ch0302 process instrumentation lecture 3 –...

52
CH0302 Process Instrumentation Department of Chemical Engineering School of Bioengineering SRM University Kattankulathur 603203 20/1/15 Chemical Engineering 1 Lecture 3 – Introduction

Upload: others

Post on 08-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

CH0302 Process Instrumentation

Department of Chemical Engineering School of Bioengineering SRM University Kattankulathur 603203

20/1/15   Chemical  Engineering     1  

Lecture 3 – Introduction

Page 2: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     2  

Introduction - outline

Types  of  Instruments    

Characteris<cs  of  Instruments      

Sta<c  Characteris<cs    

Dynamic  Characteris<cs    

Summary    

Page 3: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     3  

Introduction - outline

Types  of  Instruments    

Characteris<cs  of  Instruments      

Sta<c  Characteris<cs    

Dynamic  Characteris<cs    

Summary    

Page 4: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     4  

Introduction – Types

-­‐  Automa<c  

-­‐  Manual  

-­‐  Self  operated    

-­‐  Power  operated  

-­‐  Self  contained  

-­‐  Non-­‐self  contained    

Page 5: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     5  

Introduction – Types

Automa<c              –  does  not  require  service  of  an  operator  in  fulfilling  its  func<on      

Manual                        –  requires  service  of  an  operator    

Self  operated            –  instrument  like  mercury-­‐in-­‐thermometer  derives  its  power  wholly  from        

                                                                                       thermal  expansion  of  mercury    

Power  operated            –  instrument  requires    a  source  of  auxiliary  power  such  as  compressed  air,    

                                                                                       electricity,  hydraulic  supply  or  mechanical  source  of  power.    

Self  contained                  –  instrument  such  as  mercury-­‐in-­‐thermometer,  all  the  parts  from  primary    

                                                                                     element  to  func<oning  element  are  contained  in  one  assembly    

Non-­‐self  contained            -­‐  primary  element  will  be  located  at  some  distance,  say  15  –  100  Q  from  the    

                                                                                   secondary  element.  Indica<ng  element  may  also  be  remotely  located      

Page 6: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     6  

Introduction - outline

Types  of  Instruments    

Characteris<cs  of  Instruments      

Sta<c  Characteris<cs    

Dynamic  Characteris<cs    

Summary    

Page 7: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     7  

Introduction - outline

Types  of  Instruments    

Characteris<cs  of  Instruments      

Sta<c  Characteris<cs    

Dynamic  Characteris<cs    

Summary    

Page 8: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     8  

Introduction – Characteristics of Instruments

-­‐  Sta<c    

-­‐  Dynamic    

Page 9: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     9  

Introduction – Static and Dynamic Characteristic

-­‐  Sta<c    characteris<c  of  an  instrument  are,  in  general  those  that  must    

         be  considered  when  instrument  is  used  to  measure  a  condi<on  or      

         quan<ty  not  varying  with  <me.  

 

-­‐  On  the  other  hand,  when  industrial  instrument  is  used  for  

measuring  quan<<es  that  fluctuates  with  <me  is  called  as  the  

dynamic  characteris<c  of  the  equipment.  

Page 10: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     10  

Introduction – Static and Dynamic Characteristic

Sta<

c    

     Desirable  

     Accuracy    

   Reproducibility    

     Sensi<vity    

     Undesirable  

     Sta<c  error    

     DriQ  

   Dead  Zone    

Page 11: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     11  

Introduction – Static Characteristics

Range  and  Span    

 -­‐  In  an  indica<ng  or  recording  instrument  the  value  of  the  measured  

quan<ty  is  indicated  on  a  scale  or  chart  by  a  pointer  or  some  similar  means.    

-­‐  Suppose  that  the  highest  point  of  calibra<on  is  b  units  and  the  lowest  point  a  units  and  the  calibra<on  is  con<nuous  between  these  two  points.  

-­‐  Then  the  instrument  range  is  from  a  to  b    and  the  span  is  given  by  the  difference  between  b  and  a.    i.e.  span = (b - a)

Page 12: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     12  

Introduction – Static Characteristics

Range  and  Span    

 

-­‐  For  a  pyrometer  calibrated  0  to  1000  OC  .  What  is  the  range  and  

span?  

Page 13: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     13  

Introduction – Static Characteristics

Range  and  Span    

 

-­‐  For  a  pyrometer  calibrated  0  to  1000  OC  .  What  is  the  range  and  

span?  

-­‐  The  range  is  from  0  to  1000  OC  

 

Page 14: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     14  

Introduction – Static Characteristics

Range  and  Span    

 

-­‐  For  a  pyrometer  calibrated  0  to  1000  OC  .  What  is  the  range  and  

span?  

-­‐  The  Span  is  1000  OC  

Page 15: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     15  

Introduction – Static Characteristics

Range  and  Span    

 

-­‐  For  a  pyrometer  calibrated  0  to  1000  OC  .  What  is  the  range  and  

span?  

-­‐  The  range  is  from  0  to  1000  OC  

-­‐  The  Span  is  1000  OC  

Page 16: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     16  

Introduction – Static Characteristics

Range  and  Span    

 

-­‐  If  a  pyrometer  calibrated  between  500  to  1000  OC  .  What  is  the  

range  and  span?  

Page 17: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     17  

Introduction – Static Characteristics

Range  and  Span  -­‐  Pyrometer    

 

a b

Lowest  point     Highest  point    

Range  is  500  to  1000  OC  Span  is  500  OC  

Page 18: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     18  

Introduction – Static Characteristics (desirable)

Accuracy    

 

-­‐  Accuracy  of  an  instrument  is  expressed  in  many  ways.  

 

-­‐  A  common  method  is  to  specify  “accurate  to  within  ±  x  

percentage”.  

Page 19: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     19  

Accuracy      

-­‐  Suppose  we  have  a  pyrometer  calibrated  1000  to  1800  OC  and  the  

accuracy  is  stated  as  within  0.5%.  

 

Introduction – Static Characteristics (desirable)

Page 20: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     20  

Accuracy      

-­‐  Suppose  we  have  a  pyrometer  calibrated  1000  to  1800  OC  and  the  

accuracy  is  stated  as  within  0.5%.  

-­‐  Therefore  the  accuracy  of  pyrometer  is  ±  0.5  per  cent  <mes  (1800  –  

1000)  OC  or  ±  4  OC  

 

Introduction – Static Characteristics (desirable)

Page 21: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     21  

Introduction – Static Characteristics (desirable)

Accuracy  –  Self  contained  instrument      

-­‐  Suppose  we  have  a  pyrometer  calibrated  1000  to  1800  OC  and  the  

accuracy  is  stated  as  within  0.5%.  

-­‐  Therefore  the  accuracy  of  pyrometer  is  ±  0.5  per  cent  <mes  (1800  –  

1000)  OC  or  ±  4  OC  

-­‐  i.e.  (0.5/100)  x  (800)  =  ±  4  OC  

Page 22: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     22  

Introduction – Static Characteristics (desirable)

Accuracy  –  Non-­‐self  contained  instrument  

-­‐  Many  instruments  used  in  industries  are  not  self  contained  but  are  

composed  of  separate  units/elements.    

-­‐  For  example,  in  a  pressure-­‐gage  transmiher  receiver  system  there  are  

separate  units  or  elements.    

-­‐  The  accuracy  for  these  kind  of  systems  are  obtained  by  the  accuracy  

limit  specified  for  each  unit/limit    of  the  system.  

-­‐  Hence  the  accuracy  of  each  unit  be  within  ±a,  within  ±b,  within  ±c  and  

so  on.    

Page 23: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     23  

Introduction – Static Characteristics (desirable)

Accuracy  –  Non  self  contained    

 

-­‐  The  least  accuracy  for  these  systems  in  percentage  is  given  by    

                                   

-  The root square accuracy in percentage is given by  

Within  ±  (a + b + c + etc.)

Page 24: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     24  

Introduction – Static Characteristics (desirable)

Accuracy  –  Non  self  contained    

Example:  

-­‐  For  a  general  measuring  system  where  the  errors  in  the  transducer,  

signal  condi<oner  and  recorder  are  within  ±  2%,  within  ±  3%  and  within

±  4%  respec<vely.  Calculate  the  least  accuracy  and  square  root  

accuracy  of  the  given  system.      

-­‐  Least  Accuracy  ?    

-­‐  Root-­‐square  accuracy?                          

Page 25: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     25  

Introduction – Static Characteristics (desirable)

Accuracy  –  Non  self  contained    

Example:  

-­‐  For  a  general  measuring  system  where  the  errors  in  the  transducer,  

signal  condi<oner  and  recorder  are  within  ±  2%,  within  ±  3%  and  within

±  4%  respec<vely.  Calculate  the  least  accuracy  and  square  root  

accuracy  of  the  given  system.      

-­‐  Least  Accuracy  ?  

Page 26: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     26  

Introduction – Static Characteristics (desirable)

Accuracy  –  Non  self  contained    

Example:  

-­‐  For  a  general  measuring  system  where  the  errors  in  the  transducer,  

signal  condi<oner  and  recorder  are  within  ±  2%,  within  ±  3%  and  within

±  4%  respec<vely.  Calculate  the  least  accuracy  and  square  root  

accuracy  of  the  given  system.      

-­‐  Least  Accuracy    =  ±  9%  

-­‐  Root-­‐square  accuracy?

Page 27: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     27  

Introduction – Static Characteristics (desirable)

Accuracy  –  Non  self  contained    

Example:  

-­‐  For  a  general  measuring  system  where  the  errors  in  the  transducer,  

signal  condi<oner  and  recorder  are  within  ±  2%,  within  ±  3%  and  within

±  4%  respec<vely.  Calculate  the  least  accuracy  and  square  root  

accuracy  of  the  given  system.      

-­‐  Least  Accuracy    =  ±  9%  

-­‐  Root-­‐square  accuracy  =  ±  5.4%  

Page 28: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     28  

Introduction – Static Characteristics (desirable)

Reproducibility      -­‐  Degree  of  closeness  with  which  the  given  value  may  be  repeatedly  

measured.  

-­‐  In  other  words,  ability  of  an  instrument  to  display  the  same  reading  for  a  given  input  applied  on  number  of  occasions.  

-­‐  Can  be  expressed  in  terms  of  units  for  a  given  period  of  <me.      -­‐  Perfect  reproducibility  means  that  the  instrument  has  no  driQ    

Page 29: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     29  

Introduction – Static Characteristics (desirable)

Sensi<vity    -­‐  Denotes  the  smallest  change  in  value  of  a  measured  variable  to  which  

an  instrument  responds.  

-­‐  In  other  words  it  is  defined  as  the  change  in  output  towards  the  change  in  input  at  steady  state.    

 -­‐  Sensi<vity  (K)  is  given  by    K =

ΔθOΔθi

Page 30: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     30  

Introduction – Static Characteristics (Undesirable)

Sta<c  Error    -­‐  The  difference  between  true  value  of  the  quan<ty  not  changing  with  

<me  and  value  indicated  by  the  instrument.  

-­‐  It  is  expressed  in  +x  units  or  in  –x  units.  

   True  Value  +  Sta<c  Error  =  Instrument  Reading        -­‐  For  +  Sta<c  error  the  instrument  reads  high  

-­‐  For  –  Sta<c  error  the  instrument  reads  low    

Page 31: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     31  

Introduction – Static Characteristics (Undesirable)

Sta<c  Error  –  Example      

-­‐  If  the  accuracy  of  a  temperature  measuring  instrument,  with  full  range  

of  0  OC  to  500  OC  is  specified  as  ±0.5%.  When  this  instrument  is  used  to  

measure  a  temperature  of  a  liquid  system,  it  indicates  250  OC.  What  is  

the  sta<c  error  and  true  value  in  +  and  -­‐?  

Page 32: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     32  

Introduction – Static Characteristics (Undesirable)

Sta<c  Error  –  Solu<on      

-­‐  Error  =  (500  –  0)  x  ±  0.5/100  =  ±    2.5  OC  

-­‐  For  +  Sta<c  Error,    

                     The  True  Value  =  250  +  2.5  =  252  OC      

-­‐  For  –  Sta<c  Error,  

                     The  True  Vale  =  250  –  2.5  =  247.5  OC  

Page 33: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     33  

Introduction – Static Characteristics (Undesirable)

DriQ    

   –  Slow  change  in  response  or  output  of  an  instrument.  

   

                 –  if  an  instrument  does  not  produce  the  same  reading  at  different    

                       <mes  of  measurement  from  the  same  input,  it  is  said  to  have  driQ.    

   

Note  :  If  an  instrument  is  said  to  have  perfect  reproducibility,  it  is  said  to    

                         have  no  driQ.          

Page 34: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     34  

Introduction – Static Characteristics (Undesirable)

Types  of  DriQ      DriQ  

Zero  

Span    

Zonal    

Page 35: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     35  

Introduction – Static Characteristics (Undesirable)

DriQ  –  Slow  change  in  response  or  output  of  an  instrument      Zero  driQ  –    Changes  in  instrument  output  when                                                the  input  signal  remains  zero.  

       –    In  other  words,  the  changes  that                                                occur  in  the  output  when  there  is                      zero  input.                                      –    In  an  indica<ng  or  recording  element  it  is  easily  corrected  by                                                shiQing  the  pen  or  pointer  posi<on.  

       –    It  is  due  to  some  kind  of  simple  effect  such  as  permanent  set                                                or  slippage.      

Page 36: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     36  

Introduction – Static Characteristics (Undesirable)

DriQ  –  Slow  change  in  response  or  output  of  an  instrument      Span  driQ  –    Propor<onal  changes  in  instrument  output  all  along  the                                                  upward  scale.    

             –    This  may  be  caused  by  a  gradual  change  in  a  spring  ac<on.      

Page 37: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     37  

Introduction – Static Characteristics (Undesirable)

DriQ  –  Slow  change  in  response  or  output  of  an  instrument      Zone  driQ  –    It  occurs  when  only  one  por<on  a  calibra<on  changes.    

               –    This  may  be  caused  by  high  stress  on  some  por<on  of  the    

                                             instrument  .      

Page 38: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     38  

Introduction – Static Characteristics (Undesirable)

DriQ  –  Slow  change  in  response  or  output  of  an  instrument      Example  -­‐  Assume  that  an  instrument  is  used  in  calibra<on  where  input  to  and  output  from  the  instrument  is  made.  The  following  data  is  available  from  the  calibra<on  and  given  in  four  tables.    

Input,  x  units      Output_I,  x  Units     Output_II,  x  units  0   0   10  10   10   20  20   20   30  30   30   40  40   40   50  50   50   60  60   60   70  

Table.  1   Table.  2    

Input,  x  units      Output_I,  x  Units     Output_II,  x  units  0   0   0  10   10   20  20   20   40  30   30   60  40   40   80  50   50   100  60   60   120  

Page 39: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     39  

Introduction – Static Characteristics (Undesirable)

DriQ  –  Slow  change  in  response  or  output  of  an  instrument      Example  -­‐  Assume  that  an  instrument  is  used  in  calibra<on  where  input  to  and  output  from  the  instrument  is  made.  The  following  data  is  available  from  the  calibra<on  and  given  in  four  tables.    Table.  3   Table.  4    

Input,  x  units      Output_I,  x  Units    0   0  10   10  20   20  30   30  40   40  50   50  60   60  

Input_II,  x  units       Output_II,  x  Units    0   0  2   10  6   30  8   40  10   50  12   60  

Page 40: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     40  

Introduction – Static Characteristics (Undesirable)

0  

10  

20  

30  

40  

50  

60  

70  

80  

0   10   20   30   40   50   60   70  

Outpu

t,  un

its    

Input,  units  

Zero  driQ  

Nominal  Curve  

•  Changes  in  instrument  output  when              the  input  signal  remains  zero.    •  In  other  words,  the  changes  that  occur  in  

the  output  when  there  is  zero  input.    

Zero  DriQ  

Page 41: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     41  

Introduction – Static Characteristics (desirable)

0  

20  

40  

60  

80  

100  

120  

140  

0   10   20   30   40   50   60   70  

Outpu

t,  un

its    

Input,  units  

Span  driQ  

Nominal  Curve  

•  Propor<onal  changes  in  instrument  output  all  along  the  upward  scale  

Span  DriQ  

Page 42: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     42  

Introduction – Static Characteristics (Undesirable)

0  

10  

20  

30  

40  

50  

60  

70  

0   10   20   30   40   50   60   70  

Outpu

t,  un

its    

Input,  units  

Zone  driQ  

Nominal  Curve  

•  It  occurs  when  only  one  por<on  a  calibra<on  changes.    

Zone  driQ  

Page 43: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     43  

Introduction – Static Characteristics (Undesirable)

Dead  Zone  

 

 -­‐  It  is  the  largest  change  in  the  physical  variable  to  which  the    

                   instrument  does  not  respond.  

 

 -­‐  i.e.  the  region  up  to  which  the  instrument  does  not  respond  for  an    

                   input  is  called  dead  zone.      

Page 44: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     44  

Introduction – Static Characteristics (Undesirable)

Dead  Zone  

Example  -­‐  An  instrument  is  used  to  measure  a  physical  quan<ty  the  the  

results  of  measurement  is  given  below.  Plot  a  graph  and  show  the  dead  

zone.    

 Time  (s)   Out  put,  x  units  

0   50.00  

1   50.01  

2   50.03  

2.5   50.05  

3   50.12  

4.1   50.30  

Page 45: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     45  

Introduction – Static Characteristics (Undesirable)

49.95  

50.00  

50.05  

50.10  

50.15  

50.20  

50.25  

50.30  

50.35  

0   0.5   1   1.5   2   2.5   3   3.5   4   4.5  

Outpu

t,  x  un

its  

Time,  s  

Page 46: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     46  

Introduction – Dynamic Characteristic

Dynamic    

     Desirable    Speed  of  response  

 Fidelity    

     Undesirable    Dynamic  error    

 Lag    

Page 47: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     47  

Speed  of  Response      -­‐  The  quickness  with  which  the  instrument  respond  to  a  change  in  the  

output  signal.  

Fidelity      -­‐  It  is  the  ability  of  the  measurement  system  to  reproduce  the  output  in  

the  same  form  as  the  input.                i.e.  if  the  input  of  the  system  is  sine  wave,  the  system  is  said  to  have                              100%  fidelity  if  the  output  is  a  sine  wave    

Introduction – Dynamic Characteristic (desirable)

Page 48: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     48  

Fidelity    

Introduction – Dynamic Characteristic (desirable)

-­‐1.5  

-­‐1.0  

-­‐0.5  

0.0  

0.5  

1.0  

1.5  

0.0   1.0   2.0   3.0   4.0   5.0   6.0   7.0   8.0   9.0  

Reproduce  the  output  in  the  same  form  as  the  input.  

Outpu

t,  x  un

its    

Input,  x  units  

Page 49: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     49  

Lag      -­‐  It  is  the  delay  in  response  of  an  instrument  to  a  change  in  the  input  

signal.  

-­‐  It  is  also  called  as  measuring  lag  .  

-­‐  Response  of  a  system  immediately  begins  on  a  change  in  measured  value  variable  may  also  called  dead  <me.      

Introduction – Dynamic Characteristic (Undesirable)

Page 50: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     50  

Dynamic  Error      -­‐  Difference  between  indicated  quan<ty  and  the  true  value  of  the  <me  

varying  quan<ty  is  called  dynamic  error.    Time  Constant  

-­‐  Generally,  <me  required  for  an  instrument  to  indicate  reading  resul<ng  from  an  input  signal.    

Introduction – Dynamic Characteristic (Undesirable)

Page 51: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     51  

Introduction – Static Characteristics (Undesirable)

First  Order  System  Response  –  Mercury  –in-­‐glass  thermometer      

Page 52: CH0302 Process Instrumentation Lecture 3 – Introductionbalasubramanian.yolasite.com/resources/CH0302 Lecture 3.pdf · CH0302 Process Instrumentation Department of Chemical Engineering

20/1/15   Chemical  Engineering     52  

References

1.  Donald  P.  Eckman,  (2004)  Industrial  Instrumenta1on,  CBS  Publishers,  Pp.  1-­‐  27.    

2.  Warren  L.  Mc.  Cabe,  Julian  C.  Smith,  Peter  Harriot  (1997)  Unit  Opera1ons  of  Chemical  

Engineering  ,  5th  Edi-­‐on,  Mc.  Graw  Hill,  Pp.  3-­‐5.    

3.  Max  S.  Peters,  Klaus  D.  Timmerhaus,  Ronald  E.  West,  (1997)  Plant  Design  and  Economics  for  

Chemical  Engineers,  5th  Mc.  Graw  Hill,  Pp.  1-­‐2.    

4.  David  M.  Himmelblau,  James  B.  Riggs.  (2009),  Basic  Principles  and  Calcula1ons  in  Chemical  

Engineering  ,  7th  Pren-­‐ce  Hall  India,  Pp.  XXV.  

5.  SinnoJ  R.  K,  (1999)  Coulson  and  Richardson’s,  Chemical  Engineering  Design,  Vol  6,  3rd  

Edi<on,  Elseveir,  Pp.  5.  

5.  BhaJ.  B.  I  and  Vora,  (1999)  Stoichimetry,  Vol.  6,  4th  Edi-­‐on,  Tata  Mc  Graw  Hill,  Pp.  130.  

6.  Instrumenta<on  Systems  and  Automa<on  society  ISA-­‐5.1-­‐1984  Standards.