canary islands eddies - umawakes.uma.pt/workshop/psangra_talk.pdf · 2008. 10. 17. · canary...

33
1 Canary Islands eddies Pablo Sangrà Universidad de Las Palmas de G.C.

Upload: others

Post on 29-Jan-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Canary Islands eddies

    Pablo SangràUniversidad de Las Palmas de G.C.

  • Outline1. Kinematics

    1.1 Initial size and shape1.2 Vertical structure1.3 Evolution

    2. Dynamics2.1 Generation mechanisms 2.2 Evolution: a simple advective-diffusive model2.3 Inertial/centrifugal stability

    3. Ongoing studies3.1 The Canary Eddies Corridor3.2 ROMS-UCLA modeling 3.3 Physical-biogeochemical coupling

  • Warm Wake

    Eddies

    Arístegui et al., 1994

    1.1 Initial size and shapeInitial radius: Rd =25 km, island radius

    1. Kinematics

  • • Eddies are initially Rakine like vortex with a core rotating in solid body rotation and a cylindrical shape

    Sangrà et al., 2005

    0

    100

    200

    300

    400

    500

    Dept

    h (m

    )

    Pot-Temp-Anomaly

    0 50 100 150

    Distance (Km)

    64 65 66 67 68 69 70 71 7272 73 7474 75 76 7777 78 79 80 81 82 83

    -16 -15

    27

    28

    6465

    6667

    6869

    7071

    7273

    7475

    7677

    7879

    8081

    8283

    center

    middle

    periphery

    Unpublished

    Buoys rotating rate

  • Arïstegu et al., 1994

    1.2 Vertical Structure Depth: 300-700 m, NACWTemperature anomalies, 1-2.5°CIsotherms perturbation: 40 -70 mShalow wake, 25 m

  • 6

    1.3 Evolution Coherent structures. Can last many monthsInitial rotating rate : 2.5 d (anticyclone), 4.5 d (cyclone)Radius and period increase with time Propagating SW (Canary Current) and West ( β effect)Due to the inertial stability anticyclones rotates faster

    Anticyclonic (Sangrà et al., 2005)Cyclonic (Sangrà et al., 2007)

  • YS (0-35 days)

    MS (50-120 days)

    DS (150-200 days)

    buoy 60buoy 59

    buoy 61

    days 35-50. A1 C1, A1 + A2

    days 85-90. A1 + C1

    days 120-150. A1 + AT

    • Eddies evolution stages

    Young stage: solid body rotation

    Mature stage: periphery slowing rotating

    Decay stage : small values of rotation rateall over the eddy

    Eddy evolves pulsating. May be related withwind/eddy interactions (under study)

    Wind

    A, W>O

    After Martin & Richards, 2001

    Anticyclonic (Sangrà et al., 2005)

  • 8

    2.1 Generation mechanisms. Topographic and Atmospheric forcing (Jiménez, Sangrà & Mason 2008)

    • Topographic forcing

    ( )( ) HH E

    RoA

    LUviscosityO

    inertyO 2Re ===

    Streak lines/isovortity lines for the barotropic QG model Re=250 (Sangrà, 1995)

    6040Re −>Shedding when

    2. Dynamics

  • 9

    • Atmospheric Forcing: Vorticity injection at the island wake

    Dynamics: Relative importance of topographic and atmospheric frocing(Jiménez, Sangrà and Mason, 2008),

    Dynamics: atmospheric forcing mechanism (Jiménez, Sangrà and Mason, 2008)

    Observations: Gran Canaria (Basterretxeaet al., 2002)

  • 10

    Generation frequencyObservational evidences topographic/wind forcing

    Mooring

    Wind shearTides gauges

    Winter- Sping 2006

    Only topographic forcing can generate eddiesOnly wind is not able to generate eddiesMain mechanism the topographic forcing

    • Field experiment on generation mechanisms (Piedeleu et al., in prep.)

  • 0 20 40 60 80 100(k )

    0

    1

    2

    3

    |ω| (s

    -1.1

    0-5 )

    t=15 d t=50 d t=100 d t=180 d

    0 20 40 60 80 100(k )

    0

    1

    2

    3

    ω (s

    -1.1

    0-5 )

    t=10 dt=30 dt=70 dt=90 d

    0 20 40 60 80 100r (km)

    0

    0.4

    0.8

    1.2

    1.6

    2

    ω(s

    -1.1

    0-5 )

    t=70 d

    t=0 dt=10 dt=30 d

    t=100 d

    • Stages: diffusion of angular velocity

    r=25 kmk=25 ms-2

    Anticyclonic Cyclonic

    r=30 km k=20 ms-2 r=25 km k=25 ms-2

    ( )2

    21

    r

    Kr

    rru

    t r ∂

    ∂=

    ∂+

    ∂ ωωω

    2.2 Evolution: a simple advective-diffusive model (Sangràet al., 2007)

    Model Model and observations

  • 2.3 Inertial stability of Rankine-like vortex (Sangrà et al., 2007)

    ( ) 022 ≥ΩΩ=+⎟⎠⎞

    ⎜⎝⎛

    ∂∂

    ++ sbfrrf ωωω

    Gent and McWilliams (1986)

    Pelegrí et al. (2004)

    0 20 40 60 80 100r (km)

    -5

    0

    5

    10

    15

    20

    Ω.Ω

    sb (

    s-2 .1

    0-9 )

    t=2.5 dt=30 dt=70 dt= 100 d

    0 20 40 60 80 100r (km)

    0

    2

    4

    6

    8

    10

    Ω.Ω

    sb (

    s-2 .1

    0-9 )

    t=1 dt=30 dt=70 dt= 100 d

    Tm=2.2 d

    Anticyclone Cyclone

  • Stables anticyclones ⎪w⎪

  • 14

    3. 1 The Canary Eddies Corridor. (Sangrà et al., in prep)

    SWESTY propagation (R. Pingree, 1996)Anticyclonic Shallow Subtropical Subducting Westward Propagating Eddies

    3. Ongoing studies

  • W20o 19o 18o 17o 16o 15o 14o

    buoy 61

    N

    29o

    28o

    27o

    26o

    4.5 km/d

    2.7 km/d

    4.1 km/d

    3.4 km/d

    5.6 km/d

    0

    20

    4060

    80

    100120

    140

    160

    180

    199

    Altimetry (A. Pascual, 2008, unpublished) and buoys trajectories showing that the eddies corridor is generated by Canary Island flow perturbation

    Sangrà et al. (2005)

    • Swesties-island generated eddies connection

  • 16

    • Altimetry data are quite robust

    ADCP and buoy trajectory versus sea surface height and velocities as obtained from altimetry

  • 17

    • A Zonal Subtropical Eddies Corridor

  • 19

    • Corridor Importance Its a permanent structure not previously describedIt could be one of the major long lived eddies source on the SubtropicalAtlantic

    Eddies Age Pyramid for the Canary Corridor

    months

    Eddies Age Pyramid for the Canary Corridor>3 months

    monthsR=A/C

    0.91

    1.71

    2.50

    infcyclonesanticycl.

    Trajectories Life-span > 6 months

  • It can be an important structure for the zonal balance and exportingphysical (heat) and biological (Particulate Organic Matter) properties

    J98

    A1

    C1

    A2

    C2

    Chlorophyll (mg m-3)-Alimeter velocity/height

  • 3.2 ROMS-UCLA modeling: Collaboration betweenULPGC and UCLA. Developed mainly by E. Mason

    • Objectives

    Develop robust multi-year high-resolutionclimatological Canary Basin model solution

    Tool to study:• Regional circulation & variability• Canary Island wake and its interaction with theupwelling

    • Cape Ghir filament

  • Grid hierarchy – offline nesting using roms2roms

    • Model Domains

  • • Large Domain Validation

  • Snapshot of model SST(month 9, year 6)

    AVHRR SST(10 August, 2003)

    C CF F

    • Small Domain validation

  • • Vertical section: Alongshore velocity/temperature

  • • Canary Eddies Corridor

  • 3.3 Physical-biogeochemical coupling

    • RODA project: Interdisciplinary study of the biological pump inside de eddies:Biogeochemical cycles outside an inside of the eddiesSampling from atmospheric nutrient sources to virus

    • Coupling mechanisms

    Isotherm/isopicnals/DCM perturbation

    Diapicnal mixing

    Secondary circulation

    Remote advection

  • 0 50 100 150Distance (km )

    Depth (m)

    14

    16

    18

    20

    22T

    empe

    ratu

    re

    65 67 69 7172 74 76 78 80 820

    50

    100

    150

    200

    250

    300

    Dep

    th (m

    )

    Pot-Temperature

    0 50 100 150

    Distance (Km)

    64 66 68 70 72 74 76 78 80 82

    0 50 100 150

    Distance (km )

    Depth anomaly (m )

    14

    16

    18

    20

    22

    Tem

    pera

    ture

    65 67 69 7172 74 76 78 80 82

    -16 -15

    27

    28

    6465

    6667

    6869

    7071

    727374

    7576

    7778

    7980

    8182

    83

    • Isotherm/isopicnals/DCM perturbationIsopicnal/isotherms coordinates → Depth anomalies

  • • Diapicnal mixing

    Properties distribution in isopcinalcoordinates. Semicuantitave

    Cuantification: Ri→K→F

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    = 22

    ρPKF Z

    -16 -15

    27

    28

    6465

    6667

    6869

    7071

    727374

    7576

    7778

    7980

    8182

    83

    P150

    0

    50

    100

    150

    200

    250

    300

    Dep

    th (m

    )

    Pot-Density

    0 50 100 150

    Distance (Km)

    64 66 68 70 72 74 76 78 80 82 66 68 70 72 74 76 78 80 8225

    25.5

    26

    26.5

    27

    Den

    sity

    Isopicnal F luorescence

    0 50 100 150D istance (km)

    Pot-Density/Fluorescence66 68 70 72 74 76 78 80 8266 68 70 72 74 76 78 80 82

    0 50 100 150

    Distance (Km)

    0

    50

    100

    150

    Dep

    th (m

    )

    Rakine-like eddies→strongdiapicnal mixing at the boundaries

  • • Secondary circulationCalculation from buoys trajectories

    0 20 40 60 80 100 120 140 160 180days

    0

    10

    20

    30

    40

    50

    r (km

    )

    buoy 61

    (a)

    Convergences/divergences ADCP transects

    Wind/eddy interaction

    W=-3.5 m/day (Sangrà et al 2005)

    From Mcgillicudy et al. (2007)

  • • Remote advection: Chlorophyll Images

  • • Synthesis Table: physical forcing

    EDDY C1 R1C R2A R3A R4C R5A

    Origin Gran Canaria La Palma El hieero Gran Canaria Gran Canaria Gran Canaria

    Eddy Type Cyclonic Cyclonic Anticyclonic Anticyclonic Cyclonic Anticyclonic

    Data type CTD-XBT XBT-CTD(L) XBT XBT CTD CTD-ADCP-buoy

    Submesocale yes no no no yes Yes

    St Biogeochimic no yes yes yes yes Yes

    T. anomaly -4.5 °C

    H anomaly 90 m

    Depth 300 m

    Inte

    nsity

    /T-∂

    per

    tu.

    T rotation Vgeos. Vgeos. Vgeos. Vgeos. Vgeos. Vgeos., B, A

    isopicnal yes no no no yes Yes

    Ri, K, F Geo./high Geo./low Geo./low Geo./low Geo./high Ageo/high

    Dia

    picn

    al m

    ixin

    g

    F

    Secondary .Circulat (w) Eddy//Wind Eddy//Wind Eddy//Wind Eddy//Wind Eddy//Wind Eddy//Wind, B,A

    Advection (Seawif)

    Phase. Island distance

  • Thanks for your attention