Carbon sequestration in agricultural soils: The “4 per mil” program

Download Carbon sequestration in agricultural soils: The “4 per mil” program

Post on 14-Apr-2017

499 views

Category:

Education

1 download

TRANSCRIPT

<p>Prsentation PowerPoint</p> <p>4 INITIATIVESoils for food security and climate</p> <p>H. Saint Macary (Cirad)D. Pot (Cirad)J. F. Soussana (Inra)J. L. Chotte (IRD)</p> <p>4 INITIATIVE : MULTIPLE ROLES OF SOIL ORGANIC MATTER (SOM) </p> <p>PHYSICALQUALITYCHEMICALQUALITYSOIL ORGANICMATTER (SOM)AGRO-ECOLOGICAL QUALITYBIOLOGICALQUALITYINITIATIVE 4 PER 1 000</p> <p>UNCCD</p> <p>INITIATIVE 4 PER 1 000A PERFORMING AGRICULTUREQUALITPHYSIQUEFERTILIT ET QUALIT CHIMIQUEMatire organique des sols (mos)</p> <p>SOMBetteruse of nutriments,conservation of water&gt; Produce as much or more, with limited renewable resources</p> <p>QUALITPHYSIQUEFERTILIT ET QUALIT CHIMIQUEMatire organique des sols (mos)</p> <p>SOMBuffering effects on temperatures,reduction of erosionINITIATIVE 4 PER 1 000A RESILIENT AND ADAPTATIVE TO CC AGRICULTURE</p> <p>QUALITPHYSIQUEFERTILIT ET QUALIT CHIMIQUEMatire organique des sols (mos)</p> <p>&gt; Reduce pollutionsA LOW ENVIRONMENTAL FOOTPRINT AGRICULTURE</p> <p>SOM</p> <p>Biological activity anddepollutionINITIATIVE 4 PER 1 000</p> <p>INITIATIVE 4 PER 1 000QUALITPHYSIQUEFERTILIT ET QUALIT CHIMIQUEMatire organique des sols (mos)&gt; Today, agriculture releases 14 % of GHG</p> <p>SOMIt is carbon (as in CO2)The more carbon in soils, the less in the atmosphereA LOW ENVIRONMENTAL FOOTPRINT AGRICULTURE</p> <p>8,9</p> <p>INITIATIVE 4 PER 1 000</p> <p>12.54 THE ASSUMPTION </p> <p>3 200 GT CO212.53 200= 4</p> <p>AN INTERNATIONAL RESEARCH PROGRAMME&gt; Mecanisms and potentials&gt; Cropping systems performances evaluation&gt; Appropriate policies&gt; Monitoring and verification</p> <p>INITIATIVE 4 PER 1 0004 INITIATIVETWO MAIN STRANDS OF ACTION</p> <p> and others : OSU, WUR, ARC</p> <p>A MULTIPARTNER PROGRAM OF ACTIONS&gt; Integration in the LPAA (Lima Paris Agenda for Action)&gt; Encourage stakeholders to get involved in a coordinated effort&gt; Official launch in Paris COP 21 on 1st decemberINITIATIVE 4 PER 1 0004 INITIATIVETWO MAIN STRANDS OF ACTION</p> <p>&gt; Develop agroecological practicesConservation agriculture, improvement of pastures</p> <p>AgroforestryRecycling of organic residues</p> <p>INITIATIVE 4 PER 1 000HOW ?</p> <p>&gt; Preserve and restore soils</p> <p>&gt; Support innovation with appropriate policies</p> <p>INITIATIVE 4 PER 1 000HOW ?</p> <p>andwhat about biotechnologies ?</p> <p>8,9</p> <p>INITIATIVE 4 PER 1 000</p> <p>4 THE ASSUMPTION 10.610.6Net biome productivity </p> <p>INITIATIVE 4 POUR 1 000Another way of looking at the question</p> <p>GPP451 GtCO2 yrPlant Resp220 GtCO2 yrNet Primary Productivity231 GtCO2 yrHeterotrophic RespirationExportations194 GtCO2 yrNet Ecosystem Productivity37 GtCO2 yrDisturbance(Fire, ..)26,4 GtCO2 yrNet BiomeProductivity10,6 GtCO2 yr</p> <p>Sorghum : a good model to improve Carbon sequestration</p> <p>Heritabilities</p> <p>i) A large adaptability : 38South to 52 North Used in subsahelian regions and temperate onesA pilar crop for food security in subsahenelian regionsUsed for feed, food and bioenergy / biomaterial in developped countriesIntegrated in different crop system : dedicated, relay cropping, associationsA good model for north and south comparisons , crop managment optimization..</p> <p>ii) Sorghum is used in a variety of applications : food, feed and non-food-non-feed applications including energy, biomaterials</p> <p>iii) Sorghum has a C4 photosynthesis (efficient at high temperature, no photorespiration, lower photoinhibition), Sorghum is drought tolerant, it has a deep root system</p> <p>iv) A large genetic and phenotypic variability exists ensuring large genetic gains for different end-products developemntIts genome is relatively simple compared to maize, miscanthus and other cereals crops </p> <p>v) Sorghum is sometimes cropped as ratoon over seasons and close relatives are perenial offering the opportunity to develop perenial sorghum</p> <p>Vi) And analysis of sorghum roots and soil microbiome have been initiated and are showing that there is a genotype effect on the advanatges provided by the soil microbiome</p> <p>15</p> <p>INITIATIVE 4 POUR 1 000Another way of looking at the question</p> <p>GPP451 GtCO2 yrPlant Resp220 GtCO2 yrNet Primary Productivity231 GtCO2 yrHeterotrophic RespirationExportations194 GtCO2 yrNet Ecosystem Productivity37 GtCO2 yrDisturbance(Fire, ..)26,4 GtCO2 yrNet BiomeProductivity10,6 GtCO2 yrIncrease the Gross Primary Production (GPP)</p> <p>Improve tolerance to heat, water stress, nutrient deficit is a key to maximize Carbon sequestration in the soil</p> <p>Tin gene in Wheat : Shoot / root ratio impacts on water uptkake efficiency and drought tolerance</p> <p>Optimize Productivity under biotic and abiotic stress</p> <p>Une autre voie pour optimiser la squestration du C dans le sol est la maximiser la production vgtale en condition de stress biotique et abuiotique.La tolrance au stress biotique et abiotique est depuis toujours une cible de lamlioration des plantes et de nombreux gnes on dj t identifi.</p> <p>Nous reprenons ici lexemple du gne dinhibition du tallage chez le bl (Tin) dont nous avons parl prcdemment</p> <p>Dans le graphique du haut droite, Bank- correspond au gne non mut et Banks ++ au gnotype mut au niveau de Tin.On remarque que le gntoype mut qui a un rapport root/shoot plus lev conomise plus deau : il a plus deau disponible que lautre gnotypeCela se traduit aussi dans le profil de disponibilit en eau : le gnotype ayant un rapport root/shoot plus lev maintient plus deau dans les couches superficielles du sol que le gnotype sauvage.</p> <p>17</p> <p>Change annual crops to perennial : genes identification in grain sorghum Ratoon sorghum : stay in the field over season + take advantage of early precipitations</p> <p>Perennial plants : decrease management and soil disturbance . Optimize Carbon sequestration !</p> <p>Wild sorghum relatives are perennial (Sorghum propinqum) : understand genetic determinism of perenniality and rhizome development</p> <p>Washburn et al 2013 Molecular breeding</p> <p>Transcriptome sequencing of rhizomes and aerial shoots of S Propinquum (Zhang et al 2014)</p> <p>El sorgho est une espce intressante dans ce contexte :Dune part, des varits de sorgho cultivs appeles rattoon sont de faon traditionnelle</p> <p>18</p> <p>Optimizing light interception : genetically optimizing leaf angle represents a promising way to sustainably increase sorghum productivity (Truong et al 2015 Genetics) </p> <p>K= Light extinction coefficientSmall K =&gt; less PAR intercepted by Upper leaves and more PAR available at lower levels of canopy</p> <p>Dwarf3 gene affects Leaf Angle, it encodes a P-Glycoprotein, that regulates polar auxin transport</p> <p>A potential tool to monitor leaf angle in Sorghum breeding</p> <p>Exemple 1 : loptimisation de linterception de la lumire chez le sorgho via lexploitation de la diversit naturelleChez le sorgho il existe une variabilit naturelle pour langle des feuilles (photo : 2 genotypes avec diffrentes orientations foliaires)Ces gnotypes ont des capacits dinterception de la lumire diffrente qui se traduit par un coefficient dextinction de la lumire diffrentes =&gt; les gnotypes ayant les feuilles les plus rigs ont plus de lumire qui pntrent dans les tages infrieurs (K plus petit) =&gt; photo + graph de droiteLes rgions du gnome contrlant langle dinsertion ont t dtectes dans 2 populations de cartographie diffrentes.Une rgion expliquant la majeure partie de la variabilit a t identifie, elle correspond au gne Dw3 (gne de nanisme)</p> <p>19</p> <p>INITIATIVE 4 POUR 1 000Another way of looking at the question</p> <p>GPP451 GtCO2 yrPlant Resp220 GtCO2 yrNet Primary Productivity231 GtCO2 yrHeterotrophic RespirationExportations194 GtCO2 yrNet Ecosystem Productivity37 GtCO2 yrDisturbance(Fire, ..)26,4 GtCO2 yrNet BiomeProductivity10,6 GtCO2 yrReduce respiration</p> <p>Sorryno obvious gains demonstrated until nowReduce / optimize plant respiration (C02 production)</p> <p>En ce qui concerne loptimisation de la respiration des plantes (rduction du CO2 mis), mme si elle constitue un but vident pour optimiser la squestration du C dans le sol, il y a peu de rsultat probant montrant que lon peut la manipuler21</p> <p>INITIATIVE 4 POUR 1 000Another way of looking at the question</p> <p>GPP451 GtCO2 yrPlant Resp220 GtCO2 yrNet Primary Productivity231 GtCO2 yrHeterotrophic RespirationExportations194 GtCO2 yrNet Ecosystem Productivity37 GtCO2 yrDisturbance(Fire, ..)26,4 GtCO2 yrNet BiomeProductivity10,6 GtCO2 yrModify ratios :Shoot / rootMonitor :Soil &amp; Rhizosphere</p> <p>Allocation of C to the root systems : Impacts on Soil C sequestration</p> <p>Soil deposition of C through allocation to deep roots=&gt; long term C sequestration (Direct positive effect)</p> <p>C loss through root exudates boosts soil respiration and negatively affects both C sequestration (but soil improvement has to be taken into account)</p> <p>=&gt; Need to unravel the genes involved in carbon partitioning and exudationControl the Shoot-Root ratio</p> <p>Une des cls pour optimiser la squestration du C dans le sol est la modification du rapport Tige / racine.La modification de ce ratio va entrainer La dposition de C en profondeur dans le sol via le dveloppement de systmes racinaires profond ce qui est un caractre favorable</p> <p>La perte de C via lexudation et une augmentation de la respiration du microbiome du sol (cela peut entrainer une rduction de la biomasse produite et une diminution de la squestration de C). Nanmoins lexudation est aussi favorable au dveloppement de communaut microbienne qui sont garante dune sol riche et vivant et donc apte stocker du C organique</p> <p>Dans ce contexte lidentification des gnes impliqus dans la force de puits des racines / lallocation de C aux diffrents organes et dans lexudation es crucial23</p> <p>SOIL FUNCTIONS MONITORING:THE METAGENOMICS PROCESSDETERMINE WHO IS THERE(Sequence-based metagenomics) Identify organisms, genes and metabolic pathways Compare to other communities Compare treatments and cultural practicesDETERMINE WHAT THEY ARE DOING(Function-based metagenomics) Screen to identify functions of interest, such as nitrate reduction, or carbone fixation Find the genes that code to functions of interests</p> <p>Extract all DNA from microbial community insampled environment</p> <p>DNA sequencing</p> <p>INITIATIVE 4 POUR 1 000Another way of looking at the question</p> <p>GPP451 GtCO2 yrPlant Resp220 GtCO2 yrNet Primary Productivity231 GtCO2 yrHeterotrophic RespirationExportations194 GtCO2 yrNet Ecosystem Productivity37 GtCO2 yrDisturbance(Fire, ..)26,4 GtCO2 yrNet BiomeProductivity10,6 GtCO2 yrMonitorplant quality</p> <p>Sorghum for biofuels : increasing cell wall digestibility, and reducing lignin in the aboveground biomass are favorable traits</p> <p>But reduced recalcitrance is not an advantage for C sequestration</p> <p>The more recalcitrant the soil organic C, the longer it will escape to microbial respiration and reentry in atmosphere</p> <p>=&gt; Need to be able to modulate C allocation, and C use differentially to roots and stemMonitor biomass quality</p> <p>Optimization of the plant compartment through biotechnologies :The targets</p> <p>Reduce plant respirationModify Shoot-Root ratio</p> <p>BiocharProductivity under biotic and abiotic stress</p> <p>Optimize their use as bioenergy / biomaterialsIncrease Plant Photosynthetic efficiencyIncrease PhytolithsMonitor biomass qualityPerenniality / optimize plant to new crop managementEcosystemic services : reduce soil erosion</p> <p>Au niveau des plantes</p> <p>Diffrentes cibles ont t identifies </p> <p>Le premier est damliorer lefficacit photosynthtique des plantes : amliorer leur captage de CO2 et leur capacit accumuler du Carbone organique</p> <p>Ensuite on peut mentionner : La rduction de la respiration des plantes (leur mission de CO2 via la respiration)Modifier le ratio Tige / RacineAugmenter le rendement en condition de stress biotique et abiotiqueAmliorer la qualit de la biomasse : non seulement au niveau arien pour amliorer lutilisation des organes (alimentation, industrie) mais aussi au niveau racinaire (pour maximiser le stockahe du C sous une forme qui est le moins possible dgradable)Une piste concerne aussi loptimisation du stcockage du C sous la forme PhytolithLutilisation de la prennisation des espces est aussi une piste importante, il serait notamment possible de dvelopper des espces cralires prennesLes 3 derniers points ne sont pas proprement parler des cibles damlioration, mais elles constituent des bnfices entrevus via la maiximization de lutilisation des plantes sous diffrentes formes :- la culture de plante ayant des systmes racinaires profiond et faviorisant un sol vivant et riche (microbiome) rduit lrosion du sol et son lessivage- lutilisation du Biochar (charbon de plantes obtenu via torrefaction) a des bnfices pour la vie des sols et constitue un puits de C- le dveloppement global de lutilisation des plantes dans un contexte de bioconomie est pertinent car on va augmenter les surfaces travailles (colonisation de sols marginaux de prfrence) ce qui augmente donc la squestration du C27</p> <p>With Soil Organic Matter increase, food security and combating climate change (adaptation + mitigation) are complementaryhttp://www.4p1000.org/</p> <p>Agriculture is already part of the solution : local agroecological practices, public policies, funding mechanisms</p> <p>Biotechnologies will helpINITIATIVE 4 PER 1 0004 INITIATIVE</p> <p>4 INITIATIVESoils for food security and climate</p> <p>THANK YOU </p>

Recommended

View more >