cardiovascular system - vascular system

34
Cardiovascular System - Vascular System

Upload: kuniko

Post on 23-Feb-2016

42 views

Category:

Documents


0 download

DESCRIPTION

Cardiovascular System - Vascular System. Blood & blood vessels. What are the components of blood?. Plasma – Pale yellow, 90% Water, 8% Protein, 2% Salts Red Blood Cells – Iron rich Haemoglobin combines with oxygen & transported in blood White Blood Cells – Fight infection and disease - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Cardiovascular System -  Vascular System

Cardiovascular System -

Vascular System

Page 2: Cardiovascular System -  Vascular System

Blood & blood vesselsWhat are the components of blood?

Plasma – Pale yellow, 90% Water, 8% Protein, 2% Salts

Red Blood Cells – Iron rich Haemoglobin combines with oxygen & transported in blood

White Blood Cells – Fight infection and disease

Platelets – Assist in clotting blood

Page 3: Cardiovascular System -  Vascular System

Functions of bloodWhat are the functions of blood?

•Transport nutrients such as Glucose and Oxygen whilst removing waste such as Carbon dioxide & Lactic Acid

•Protect and fight disease through lymphatic system

•Maintain Homeostasis including temperature regulation, and acid base pH balance

Page 4: Cardiovascular System -  Vascular System

Blood Viscosity• A term used to describe the relative thickness of

the blood. If the blood is very viscous, it has a high amount of blood cells to plasma and consequently does not flow very quickly

• Training brings about an increase in total blood volume but the increase in plasma levels is proportionally higher therefore blood viscosity decreases, so faster oxygen delivery to working muscles

Page 5: Cardiovascular System -  Vascular System

The Circulatory SystemThis system is referred as a double circulatory system:

•Pulmonary system – blood between heart and lungs

•Systemic system – blood between heart and rest of the body

Page 6: Cardiovascular System -  Vascular System

Blood Vessels• The vascular network through which blood flows to all

parts of the body comprises of arteries, arterioles, capillaries, venules and veins.

Arteries and Arterioles• Arteries are high pressure vessels which carry blood

from the heart to the tissues. • The largest artery in the body is the aorta which is the

main artery leaving the heart.• The aorta constantly subdivides and gets smaller. • The constant subdivision decreases the diameter of

the vessel arteries, which now become arterioles.

http://www.youtube.com/watch?v=qcgcACrNLIk&feature=related

Page 7: Cardiovascular System -  Vascular System

ArteriesArteries are composed of three layers of tissue:

• 1 an outer fibrous layer — the tunica adventitia or tunica externa

• 2 a thick middle layer — the tunica media• 3 a thin lining of cells to the inside — the

endothelium or tunica interna.• The tunica media is comprised of smooth

muscle and elastic tissue, which enables the arteries and arterioles to alter their diameter.

Page 8: Cardiovascular System -  Vascular System
Page 9: Cardiovascular System -  Vascular System

Arteries• Arteries tend to have more elastic tissue,

while arterioles have greater amounts of smooth muscle; this allows the vessels to increase the diameter through vasodilation or decrease the diameter through vasoconstriction.

• It is through vasoconstriction and vasodilation that the vessels can regulate blood pressure and ensure the tissues are receiving sufficient blood — particularly during exercise.

Page 10: Cardiovascular System -  Vascular System

Arteries and arterioles have three basic functions:

• to act as conduits carrying and controlling blood flow to the tissues

• to cushion and smooth out the pulsate flow of blood from the heart

• to help control blood pressure.

Page 11: Cardiovascular System -  Vascular System

Veins and venules• Veins are low pressure vessels which return blood to

the heart. The structure is similar to arteries, although they possess less smooth muscle and elastic tissue.

• Venules are the smallest veins and transport blood away from the capillary bed into the veins.

• Veins gradually increase in thickness the nearer to the heart they get, until they reach the largest vein in the body, the venae cavae, which enters the right atrium of the heart.

Page 12: Cardiovascular System -  Vascular System

Veins and Venules• The thinner walls of the veins often distend

and allow blood to pool in them. This is also allowed to happen as the veins contain pocket valves which close intermittently to prevent back flow of blood.

• This explains why up to 70% of total blood volume is found in the venous system at any one time.

Page 13: Cardiovascular System -  Vascular System

Capillaries• Capillaries are the functional units or the

vascular system. • Composed of a single layer of endothelial

cells, they are just thin enough to allow red blood cells to squeeze through their wall.

• The capillary network is very well developed as they are so small; large quantities are able to cover the muscle, which ensures efficient exchange of gases.

Page 14: Cardiovascular System -  Vascular System

Capillaries• If the cross-sectional area of all the capillaries

in a muscle cell were to be added together, the total area would be much greater than that of the aorta.

• Distribution of blood through the capillary network is regulated by special structures known as pre-capillary sphincters, the structure of which will be dealt with later in this chapter.

Page 15: Cardiovascular System -  Vascular System

Veins

• Before looking at venous return it is important to look at the structure of veins.

• Veins have thinner walls than arteries.• Veins also have valves.

Page 16: Cardiovascular System -  Vascular System

Venous return mechanism’s • The pressure of blood in the veins is too low to push

blood back to the heart.• This problem is overcome in a number of ways.• Hydrostatic Pressure• Gravity• Action of the Heart• Inspiration • Pocket Valves• Adjacent Arteries • Skeletal Pump

Page 17: Cardiovascular System -  Vascular System

Skeletal Pump• The muscles

surrounding the veins expand and contract, pressing on veins and causing a pumping effect.

• This muscle action is particularly important in maintaining venous return during exercise.

• It is referred to as the skeletal pump.

Page 18: Cardiovascular System -  Vascular System

Adjacent Arteries • The surges of pressure in the adjacent arteries

cause them to push against the veins, creating a regular pumping effect.

Page 19: Cardiovascular System -  Vascular System

Pocket Valves• The blood in the veins

can only move towards the heart; It cannot fall back to where it came from.

• This is because at regular intervals there are semi lunar pocket valves situated in large veins.

Page 20: Cardiovascular System -  Vascular System

Pocket Valves• These allow the free

flow of blood towards the heart, but they close to prevent blood towards the heart, but they close to prevent blood flowing away from the heart.

Page 21: Cardiovascular System -  Vascular System

Inspiration • Increases thoracic

volume, and so decreases thoracic pressure.

• The vein in this region expand, causing blood to be ‘sucked’ through them.

Page 22: Cardiovascular System -  Vascular System

Gravity• Gravity assists the flow of venous blood from

body parts above the heart. • However, it also hinders the flow from parts

below the heart.

Page 23: Cardiovascular System -  Vascular System

Action of the Heart• The pumping action of

the heart causes blood to flow in to replace the blood pumped out.

• This creates a sucking action in the veins close to the heart.

Page 24: Cardiovascular System -  Vascular System

Hydrostatic Pressure• There is an attraction between the molecules

in any fluid moving in a particular direction, and this attraction helps maintain the constant flow.

• This is called hydrostatic pressure.• This is important in blood, particularly as the

fluid column moves back, against gravity, to the heart.

Page 25: Cardiovascular System -  Vascular System

Summary• The pressure of blood in the veins is too low push

blood back to the heart.• This problem is overcome in a number of ways.• Hydrostatic Pressure• Gravity• Action of the Heart• Inspiration • Pocket Valves• Adjacent Arteries • Skeletal Pump

Page 26: Cardiovascular System -  Vascular System

Blood Pressure

Page 27: Cardiovascular System -  Vascular System

Learning Objective• To understand how you take blood pressure

• To identify what an average pressure reading is and the units its displayed in

• To understand how blood pressure is controlled and how exercise effects it

Page 28: Cardiovascular System -  Vascular System

Success Criteria• You can define blood pressure giving an

average reading with the correct units

• You can take someone's blood pressure accurately

• You can explain how the body controls blood pressure and how exercise effects it

Page 29: Cardiovascular System -  Vascular System

Home Learning

What is a sphygmomanometer used for?

What is the average reading of a Sphygmomanometer?

What part of the body controls this reading?

What two factors influence the reading?

TAKING BLOOD PRESSURE

120MMHG/80MMHG

VASOMOTOR CONTROL CENTRE – MEDULLA OBLONGATTA IN THE BRAIN

Cardiac output & Blood viscosity

Page 30: Cardiovascular System -  Vascular System

Blood Pressure• Controlled by the Vasomotor Centre (medulla

oblongata in brain)• Blood pressure is the force exerted by the blood

against the walls of the blood vessels. • It is necessary to maintain blood flow though the

circulatory system• It is determined by two main factors –1) Cardiac Output – the volume of blood flowing into

the system from the left ventricle.2) Resistance to flow – the impedance offered by the

blood vessels to the blood flow.

Page 31: Cardiovascular System -  Vascular System

Blood Pressure • Blood pressure = cardiac output x resistance

• Therefore, blood pressure increases when either cardiac output or resistance increases.

• Blood pressure in the arteries also increases and decrease in a pattern which corresponds to the cardiac cycle during ventricular systole, when blood is pumped into the aorta and lowest during ventricular diastole.

Page 32: Cardiovascular System -  Vascular System

Blood Pressure Measurement• BP is usually measured a the brachial artery using a

sphygmomanometer, and is recorded as mmHg of systolic pressure over diastolic pressure:

• SYSTOLE pressure is experienced when the heart pumps blood into the system

• DIASTOLIC pressure is recorded when the heart is relaxing and filling with blood.

• Typical Reading = 120mmHg 80mmHg

http://www.youtube.com/watch?v=u6saTO8_o2g

Page 33: Cardiovascular System -  Vascular System

Blood Pressure and Exercise• BP Changes during exercise.• During Aerobic exercise, the systolic pressure

increases as a result of increased cardiac output, while diastolic pressure remains constant, or in well trained athletes may even drop as blood feeds into the working muscles.

• During isometric or anaerobic exercise both systolic and diastolic pressure rise significantly due to increased resistance of the blood vessels.

Page 34: Cardiovascular System -  Vascular System

PRACTICAL DEMO In pairs you are going to take each others blood pressure using a more current Sphygmomanometer.

These are digital and are almost as accurate as the original but are easier to use as you do not have to listen for the pulse.http://www.youtube.com/watch?v=4TkWagnP8pg