Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments

Download Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments

Post on 02-Sep-2016




0 download


<ul><li><p>Agriculture, Ecosystems and Environment 139 (2010) 224231</p><p>Contents lists available at ScienceDirect</p><p>Agriculture, Ecosystems and Environment</p><p>journa l homepage: www.e lsev ier .co</p><p>Can no inA meta</p><p>Zhongkua State Key Lab of Scb CSIRO Land ac MOE Key Labo Unive</p><p>a r t i c l</p><p>Article history:Received 12 JuReceived in revised form 3 August 2010Accepted 4 August 2010Available online 9 September 2010</p><p>Keywords:Soil carbon changeConventional tConservation tSoil proleCropping systeFertilizationClimate</p><p>s ha(C) sequestration in soils. However, study results are inconsistent and varying from signicant increaseto signicant decrease. It is unclear whether this variability is caused by environmental, or managementfactors or by sampling errors and analysis methodology. Using meta-analysis, we assessed the responseof soil organic carbon (SOC) to conversion of management practice from conventional tillage (CT) tono-tillage (NT) based on global data from 69 paired-experiments, where soil sampling extended deeperthan 40 cm. We found that cultivation of natural soils for more than 5 years, on average, resulted in soil</p><p>1</p><p>1. Introdu</p><p>Soil cultnotable lanbon (C) fromand GiffordC emission(CAPs) arecultural soiet al., 2010)sequester 033.3100%(Lal, 2004).tillage (CT)</p><p> CorresponE-mail add</p><p>0167-8809/$ doi:10.1016/j.illageillage</p><p>m</p><p>C loss of more than 20 tha , with no signicant difference between CT and NT. Conversion from CT toNT changed distribution of C in the soil prole signicantly, but did not increase the total SOC except indouble cropping systems. After adoptingNT, soil C increasedby3.152.42 t ha1 (mean95% condenceinterval) in the surface 10 cm of soil, but declined by 3.301.61 t ha1 in the 2040 cm soil layer. Overall,adopting NT did not enhance soil total C stock down to 40 cm. Increased number of crop species inrotation resulted in less C accumulation in the surface soil and greater C loss in deeper layer. Increasedcrop frequency seemed to have the opposite effect and signicantly increased soil C by 11% in the 060 cmsoil. Neither mean annual temperature and mean annual rainfall nor nitrogen fertilization and durationof adopting NT affected the response of soil C stock to the adoption of NT. Our results highlight thatthe role of adopting NT in sequestrating C is greatly regulated by cropping systems. Increasing croppingfrequency might be a more efcient strategy to sequester C in agro-ecosystems. More information on theeffects of increasing crop species and frequency on soil C input and decomposition processes is neededto further our understanding on the potential ability of C sequestration in agricultural soils.</p><p> 2010 Elsevier B.V. All rights reserved.</p><p>ction</p><p>ivation for agricultural production is one of the mostd use change that has led to signicant losses of car-soil (Mann, 1986; Davidson and Ackerman, 1993; Guo</p><p>, 2002). To offset or mitigate the stimulating effect ofon global warming, conservation agricultural practicesrecommended to potentially increase C stock in agri-ls (West and Post, 2002; Lal, 2004; Smith, 2004; Luo. Globally, agricultural soils are estimated to potentially.40.8 PgC per year by adopting CAPs, which representsof the total potential of C sequestration in world soilsAmong all CAPs options, conversion from conventionalto no-tillage (NT)was considered to be one of the poten-</p><p>ding author. Tel.: +61 2 6246 5964; fax: +61 2 6246 5965.ress: (E. Wang).</p><p>tially efcient strategies (Smith et al., 1998; Paustian et al., 2000;Six et al., 2004)with the rate of C sequestrationof 1001000kgha1</p><p>per year (Lal, 2004). However, this view is based on the informationfrom most studies on carbon change in the surface soil (</p></li><li><p>Z.Luoet</p><p>al./Agriculture,Ecosystem</p><p>sand</p><p>Environment</p><p>139 (2010) 224231225</p><p>Table 1Summary of data for the studies in the meta-analysis of soil organic carbon (SOC).</p><p>Code Location Duration(years)</p><p>Replicates Crop system Residuemanagements</p><p>Tillagedepth (cm)</p><p>N fertilizer(kg Nha1)</p><p>Samplingdepth (cm)</p><p>Reference</p><p>1 Kanawha, IA, USA 7 3 Corn, soybean Retained 25 135 60 Al-Kaisi et al. (2005)2 Sutherland, IA, USA 7 3 Corn, soybean Retained 25 135 60 Al-Kaisi et al. (2005)3 Nashua, IA, USA 7 3 Corn, soybean Retained 25 135 60 Al-Kaisi et al. (2005)4 Armstrong, IA, USA 7 3 Corn, soybean Retained 25 135 60 Al-Kaisi et al. (2005)5 Crawfordsville, IA, USA 7 3 Corn, soybean Retained 25 135 60 Al-Kaisi et al. (2005)6 Ames, IA, USA 3 3 Corn, soybean Retained 25 135 60 Al-Kaisi et al. (2005)7 Selvanera, Lleida, Spain 18 3 Wheat, barley, rapeseed Retained 50 NA 40 lvaro-Fuentes et al. (2008)8 Agramunt, Lleida, Spain 15 4 Wheat, barley Retained 30 NA 40 lvaro-Fuentes et al. (2008)9 Penaor, Zaragoza, Spain 16 3 Barley Retained 35 NA 40 lvaro-Fuentes et al. (2008)</p><p>10 Penaor, Zaragoza, Spain 16 3 Barley with fallow Retained 35 NA 40 lvaro-Fuentes et al. (2008)11 Harrington, PEI, Canada 8 4 Wheat, barley, soybean Retained 20 NA 60 Angers et al. (1997)12 La Pocatire, Qu, Canada 6 4 Barley Removed 25 NA 60 Angers et al. (1997)13 Normandin, Qu, Canada 3 4 Barley Retained 25 NA 60 Angers et al. (1997)14 Ottawa, ONT, Canada 5 4 Corn Retained 25 NA 60 Angers et al. (1997)15 Ottawa, ONT, Canada 5 4 Wheat Retained 25 NA 60 Angers et al. (1997)16 Delhi, ONT, Canada 4 4 Corn Retained 25 NA 60 Angers et al. (1997)17 Harrow, ONT, Canada 11 2 Corn Retained 15 NA 60 Angers et al. (1997)18a Fremont, OH, USA 15 3 Corn, soybean Retained NA 225 60 Blanco-Canqui and Lal (2008)19a Troy, PA, USA 20 3 Corn NA NA 50b 60 Blanco-Canqui and Lal (2008)20 PEI, Canada 9 4 Wheat, barley, soybean Retained 25 NA 40 Carter (1996)21 PEI, Canada 15 4 Many Retained 20 73.7 60 Carter (2005)22a 111C, IN, USA 10 4 Corn, soybean Retained NA NA 60 Christopher et al. (2009)23a 114B, IN, USA 23 4 Corn, soybean Retained NA 108 60 Christopher et al. (2009)24a 122, IN, USA 10 4 Corn, soybean Retained NA NA 60 Christopher et al. (2009)25a 99, OH, USA 5 4 Corn, soybean, wheat Retained NA 20 60 Christopher et al. (2009)26a 111A, OH, USA 18 4 Corn, soybean Retained NA 76 60 Christopher et al. (2009)27a 111B, OH, USA 20 4 Corn, soybean, wheat Retained NA 101 60 Christopher et al. (2009)28a 111D, OH, USA 5 4 Corn, soybean Retained NA 44 60 Christopher et al. (2009)29a 126, OH, USA 15 4 Corn, soybean, rye Retained NA 29.9c 60 Christopher et al. (2009)30 Warwick, Queensland,</p><p>Australia13 4 Wheat, barley Retained 10 NA 120 Dalal (1989)</p><p>31 ONT, Canada 25 4 Corn, soybean Retained 18 NA 60 Deen and Kataki (2003)32 Rosemount, MN, USA 23 3 Corn, soybean Removed NA 0 45 Dolan et al. (2006)33 Rosemount, MN, USA 23 3 Corn, soybean Removed NA 200 45 Dolan et al. (2006)34 Rosemount, MN, USA 23 3 Corn, soybean Retained NA 0 45 Dolan et al. (2006)35 Rosemount, MN, USA 23 3 Corn, soybean Retained NA 200 45 Dolan et al. (2006)36 Luancheng, China 5 3 Wheat, cornd Retained 20 268 90 Dong et al. (2009)37 West Lafayette, IN, USA 27 4 Corn, soybean Retained 25 222 100 Gl et al. (2007)38 Lowveld, Zimbabwe 5 3 Wheat, cottond Retained 25 122 60 Gwenzi et al. (2009)39a Tnikon, Switzerland 19 4 Wheat, maize, canola Retained 25 150 40 Hermle et al. (2008)40 Waseca, MN, USA 14 4 Corn Retained 30 225 45 Huggins et al. (2007)41 Waseca, MN, USA 14 4 Soybean Retained 30 225 45 Huggins et al. (2007)42 Waseca, MN, USA 14 4 Corn, soybean Retained 30 225 45 Huggins et al. (2007)43 Narrabri, NSW, Australia 9 4 Cotton Retained 30 140 60 Hulugalle and Entwistle (1997)44a Narrabri, NSW, Australia 5 4 Cotton Retained 30 120 60 Hulugalle (2000)45a South Charleston, OH, USA 41 4 Corn NA NA NA 80 Jarecki and Lal (2005)46a Hoytville, OH, USA 16 3 Corn, soybean, oat NA NA NA 80 Jarecki and Lal (2005)47 Crdoba, Spain 6 4 Wheat Retained 30 100 90 Lpez-Bellido et al. (1997)48 Londrina, Brazil 21 3 Manyd Retained 20 NA 40 Machado et al. (2003)49 Qu, Canada 13 4 Corn, soybean Retained 20 40 60 Poirier et al. (2009)50 Qu, Canada 12 4 Corn, soybean Retained 20 40 60 Poirier et al. (2009)51 Qu, Canada 11 4 Corn, soybean Retained 20 40 60 Poirier et al. (2009)52 Bushland, TX, USA 10 3 Wheat Retained NA 45 65 Potter et al. (1997)53 Bushland, TX, USA 10 3 Wheat Retained NA 0 65 Potter et al. (1997)</p></li><li><p>226 Z. Luo et al. / Agriculture, Ecosystems and Environment 139 (2010) 224231Ta</p><p>ble</p><p>1Su</p><p>mm</p><p>ary</p><p>ofdat</p><p>afo</p><p>rth</p><p>est</p><p>udie</p><p>sin</p><p>them</p><p>eta-</p><p>anal</p><p>ysis</p><p>ofso</p><p>ilor</p><p>ganic</p><p>carb</p><p>on(S</p><p>OC).</p><p>Cod</p><p>eLo</p><p>cation</p><p>Dura</p><p>tion</p><p>(yea</p><p>rs)</p><p>Rep</p><p>lica</p><p>tes</p><p>Cro</p><p>psy</p><p>stem</p><p>Res</p><p>idue</p><p>man</p><p>agem</p><p>ents</p><p>Tillag</p><p>edep</p><p>th(c</p><p>m)</p><p>Nfe</p><p>rtiliz</p><p>er(k</p><p>gN</p><p>ha</p><p>1)</p><p>Sam</p><p>pling</p><p>dep</p><p>th(c</p><p>m)</p><p>Ref</p><p>eren</p><p>ce</p><p>54Bush</p><p>land,T</p><p>X,U</p><p>SA10</p><p>3So</p><p>rghum</p><p>Ret</p><p>ained</p><p>NA</p><p>4565</p><p>Potter</p><p>etal</p><p>.(19</p><p>97)</p><p>55Bush</p><p>land,T</p><p>X,U</p><p>SA10</p><p>3So</p><p>rghum</p><p>Ret</p><p>ained</p><p>NA</p><p>065</p><p>Potter</p><p>etal</p><p>.(19</p><p>97)</p><p>56Po</p><p>nta</p><p>Gro</p><p>ssa,</p><p>Para</p><p>n,</p><p>Bra</p><p>zil</p><p>225</p><p>Man</p><p>ydRet</p><p>ained</p><p>NA</p><p>50.5</p><p>40S</p><p>etal</p><p>.(20</p><p>01)</p><p>57a</p><p>Ponta</p><p>Gro</p><p>ssa,</p><p>Para</p><p>n,</p><p>Bra</p><p>zil</p><p>225</p><p>Man</p><p>ydRet</p><p>ained</p><p>2020</p><p>c40</p><p>San</p><p>dLa</p><p>l(20</p><p>09)</p><p>58a</p><p>Pass</p><p>oFu</p><p>ndo,</p><p>Bra</p><p>zil</p><p>133</p><p>Whea</p><p>t,so</p><p>ybea</p><p>nd</p><p>Ret</p><p>ained</p><p>2053</p><p>100</p><p>Sist</p><p>ietal</p><p>.(20</p><p>04)</p><p>59Pa</p><p>sso</p><p>Fundo,</p><p>Bra</p><p>zil</p><p>133</p><p>Man</p><p>ydRet</p><p>ained</p><p>2060</p><p>100</p><p>Sist</p><p>ietal</p><p>.(20</p><p>04)</p><p>60Pa</p><p>sso</p><p>Fundo,</p><p>Bra</p><p>zil</p><p>133</p><p>Man</p><p>ydRet</p><p>ained</p><p>2048</p><p>100</p><p>Sist</p><p>ietal</p><p>.(20</p><p>04)</p><p>61W</p><p>V,U</p><p>SA4</p><p>4M</p><p>aize</p><p>NA</p><p>3084</p><p>75St</p><p>aley</p><p>(198</p><p>8)62</p><p>WV,U</p><p>SA4</p><p>4M</p><p>aize</p><p>NA</p><p>3016</p><p>875</p><p>Stal</p><p>ey(1</p><p>988)</p><p>63W</p><p>V,U</p><p>SA4</p><p>4M</p><p>aize</p><p>NA</p><p>3033</p><p>675</p><p>Stal</p><p>ey(1</p><p>988)</p><p>64Del</p><p>hi,</p><p>ONT,</p><p>Can</p><p>ada</p><p>64</p><p>Cor</p><p>nRet</p><p>ained</p><p>150</p><p>50W</p><p>annia</p><p>rach</p><p>chie</p><p>tal</p><p>.(19</p><p>99)</p><p>65a</p><p>Elor</p><p>a,ONT,</p><p>Can</p><p>ada</p><p>294</p><p>Cor</p><p>nRet</p><p>ained</p><p>200</p><p>50W</p><p>annia</p><p>rach</p><p>chie</p><p>tal</p><p>.(19</p><p>99)</p><p>66Urb</p><p>ana,</p><p>IL,U</p><p>SA11</p><p>8Cor</p><p>n,s</p><p>oybe</p><p>anRet</p><p>ained</p><p>25NA</p><p>90Yan</p><p>gan</p><p>dW</p><p>ander</p><p>(199</p><p>9)67</p><p>Elor</p><p>a,ONT,</p><p>Can</p><p>ada</p><p>234</p><p>Cor</p><p>nRet</p><p>ained</p><p>20NA</p><p>50Yan</p><p>get</p><p>al.(</p><p>2008</p><p>)68</p><p>Woo</p><p>dslee</p><p>,ONT,</p><p>Can</p><p>ada</p><p>162</p><p>Cor</p><p>n,s</p><p>oybe</p><p>anRet</p><p>ained</p><p>18NA</p><p>50Yan</p><p>get</p><p>al.(</p><p>2008</p><p>)69</p><p>Urb</p><p>ana,</p><p>IL,U</p><p>SA11</p><p>4Cor</p><p>n,s</p><p>oybe</p><p>anRet</p><p>ained</p><p>35NA</p><p>50Yan</p><p>get</p><p>al.(</p><p>2008</p><p>)</p><p>NA:not</p><p>avai</p><p>labl</p><p>e.a</p><p>Theso</p><p>ilC</p><p>conte</p><p>ntin</p><p>nat</p><p>ura</p><p>lsoi</p><p>lsis</p><p>repor</p><p>ted.</p><p>bCat</p><p>tlem</p><p>anure</p><p>Mgha</p><p>1ye</p><p>ar1</p><p>.c</p><p>Liqu</p><p>idm</p><p>anure</p><p>(m3).</p><p>dDou</p><p>blecr</p><p>oppin</p><p>g.</p><p>C changes after adopting NT based on the soil data sampled deeperthan 30 cm depth. Synthesizing the results from 47 experimentswith sampling depth deeper than 0.3m, Angers and Eriksen-Hamel(2008) showed that NT led to signicant C increase in surface soil,while full-inear or at tthat the greoffset the gtotal C stocNT andCT eoverall chan22.8 to 20et al., 2009results so fdecline (Siset al., 2009)system typlocal soil tyclear whethenvironmenand analysi</p><p>Meta-anporally variand global2001). In thdata on theventional tiexperimentresulted inin the C dilocal climaof the NT asystems reof NT.</p><p>2. Materia</p><p>2.1. Data so</p><p>We collpeer-revieworganic C (selected stufollowing c</p><p>(1) In somein whicsoil the</p><p>(2) We spedeeperdata tocompar</p><p>(3) Furthertype, astion, anindividuat the s</p><p>If a study reetation (natC stock chaOther infortemperaturping systemcrop diversnversion tillage (FIT) resulted in more C accumulationhe bottom of the plow layer (23 cm). They also showedater SOC content at depth under FIT did not completelyain under NT in the surface layer, leading to a higherk under NT than FIT. However, results from 12 pairedxperiments across three states inUSA indicated that thegeof soil C stock in the surface60 cmof soil ranged from.3 t ha1 after adopting NT for 523 years (Christopher). There is clearly inconsistency and uncertainty in thear, which vary from signicant increase to signicantti et al., 2004; lvaro-Fuentes et al., 2008; Christopher. Further, othermanagementpractices, such as croppinge, fertilization application and irrigation, interact withpe and climate conditions to impact on soil C. It is noter the inconsistency in the current results is caused bytal, or management factors or by sampling strategies</p><p>s methodology.alysis is a powerful tool to synthesize site-specic, tem-able results and to draw general conclusions at regionalscales (Gurevitch and Hedges, 1999; Gurevitch et al.,is study, we conducted a meta-analysis of publishedresponses of soil organic C to conversion from con-</p><p>llage to no-tillage managements in 69 paired croplands. The objective was to clarify whether adoption of NTan increase in overall soil C stock, or only in changesstribution in the soil prole. We also analyzed howte conditions (i.e., rainfall and temperature), durationpplication, N fertilization rate and the type of croppinggulated the responses of soil C stock to the adoption</p><p>ls and methods</p><p>urces</p><p>ected data from 69 paired CT and NT experiments ined research papers that reported the change in soilSOC) contents of different soil depth. Details of thedies and references are shown in Table 1. We used theriteria to select paired experiments:</p><p>studies, there were several types of tillage treatments,h cases we chose the tillage treatment that disturbedmost (e.g., moldboard plowing) as CT.cically focused on studies involving soil samplingthan 40 cm. In addition, only the studies that provideestimate soil C content on area basis were selected forison purpose., we only included the studies that had the similar soilpect, andmanagements (e.g., cropping system, fertiliza-d irrigation) in both the CT and NT treatments. In eachal study the CT and NT treatments must be conducted</p><p>ame site with same experimental duration.</p><p>ports soil C content in soils under adjacent natural veg-ural soils), we also used it to compare the difference innge between cultivated (CT and NT) and natural soils.mation included mean annual rainfall and mean annuale at the site, duration of the experiments, type of crop-s (number of crop types during the experiment, i.e.,</p><p>ity, and number of crops per year, i.e., crop frequency),</p></li><li><p>Z. Luo et al. / Agriculture, Ecosystems and Environment 139 (2010) 224231 227</p><p>residuemanagement (removedor retained), tillagedepth, soil sam-pling depth, and N application rate.</p><p>In sevenof the studies, onlyC concentration (Cc, %)was reported.In that case, soil C content (Ct, Mgha1) in corresponding soil layerwas calcula</p><p>Ct = BD Cwhere BD ithe soil layeand was rou</p><p>BD =(COM/</p><p>where 0.24density of smatter (%),</p><p>COM = 1.72</p><p>2.2. Data an</p><p>Meta-antent after asampling lato dene smeta-analysample sizestandard er</p><p>SD = SEn.Where we cthe mean (L</p><p>For eachthe CT (xCT)difference (</p><p>MD = xNT The standar</p><p>SDmean =</p><p>where nNT aeach study,in CT and N</p><p>In all stushould carrinverse varito the meth</p><p>MD =k</p><p>i=1whereMDiis the weighmethod (De</p><p>wi =1</p><p>SD2mea</p><p>where D ismodel, D eq</p><p>D = max</p><p>where wiis</p><p>effectsmod</p><p>ean dls undd wit</p><p>; numthesis</p><p>genehad nes thes thstan</p><p>1ki=1wi</p><p>. (10)</p><p>he 95% condence interval (CI) for the MD was given as:</p><p>D 1.96 SDMD</p><p>. (11)</p><p>5% CI of MD in each soil layer does not overlap with 0, theof soil C content after adoption of NT is then consideredant (P</p></li><li><p>228 Z. Luo et al. / Agriculture, Ecosystems and Environment 139 (2010) 224231</p><p>Fig. 2. Mean dand no-tillage.vations are sho</p><p>To analyafter the coments intofrequency),systems int(crop divermore than tcrop each soilchange of ccalculated (soil C changsignicantly</p><p>We alsoship of the rmean annuaand the duconducted u</p><p>3. Results</p><p>Soil C cosignicantlyadjacent na5 cm of thecompared wincreasing sNT. Aftermin soil C toand were 2</p><p>Converstribution ofNT led to ain the surfa0.900.60tively. Belo</p><p>he relromccode idept</p><p>il dep0 andthe a</p><p>t betariaberingpth,ulatall ded ssoil</p><p>t kep94 fofuncttypehangmor</p><p>declio 60i...</p></li></ul>


View more >