure.

    EE382V

    Fi i O I d

  • 7/29/2019 ch4 - ee 382v - ut austin

    50/69

    FiniteOutputImpedance

    Currentsourcewithfiniteoutput

    resistanceR

    Thenumber

    of

    closed

    switches:

    2

    Vout=2

    R||

    AsDin increases,dothecode

    widthsgetwiderornarrower?

    NeedtomakeRlargeenough

    Cascode

    Sourcedegeneration

    50EE382V

    O i

  • 7/29/2019 ch4 - ee 382v - ut austin

    51/69

    Overview

    Topologies

    CurrentsteeringDACarchitectures

    Staticerrors

    Dynamicerrors

    Exampleimplementations

    51EE382V

    D i DAC E

  • 7/29/2019 ch4 - ee 382v - ut austin

    52/69

    DynamicDACErrors

    DynamicDACerrorsaregenerallyhardtomodel

    DACoutputiscontinuousintime,andthus,anyerroratanytime

    instancecausestrouble!

    Highperformance

    DAC

    design

    is

    nontrivial.

    Glitchesduetotimingerrors

    Currentsourcesdonotswitchsimultaneously

    Clockfeedthrough

    CouplingfromswitchsignalstoDACoutput

    Finitesettlingtimeandslewing

    FiniteRCtimeconstant

    Signaldependent

    slewing

    Intersymbolinterference

    Unmatchedrisingandfallingedges

    52EE382V

    U f l R f

  • 7/29/2019 ch4 - ee 382v - ut austin

    53/69

    UsefulReferences

    Doris,vanRoermund,Leenaerts,WideBandwidthHighDynamicRange

    D/AConverters,Springer,2006.

    Bosch,Steyaert,

    Sansen,

    Static

    and

    Dynamic

    Performance

    Limitations

    for

    HighSpeedD/AConverters,Kluwer,2004.

    Gustavsson,Chapter12

    M.Albiol,J.L.Gonzalez,E.Alarcon,"Mismatchanddynamicmodelingof

    currentsources

    in

    current

    steering

    CMOS

    D/A

    converters,"

    IEEE

    TCAS

    I,pp.

    159169,Jan.2004

    T.ChenandG.G.E.Gielen,"Theanalysisandimprovementofacurrent

    steeringDAC'sdynamicSFDR,"IEEETrans.Ckts.Syst.I,pp.315,Jan.2006.

    53EE382V

    B i Diff ti l P i S it h

  • 7/29/2019 ch4 - ee 382v - ut austin

    54/69

    BasicDifferentialPairSwitch

    For

    high

    speed,

    never

    turn

    off

    the

    current

    source

    Parasiticcapneedstoberecharged

    MinimizetheswingatVx

    Notdoneyet

    54

    Nonlinearcap

    EE382V

    Glitch Impulse Error

  • 7/29/2019 ch4 - ee 382v - ut austin

    55/69

    GlitchImpulseError

    Currentsourcesneedtobe

    turnedon/offsimultaneously

    Considerbinaryweighted

    DACtransition0111 1000

    Worstcaseglitchimpulsearea:

    t 2B1

    LSBarea:Ts

    t 2B1

  • 7/29/2019 ch4 - ee 382v - ut austin

    56/69

    DesignTechniques

    Dataretiming

    Useaglobalclocktoresampledatanearthecurrentcells,sothat

    theyswitchsimultaneouslyindependentofencoderdelays

    Makebefore

    break

    Ensurethatthecurrentisneverturnedoff

    SandS_bar arenotsimultaneouslyoff

    Lowswingdriver

    Drivedifferentialpairwithlowswingtominimizecouplingfromcontrolsignalstooutput

    56EE382V

    Data Retiming

  • 7/29/2019 ch4 - ee 382v - ut austin

    57/69

    DataRetiming

    57

    UseasegmentedDACwillhelptoo.

    EE382V

    Make Before Break

  • 7/29/2019 ch4 - ee 382v - ut austin

    58/69

    MakeBeforeBreak

    58

    Ensurethatthecurrentsourceisneverturnedoff

    EE382V

    Example Current Cell Implementation

  • 7/29/2019 ch4 - ee 382v - ut austin

    59/69

    ExampleCurrentCellImplementation

    [Barkin &Wooley,JSSC4/2004]

    59

    inarrivesfirst,

    clk arriveslater

    Latch

    retiming

    Reducedswing(nottoground)

    Buffertransistor

    EE382V

    Overview

  • 7/29/2019 ch4 - ee 382v - ut austin

    60/69

    Overview

    Topologies

    CurrentsteeringDACarchitectures

    Staticerrors

    Dynamicerrors

    Exampleimplementations

    60EE382V

    High Performance DAC Example #1

  • 7/29/2019 ch4 - ee 382v - ut austin

    61/69

    HighPerformanceDACExample#1

    [T.Miki,Y.Nakamura,M.Nakaya,S.Asai,Y.Akasaka,andY.Horiba,An80MHz8

    bitCMOSD/AConverter,IEEEJ.ofSolidStateCircuits,pp.983988,Dec.1986.]

    61

    2umCMOS

    SegmentedDAC

    EE382V

    Decoder Design

  • 7/29/2019 ch4 - ee 382v - ut austin

    62/69

    DecoderDesign

    62

    FastdecodingLatchretiming

    EE382V

    Mitigating IR Drop

  • 7/29/2019 ch4 - ee 382v - ut austin

    63/69

    MitigatingIRDrop

    63

    Systematicallydecreasingcurrents

    ReducingINL

    INLcanbereducedbyrearrangingDNLs

    EE382V

  • 7/29/2019 ch4 - ee 382v - ut austin

    64/69

    Floor Plan

  • 7/29/2019 ch4 - ee 382v - ut austin

    65/69

    FloorPlan

    [VandenBosch,JSSC3/2001]

    65EE382V

    Measurements

  • 7/29/2019 ch4 - ee 382v - ut austin

    66/69

    Measurements

    1GHz

    100MHz

    66

    DACtype?

    EE382V

    High Performance DAC Example #3

  • 7/29/2019 ch4 - ee 382v - ut austin

    67/69

    HighPerformanceDACExample#3

    [Schafferer,ISSCC2004]

    67

    Optimalswitching;noglitchatvtail

    ReplicaRef.

    EE382V

    Measurements

  • 7/29/2019 ch4 - ee 382v - ut austin

    68/69

    easu e e ts

    [Schafferer,ISSCC2004]

    68EE382V

    HighPerformanceDACExample#4

  • 7/29/2019 ch4 - ee 382v - ut austin

    69/69

    g p

    [Lin,ISSCC2009]

    69

    Latchretiming

    DACtype?

    EE382V