carbon capture simulation initiative (ccsi) | - …...carbon capture challenge • the traditional...

43
Accelerating Technology Development: Post Combustion Capture Sorbents David C. Miller and James C. Fisher II National Energy Technology Laboratory July 2013 National Energy Technology Laboratory July 2013

Upload: others

Post on 19-Jan-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Accelerating Technology Development: g gy pPost Combustion Capture Sorbents

David C. Miller and James C. Fisher II

National Energy Technology Laboratory

July 2013

National EnergyTechnology Laboratory

July 2013

Page 2: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Outline

• Carbon Capture Challenge

• Computational Tools to Accelerate Technology Development• Computational Tools to Accelerate Technology Development

• Experimental Carbon Capture Research @ NETL

• Multiscale Model Development Simulation & Optimization• Multiscale Model Development, Simulation & Optimization

• Experimental Validation

• ConclusionsConclusions

22

Page 3: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Carbon Capture Challenge

• The traditional pathway from discovery to commercialization of energy technologies can be quite long i e 20‐30 years

Bench Research   ~ 1 kWe

can be quite long, i.e., 20 30 years

• New approaches are needed for taking carbon capture concepts from lab to 

Small pilot           < 1 MWe

power plant, quickly, and at low cost and risk

b l ll l

Medium pilot      1 – 5 MWe

Semi‐works pilot• Science‐based simulations will accelerate the development of carbon capture technology from discovery through

Semi‐works pilot 20‐35 MWe

First commercial technology, from discovery through deployment

plant, 100 MWe

Deployment, >500 MWe >300 plants

3

MWe, >300 plants

Page 4: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

For Accelerating Technology Development

Identify Reduce the time Quantify the technical Stabilize the cost

National Labs Academia Industry

promising concepts

for design & troubleshooting

risk, to enable reaching larger scales, earlier

during commercial deployment

44

Page 5: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Advanced Computational Tools to Accelerate Next Generation Technology Development

Risk Analysis (Technical Risk, Financial Risk) & Decision Making

Generation Technology Development

Process Design & Optimization

Validated High-Fidelity CFD & UQ Advanced

Process Control &

U t i t Q tifi ti Tools

Process ModelsHigh Resolution

Filtered Sub-models

DynamicsUncertainty Quantification

Uncertainty Quantification

Basic Data Sub-models

Uncertainty Quantification

Cross-Cutting Integration ToolsData Management, Remote Execution Gateway, GUI, Build & Test Environment, Release Management

55

Page 6: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Simulation & Experiments to reduce time for design/troubleshootingon

Heat-transfer-tube-scale hydrodynamicsnt

al V

alid

atio

* * * * *drag s sf v v Ex

perim

en

Process Models & Optimized Process

66

Experimental Kinetic/Mass Transfer Data

Page 7: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Outline

• Carbon Capture Challenge

• Computational Tools to Accelerate Technology Development• Computational Tools to Accelerate Technology Development

• Experimental Carbon Capture Research @ NETL

• Multiscale Model Development Simulation & Optimization• Multiscale Model Development, Simulation & Optimization

• Experimental Validation

• ConclusionsConclusions

77

Page 8: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Carbon Capture Carbon Capture Development of efficient and

Polymers and Derivatives

Development of efficient and economic carbon capture strategies applicable for post‐, pre‐ and oxy‐combustion schemes

Small PoresFlexible Pores

Planar Metal-Based Polymeric Network

Plant Scale

Integrated Materials Development

Ionic Liquids

Large PoresRigid Pores

M[Ni(CN)4]n

Metal-Organic Frameworks

Integrated Materials Development

Device ScaleDevice ScaleCompositesMaterials Scale

Page 9: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Integrated Materials DevelopmentIntegrated Materials DevelopmentPerformance

T ti CCSI Si l ti &Characterization

Testing CCSI Simulation & Analysis

P CO

2, bar

20

30

40

SelexolTEGO IL P9TEGO IL K5TEGO IL P51P

X*, -

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

10

T = 300K

Molecular Modeling

Synthesis2.69 Å

Fabrication

9

Page 10: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Supported Amine SorbentsCarbon CaptureCarbon CaptureSupported Amine Sorbents

O

H2

H2

N Si

SiNOEt

Et

O Scale‐up

Et

NH2

NH2

OH

OOOSi

OSi

OH2

2

OH

N Si

O

Si

O

OEt

Et

O

O O OHH

Si O

O

NH2

Et

Et

10

Silica

Page 11: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Components of Basic Immobilized Amine Sorbents (BIAS)

OEtSiOEt

EtONH

N

NH2

x yPQ 2129

NH2

(3-Aminopropyl) triethoxysilaneAPTES

PolyethyleneiminePEI

Mn 423-2000

Si OMeOMe

MeO SiOMe

OMeMeO Si

NH

OMeOMeMeO

NH2 NH

NH2

NH

NH2

NH

N1-(3-Trimethoxysilypropyl)

(3-Aminopropyl )trimethoxysilaneAPTMS

NH2

N1-(3-Trimethoxysilypropyl) diethylenetraimine

DETA

( y y y )diethylenediaimine

DEDA

Modification of US 7,288,136 High Capacity Immobilized Amine Sorbents

11

US Patent Application 13212284 filed 8/11

Page 12: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Sorbent AXT BIAS b b i d AX d 32DTwo BIAS sorbents are being tested: AX and 32DSorbent AX

• 40% PEI ‐ BASF Mn 2000 

• Mesoporous Silica support‐ PQ Inc 2129

• 8 ‐ 15 gal. drums from ADA

• Capacity (avg.) = 2.82 mmole CO2/g adsorbent i f 2 60 2 87 f 7ranging from 2.60‐2.87 for n=7

• ADA packed bed, 13‐14% CO2, ~55oC Capacity         ( avg.) =1.25 avg. mmole CO2/g  adsorbent

• u =0 48 cm/s 1

1.2

• umf=0.48 cm/s

• Particles behavior is Geldart Group A

0.6

0.8

1

·m (F

ract

ion)

Sauter mean particle diameter (μm) 114

Spericity (UNITLESS) 0.86

Particle porosity (UNITLESS) 0.39

Particle skeletal density (g/cc) 1.500

0.2

0.4

ΔP·

A/g

12

Particle density (g/cc) 0.9100.000 0.002 0.004 0.006 0.008 0.010 0.012

Velocity (m/s)

Page 13: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

BIAS Sorbent Testing250 cycle stability under humidified conditionsRegeneration at 105 °C with 90% steam

1 5

2

2.5

3

y (m

ol/kg)

250 cycle stability under humidified conditionsRegeneration at 105 C with 90% steam

75

100 H2O …

0

0.5

1

1.5

CO2 Ca

pacity

0

25

50

H2O

(%)

0 100 200 300Cycle Number

11:00 12:00 13:00 14:00 15:00 16:00

Time

Sorbent ∆ CO Capacity/ ∆ CO Capacity/Accelerated SOX testing

Sorbent ∆ CO2 Capacity/Cum SO2 (mol/mol)

∆ CO2 Capacity/Cum NO2 (mol/mol)

PEI / PMMA 0.91 0.68

PEI / Cariact 1.04 0.9660708090

100

2030405060

CO2SO2

13

010

0 1 2 3 4 5 6 7 8 9 10 11 12Run Number

Page 14: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

CCSI communication 

Provided AX sorbent properties to CCSI

Feedback on working capacity and moisture requirements

Provided AX sorbent properties to CCSI

OH2 SiN

Et

Reformulates sorbent based moisture and working capacity requirements

AX f l d 32D b

NH2

H2N SiO

OEt

EtO

O

OEt

AX reformulated to 32D sorbent

EtNH2

OH

OOOSi

OSi

OH2

OH

N Si

O

OEt

O O OHH

Si ONH2

Et

1414

Silica

Page 15: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Polyethyleneimine Silane CouplingPolyethyleneimine Mn 423 2000

NH

N

NH2

x y

Polyethyleneimine Mn 423-2000

SimpleScalableA t bl C itAcceptable CapacityMoisture ResistanceStability

Aminosilanes

ySaleable

N NNH

N

NH2

x y

Si

OEt

OEt

O Si OEt

NH2 NH2

OEt

15

Pressure Chemical – Pan Dyer Synthesis was scaled to 1,000 lb range

Page 16: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

TGA Data Collection

115

ss

100

105

110

TGA

Mas

CCSI

16

0 5 10 15 20 25 30 35 40 45 50

00

Time (h)

Page 17: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Summary for Basic Immobilized Amine Sorbent 

•High delta loadings in the 3-4mol/kg range

•CO regeneration improbable•CO2 regeneration improbable

•Stable at elevated temperatures

•Silica substrate candidate ofPEI on CARiACT Q10 (100 to 350 µm dia.)

•Silica substrate candidate of choice

•Loading results confirmed by TVA and ADA ESADA-ES

•Moisture adsorption may impact energetics

•Susceptible to poisoning with SO2and NO2; upstream cleaning required in process

17Schematic and actual pilot unit

•Kinetic study conducted17

Page 18: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Outline

• Carbon Capture Challenge

• Computational Tools to Accelerate Technology Development• Computational Tools to Accelerate Technology Development

• Experimental Carbon Capture Research @ NETL

• Multiscale Model Development Simulation & Optimization• Multiscale Model Development, Simulation & Optimization

• Experimental Validation

• ConclusionsConclusions

1818

Page 19: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

• A general lumped kinetic model

PEI‐Impregnated Silica Sorbent Reaction Model• A general lumped kinetic model, 

quantitatively fit to TDA data, needed for initial CFD and process simulations

• High‐fidelity model:High fidelity model:– Sorbent microstructure broken down into three 

length scales

– Rate of reaction controlled by the diffusion of CO2through the amine polymerg p y

– Ab initio calculations indicate dependence of the diffusion process on water.

(left) lumped kinetic fit to experimental TGA for NETL-32D sorbent

(right) calibrated model with discrepancy and error bounds

1919

Page 20: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Bayesian Methods in Parameter Estimation

• Experimental data tends to constrict the prior distribution, resulting in a experiment-based estimate influenced by theoretical calculations.

Above: schematic of the calibration process. Left to• A stochastic function

representing the model error can also be estimated i thi

Above: schematic of the calibration process. Left to right: draws from the prior, draws from the posterior, discrepancy, and predictions.

in this way.

Right: model-plus-discrepancy (a) and model only predictions (b) with confidencemodel-only predictions (b), with confidence bounds.

20Mebane DS, Bhat KS, Kress JD, Fauth DJ, Gray ML, Lee A, Miller DC., Bayesian calibration of thermodynamic models for the uptake of CO2 in supported amine sorbents using ab initio priors. PhysChem Chem Phys. 15 (2013) 4355‐66. doi: 10.1039/c3cp42963f.

Page 21: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

CCSI Tools to develop an optimized process using rigorous models

U t i tSimulation Based Uncertainty QuantificationOptimized

Process

Simulation-Based Optimization

Process Models

 

ance

Operating condition

Sys

tem

per

form

a

Superstructure Optimization(Determine Configuration)

Basic Data Submodels Algebraic

Surrogate Models

2121Miller, D.C.; Sahinidis, N.V.; Cozad, A.; Lee, A.; Kim, H.; Morinelly, J.; Eslick, J.; Yuan, Z. "Computational Tools for Accelerating Carbon Capture Process Development". In Proceedings of The 38th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, FL, USA. June 2 to 6, 2013.

Page 22: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Solid Sorbent System ModelsBubbling Fluidized Bed (BFB) Models

Flexible BFB models with immersed heat exchangers have been developed to beused as adsorber or regenerator, as needed,used as adsorber or regenerator, as needed, with varying locations for solids inlet and outlet streams

Any number of BFB adsorbers and/or t b t d i iregenerators can be connected in series

and/or in parallel depending on the user requirements

A 2-stage adsorption model with customized variables g psuitable for incorporating UQ has been developed

Moving Bed (MB) Models External resistance to mass transfer has been

modeled This is particularly important in themodeled. This is particularly important in the regenerator model due to the high operating temperature.

Heat exchanger model, mass and heat transfer coefficients, boundary conditions, temperature specifications, and properties

2222

models are revisited for better model accuracy.

Page 23: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Automated Learning of Algebraic Models for Optimization

F b ildi tFor building accurate, simple algebraic

surrogate models of simulated processessimulated processes

Example Model: BFB Adsorber Inlet Gas Pressure

ACM Simulation Pressure drop across length of bed

>900 terms possible

14 input variables

0 13% error

length of bed

Proportional to outlet pressure

Pressure drop due to bed diameter

2323

0.13% error outlet pressure bed diameter

Page 24: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Superstructure Formulation & Optimization

a1 d1

Solid sorbent

Cleaned gas

a2 d2

Solid sorbent stream

Solid sorbent CO2

C t

a3 d3

Capture

a4 d4Other

capture trains

Flue gas from power plant

Cooling waterSteamWork

2424

Page 25: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Insert Algebraic Surrogates into Superstructure

a1 d1

Solid sorbent

Cleaned gas

a1

a2 d2

Solid sorbent stream

Solid sorbent CO2

Capturea2

Add the set of surrogatemodels

Solid sorbent CO2

Capture

a3 d3

Capture

a3

surrogate models generated for each 

adsorber

Capture

a4 d4Other

capture trains

a4

Flue gas from power plant

Cooling waterSteamWork

2525

Page 26: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Initial Superstructure Solution

Cleaned gasRegen.

a1

2

d1

Solid sorbent Other

capture

gas

Flue gas from power plant

a2 streamcapture trains

Cooling waterSteamWork

2626

Page 27: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Simulation‐Based Optimization Framework

Turbine Gateway(runs simulations and stores resultscan run simulations in parallel)Graphical Interface

Optimization Engine

Derivative‐free optimizer

ple

Poi

nts

e Fu

nctio

ns

Meta‐flowsheetconnects simulations in various software

Sam

p

Obj

ectiv

e

Option for rigorous heat integration

2727Miller, D.C.; Sahinidis, N.V.; Cozad, A.; Lee, A.; Kim, H.; Morinelly, J.; Eslick, J.; Yuan, Z. "Computational Tools for Accelerating Carbon Capture Process Development". In Proceedings of The 38th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, FL, USA. June 2 to 6, 2013.; 

Page 28: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Turbine Science Gateway

2828

Page 29: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Decision Variables

Input VariableLower Bound

Upper Bound

Adsorber Diameter (m) 7 10Top & Bottom Adsorber Bed Depth (m) 4 10

Top & Bottom Adsorber Heat Exchanger Tube Diameter (m) 0.01 0.05Top & Bottom Adsorber Heat Exchanger Tube Pitch (m) 0.1 0.2

Top & Bottom Adsorber Cooling Water Flowrate (kmol/hr) 30 000 60 000Top & Bottom Adsorber Cooling Water Flowrate (kmol/hr) 30,000 60,000Sorbent Flowrate per Adsorber (kg/hr) 350,000 600,000

Gas Pre‐Cooler Temperature (⁰C) 40 60Regenerator Height (m) 3 7

( )Regenerator Diameter (m) 6 10Regenerator Heat Exchanger Tube Diameter (m) 0.01 0.05Regenerator Direct Steam Injection Rate (kmol/hr) 900 1400

Regenerator Heat Exchanger Steam Flowrate (kmol/hr) 2,500 5,000g g ( / ) , ,

2929

Page 30: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Optimized Capture Process Developed using CCSI ToolsetCO2 to

ADS‐001

RGN‐001

Clean Gas to Stack

CO2 to Sequestration SHX‐01

Legend

Parallel ADS Units

Compression Train

CPP‐002

ELE‐002

ELE‐001

Flue Gas

Clean Gas

Rich Sorbent

LP Steam

HX Fluid

Rich CO2 Gas

Lean Sorbent

GHX‐001

Flue Gas

CPR‐002

LP/IP Steam from Power Plant

Injected Steam

Cooling Water

CPR‐001

BLR‐001

Flue Gas from Plant SHX‐02

from Power Plant

Parallel ADS Units

Parallel RGN Units

GHX‐002

Cooling Water

Saturated Steam Return to Power Plant

Mild SteamDirectly Injected into Reactor

CPP‐000

Cooling Water

Cond

ensed 

Water

Cond

ensed 

Water

∆Loading1.8 mol CO2/kg

0.66 mol H2O/kg

Solid SorbentMEA

(10°C HX)MEA

(5°C HX)Q_Rxn (GJ/tonne CO2) 1.82 1.48 1.48Q_Vap (GJ/tonne CO2) 0 0.61 0.74

3030

/ g

Miller, D.C.; Sahinidis, N.V.; Cozad, A.; Lee, A.; Kim, H.; Morinelly, J.; Eslick, J.; Yuan, Z. "Computational Tools for Accelerating Carbon Capture Process Development". In Proceedings of The 38th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, FL, USA. June 2 to 6, 2013.

Q_Sen (GJ/tonne CO2) 0.97 1.35 0.68Total Q 2.79 3.44 2.90

Page 31: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Uncertainty Quantification: How certain are we that our model can predict the system performance accurately?model can predict the system performance accurately?

How to quantify these error bounds a priori? How to reduce these bounds?

CCSI simulation

Risk

rform

ance

ADS‐001

RGN‐001

SHX‐001

ELE‐002

ELE‐001

7

89

10 S1 S4

15

Scaled-up design

analysis

Operating condition

Sys

tem

peS2

S5

Operating condition

How does the uncertainty in the prediction affect the risk

t t ?

3131

assessment outcome?

Page 32: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Multi‐Scale Uncertainty Quantification Framework

Optimization & UQ Framework

Bayesian inference

Sorbent ProcessModel

Optimization & UQ Framework

Chemistrymodel

Chemistrymodel

Bayesian inference

With model-form correction Sorbent

Unified interface for UQ, steady-state RM, and optimization.

ProcessModel

• UQ for basic data models– Bayesian UQ methodologyBayesian UQ methodology– Integration of model form discrepancy into process & CFD models

• UQ for CFD models– Adaptive sampling capability for RM/UQ

Bayesian calibration capability– Bayesian calibration capability– UQ of discrepancy between CFD/process models

• UQ for process models– Integration with optimization platform

3232

– Optimization under uncertainty 

Page 33: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Detailed CFD Simulations of Specific Equipment

Heat-transfer-tube-scale hydrodynamics

* * * * *drag s sf v v

Process Models & Optimized Process

3333

Experimental Kinetic/Mass Transfer Data

Page 34: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

P bl E li it l ti f ll l ti l l t d li t b i l d i

High Resolution Particle Models• Problem: Explicit resolution of small‐scale particle clusters and cooling tubes in large devices 

computationally infeasible!

• Solution Develop sub‐grid ‘filtered’ that account for: – Unresolved particle clusters, 

– Drag exerted by cylinders on suspension. Work well along the way for horizontal tubesg y y p g y

Cylinders replaced by an equivalent stationary, porous medium.

• Benefit: The sub‐grid ‘filtered’ models can be implemented in faster, coarse‐grid simulations. 

34

Page 35: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Validated CFD Models at the Device Scale 

Objective: To provide quantitative confidence on device‐Objective: To provide quantitative confidence on devicescale (CFD) model predictions for devices that are yet to be built. 

1 MWe solidsorbent system

35

Page 36: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Rigorous Validation of Modelson

Heat-transfer-tube-scale hydrodynamicsnt

al V

alid

atio

* * * * *drag s sf v v Ex

perim

en

Process Models & Optimized Process

3636

Experimental Kinetic/Mass Transfer Data

Page 37: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

C2U and validation data

Crossover

Cyclone

Diversion valve

RiserLoop seal

Regenerator - Batch test reactor

Collection reservoir

Adsorber

Loop seal

37

Loop seal

Page 38: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

C2U and validation data

C2U P iC2U Progression

1. Design and construction

2. Shakedown and modification as needed

3. Revise design drawing3. Revise design drawing

4. Create system models from revised drawings.

38

Page 39: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

C2U and validation data

To validate individual models, three sets of tests where statistically devised and randomized 1.Cold Flow testing – hydrodynamicsg y y2.Hot Flow testing – heat transfer, hydrodynamics3.Reaction testing – reaction kinetics, heat transfer, hydrodynamics

Sorbent AX Sorbent 32DCold Flow Hot Flow Cold Flow Hot Flow Reacting Flow

Flow (SLPM) Flow (SLPM) Temp(°C) Flow (SLPM) Flow (SLPM) Temp(°C) Flow (SLPM) Temp(°C) CO2 Conc.49.8 16.9 70.3 19.2 21.9 60.4 51.3 62.9 18.915 48.8 60.2 23.6 39.5 66.7 40 62.3 10.858.9 35.4 56.3 50.3 43.8 45.3 37 68.2 14.643.7 38.6 67.4 51.7 46.3 40.3 27.3 72.8 15.735.7 57.1 43.5 37 36.7 65 23.3 57.5 14.229.8 20.8 58.4 31.9 31.9 52.1 59 40.7 17.425.1 27.1 52.4 45.9 16.4 71.1 33.7 69.8 16.320.4 30 42.7 57.5 26.7 47.7 35.6 41.6 10.454.6 48.6 49 39.7 22.7 53.4 23.1 64.3 16.940.3 26 77.2 25.4 52.7 78.1 32.8 59 18.338.4 54.7 65.6 59.6 58.1 57.7 41.3 70.4 2023.2 41.9 74.2 33.3 51 73.4 20.5 44.8 14.331.6 40.6 61.8 16.1 30.6 79.1 56.4 63.6 13.728 52 73 27.4 59 68.8 17.9 48 10.547.8 23 47.4 21.6 48.1 55.2 43 71.7 18.218 15.8 45.3 43.3 19.3 65.7 56.9 57.9 10.233.4 29.5 69.7 54.9 39.3 43.5 32 79.1 15.352.6 44.4 40.5 41.4 49.4 63 49.1 61.6 17.146 36 50 29.6 29.7 76 44.8 65.4 19.756.9 19.2 76.3 47.7 56.1 42.6 50.2 46.2 16.515 32.2 63.8 16.1 35.2 58.5 59.7 44.3 1331.6 46.1 54.4 45.9 17.1 48.5 57.5 59.3 15.949.8 53.3 56.8 57.5 42.3 51.6 38.2 76.9 14.935.7 58.7 79.4 41.4 25.8 71.9 24.5 67.8 1220.4 15.8 45.3 25.4 17.1 48.5 49.3 52.7 19.546 38.6 67.4 33.3 30.6 79.1 52.2 50.2 11.425.1 36 50 21.6 58.1 57.7 45.9 60.1 12.643.7 58.7 79.4 29.6 51 73.4 15.9 67 12.256.9 53.3 56.8 51.7 19.3 65.7 35.8 53.1 13.954.6 19.2 76.3 50.3 43.8 45.3 55 54 14.629.8 37 48.2 54.9 13.138 4 43 3 54 4 75 7 11 9

Sorbent 32DCold Flow Hot Flow Reacting Flow

38.4 43.3 54.4 75.7 11.947.8 19.2 15.1 56.4 15.123.2 27.4 34.6 47 12.758.9 54.9 30.2 77.6 16.733.4 39.7 26.7 48.3 10.818 31.9 19.9 44 17.940.3 47.7 28.6 50.7 13.328 59.6 25.1 74.5 11.652.6 23.6 22.2 76.4 16.1

46.8 40.9 19.239.2 66.1 18.430.8 42.7 13.444.5 69.1 15.642.3 56 11.153.4 72.5 18.819 79 3 17 7

Flow (SLPM)Flow (SLPM) Temp(°C) Flow (SLPM) Temp(°C) CO2 Conc.19.2 21.9 60.4 51.3 62.9 18.9

23.6 39.5 66.7 40 62.3 10.850 3 43 8 45 3 37 68 2 14 6

39

19 79.3 17.727.9 73.7 19.317.6 51.8 17.540.5 49.4 11.619 79.3 17.732.8 59 18.354.4 75.7 11.946.8 40.9 19.238.2 76.9 14.924.5 67.8 1220.5 44.8 14.357.5 59.3 15.956.9 57.9 10.235.6 41.6 10.4

50.3 43.8 45.3 37 68.2 14.6

51.7 46.3 40.3 27.3 72.8 15.7

Page 40: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

C2U Initial testing data

95

110

125

3.0

4.0

5.0

ure (°C)

n (slpm)

Adsorption-BIAS

CO2

Bed temp‐ TE3962A

Batch test conducted in the regenerator with the BIAS sorbent

50

65

80

95

0.0

1.0

2.0

3.0

ed Tem

peratu

O2ad

sorption

110

125

0.0

1.0

e (°C)

pm)

Transition to Regeneration - BIAS

i AS

35‐1.019200 19700 20200 20700 21200

BeCO

Time (s)

65

80

95

‐3.0

‐2.0

‐1.0

d Tempe

rature

dsorption (slp

95

110

125

3.0

4.0

5.0

ature (°C)

n (slpm)

Regeneration - BIAS

CO2

Bed temp‐ TE3962A

35

50

‐5.0

‐4.0

21300 21800 22300 22800 23300

Bed

CO2 a

Time (s)

CO2

Bed temp‐ TE3962A

50

65

80

0.0

1.0

2.0

Bed Tempe

ra

CO2ad

sorptio

Most CO2 is released before achieving the regeneration

40

35‐1.023300 23800

C

Time (s)

gtemperature

Page 41: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

32D Hot Non‐reactive Flow

CFD Validation with C2U non‐circulating Experiments3.092

3870H

2.457

3.016

3860

H

dP_3860

1.937

1.848

2820

3801

H

3820dP 3820

1.378

1.5183812

H

3820

H

3830

H

3805

dP_3820

AX Cold Flow Pressure DropComparison

41

Page 42: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Conclusion

• Coupling experimental development with simulation enables– New approaches to be screened more quickly– Focuses development on most promising material & process conditionsprocess conditions

• Simulation with uncertainty quantification– Focuses experimental efforts on elements with the most pimpact to the process/technology

• Focused experiments for model validation enableL i k f l th h tit ti fid f– Lower risk for scale up through quantitative confidence of model predictions

4242

Page 43: Carbon Capture Simulation Initiative (CCSI) | - …...Carbon Capture Challenge • The traditional pathway from discovery to commercialization of energy technologies can bequitelong

Computational Toolset Demonstration

• 5‐7 PM today in Woodlawn I– Demonstration & detailed discussion of capabilities

S b t S l t M b O b ti• Sorbents, Solvents, Membranes, Oxycombustion• Initial toolset released Oct. 2012

– 4 companies already have already licensed

Risk Analysis (Technical Risk, Financial Risk) & Decision Making

– Additional releases planned for Fall 2013, 2014, 2015.

– Final release planned for Jan. 2016

Uncertainty in predictionsProcess Design &

Optimization Tools

Validated High-Fidelity CFD & UQ

High Resolution

Advanced Process Control

&DynamicsUncertainty Quantification

Uncertainty Quantification

Process Modelsg

Filtered Sub-models

Basic Data Sub-models

Uncertainty Quantification

43

Cross-Cutting Integration ToolsData Management, Remote Execution Gateway, GUI, Build & Test Environment, Release Management