bromatologija - proteini

33
27.10.2015 1 PROTEINI PROTEINI proteos (grč.) - prvi, najvažniji prisutni u svim živim organizmima od virusa do biljaka i životinja ulaze u sastav svake ćelije: protoplazama, jedro (nukleoproteini), membrana uloga u organizmu: gradivna (primarna funkcija) kontraktilna (miogen) katalitička (enzimi) regulatorna (hormoni) transportna (hemoglobin) imunološka (antitela) puferska energetska (17 kJ/g)

Upload: milos-stanojevic

Post on 11-Apr-2016

157 views

Category:

Documents


13 download

DESCRIPTION

Predavanja iz bromatologije.

TRANSCRIPT

Page 1: Bromatologija - proteini

27.10.2015

1

PROTEINI

PROTEINI� proteos (grč.) - prvi, najvažniji� prisutni u svim živim organizmima od virusa do biljaka i

životinja� ulaze u sastav svake ćelije: protoplazama, jedro

(nukleoproteini), membranauloga u organizmu:� gradivna (primarna funkcija)� kontraktilna (miogen)� katalitička (enzimi)� regulatorna (hormoni)� transportna (hemoglobin)� imunološka (antitela)� puferska� energetska (17 kJ/g)

Page 2: Bromatologija - proteini

27.10.2015

2

elementarni sasatav:

� C, O, H, N, S, (P)

hemijska definicija:

� Proteini su makromolekulska jedinjenja izgrađena odpolipeptidnih lanaca koji se sastoje iz α-L-aminokiselinapovezanih peptidnom vezom.

� Proteini omogućavaju rast i regeneraciju organizma, kao i pravilan tok metaboličkih procesa.

� Ljudski organizam može da izgrađuje sopstvene proteine iz proteina hrane, odnosno aminokiselina.

Distribucija proteina u organizmu (% ukupnih telesnih proteona)

tkivo %

krv 10

masno tkivo 3-4

koža 9-9.5

kosti 18-19

mišići 46-47

Page 3: Bromatologija - proteini

27.10.2015

3

Sadržaj proteina u namirnicama

namirnica sadržaj (%)

meso 18-20

ribe 18-20

jaja 12.5

mleko 3.5

žitarice 10-12

suve leguminoze 25-37

sveže povrće 1-3

sveže voće oko 1

masno voće (lešnik, orah, badem i dr.) 15-50

AMINOKISELINE – osnovne gradivne jedinice proteina� Od osobina aminokiselina zavise osobine proteina� aminokiseline su jedinjenja koja sadrže najmanje jednu amino i jednu

karboksilnu grupu (prolin i hidroksiprolin sadrže imino grupu koja takođegradi peptidnu vezu)

� sve aminokiseline koje ulaze u satav proteina su α-amino-kiseline i mogu dase prikažu formulom:

� sve aminokiseline biljnih i životinjskih proteina su L-konfiguracije� kapsule nekih bakterija izgrađene su od D-aminokiselina, koje digestivni

sokovi ne mogu da hidrolizuju� zbog hiralnog C atoma aminokiseline su optički aktivne i mogu da budu

dekstrogirne (+) ili levogirne (-)

Page 4: Bromatologija - proteini

27.10.2015

4

α-L-AMINOKISELINE PROTEINA (oko 20 aminokiselina)

Page 5: Bromatologija - proteini

27.10.2015

5

Podgrupa aminokiselina – razgranate aminokiseline

Valin

Leucin

Izoleucin

Čine oko 35-40% mišićaEsencijelne su

Page 6: Bromatologija - proteini

27.10.2015

6

Najvažnija podela aminokiselina u nutritivnom smislu je prema mogućnosti sinteze u organizmu:

1. esencijalne - u organizmu ne mogu da se sintetišu i moraju da se unose hranom

2. poluesencijalne - pod određenim uslovima mogu da zameneesencijalne aminokiseline, neophodne su u dečijem uzrastu

3. neesencijalne - organizam ih sintetiše

esencijalneaminokiseline

poluesencijalne aminokiseline

neesencijalne aminokiseline

metionin arginin alanin

valin histidin

(esencijelne za decu i u specijalnim stanjima – traume, rane, sepsa)

taurin – kod novorođenčadi i tokom rasta

glutamin – kod trauma, kancera, u imunodeficitnim stanjima

asparagin

fenilalanin asparaginska kiselina

treonin cistein

triptofan cistin

izoleucin glutamin

leucin glutaminska kiselina

lizin glicin

prolin

serin

tirozin

Page 7: Bromatologija - proteini

27.10.2015

7

FIZIČKE OSOBINE AMINOKISELINA

� jedinjenja male molekulske mase 75-240

� imaju visoku tačku topljenja iznad 200oC, a neke i iznad300oC, pri čemu se zagrevanjem na visokimtemperaturama često i raspadaju

� rastvorljivost u vodi je različita i zavisi od njihoveizoelektrične tačke i polarnosti radikala

� optički aktivne (+) i (-) zbog hiralnog C atoma (treoninima 2 hiralna C atoma)

� većina aminokiselina je slatkog ukusa, leucin je bezukusa, a arginin i izoleucin su gorki. Glutaminska kiselinai njene soli su prijatnog ukusa i koriste se kao pojačivačiaroma.

HEMIJSKE OSOBINE AMINOKISELINA

I Amfoternost aminokiselina� kisela (karboksilna) i bazna (amino) grupa u molekuli

aminokiselina odgovorne su za njihovo ponašanje kao organskih kiselina i baza

� prema Bronsted-u kiselina je svako jedinjenje koje može da posluži kao donor, a baza je svako jedinjenje koje može da bude akceptor protona.

� aminokiseline sadrže kiselu karboksilnu grupu koja može da otpušta proton i baznu amino grupu koja može da ga primi.

Page 8: Bromatologija - proteini

27.10.2015

8

� otpuštanjem protona anjonski oblik aminokiseline stičeodlike baze jer može da primi natrag proton, a isto tako,primanjem protona u amino grupu katjonski oblikaminokiseline stiče odlike kiseline jer taj proton može daotpusti.

H2N-CHR-COOH → H2N-CHR-COO- + H+

kiselina

H2N-CHR-COO- + H+ → H2N-CHR-COOH baza

H2N-CHR-COOH + H+ → +H3N-CHR-COOH baza

+H3N-CHR-COOH → H2N-CHR-COOH + H+

kiselina

� U kristalnom stanju monoamino monokarbonske kiselineimaju oblik dvopolnog, hibridnog jona - zwitter jon

+H3N-CHR-COOH +H3N-CHR-COO- H2N-CHR-COO-

H2N-CHR-COOH(pH < pI) (pH = pI) (pH > pI)

� zwitter jon je oblik koji sadrži isti broj pozitivnog inegativnog naelektrisanja, a dipolnost molekule jeizražena samo unutrašnjim premeštanjem protona

� zwitter jon se ne kreće u električnom polju i taloži se izrastvora. Ima odlike slabe kiseline zbog jače kiselostikarboksilne grupe (Ka = 1.6x10-9)

� nejonizovani oblik se nalazi samo u tragovima, dokjonizacija zavisi od pH rastvora.

Page 9: Bromatologija - proteini

27.10.2015

9

� dodatkom kiseline u vodeni rastvor aminokiseline suzbijase disocijacija NH3

+ grupe zwitter jona i pomera seravnoteža u smeru stvaranja katjonskog oblikaaminokiseline:

+H3N-CHR-COO- + HCl → +H3N-CHR-COOH + Cl-

� dodatkom baze oslobađa se H+ jon iz NH3+ grupe i

ravnoteža se pomera u pravcu nastajanja anjonskogoblika aminokiseline:

+H3N-CHR-COO- + NaOH → H2N-CHR-COO- + Na+ + H2O

� izoelektrični pH aminokiselina:� neutralne: 4.8-6.3 � kisele: 2.7-3.2� bazne: 7.8-10.8

� poznavanje vrednosti izoelektričnog pH proteina jeznačajno za njihovo odvajanje taloženjem ielektroforetskim tehnikama

� Hemijske osobine aminokiselina ne zavise samo od NH2i COOH grupe već i od R

Page 10: Bromatologija - proteini

27.10.2015

10

II Reakcije amino grupe

1. građenje soli2. alkilovanje3. arilovanje - koriste se za identifikaciju N-

terminalnih aminokiselina peptida

4. dezaminacija – u organizmu u enzimski katalizovanoj reakciji nastaju ketokiseline

III reakcije karboksilne grupe

1. Sorensen-ova formol titracija� Aminokiseline ne mogu da se u vodenom rastvoru

direktno titriraju bazom jer zwitter jon sporo reaguje, adodata baza trenutno utiče na promenu boje indikatora.Formaldehid dodat rastvoru aminokiselina u velikomvišku vezuje se za aminogrupu i sprečava vezivanjeprotona iz karboksilne grupe. Tada aminokiselina možeda se titrira bazom uz indikator na uobičajen način.

• ova reakcija se primenjuje za određivanje proteina u mleku

Page 11: Bromatologija - proteini

27.10.2015

11

2. estri aminokiselina3. hloridi aminokiselina – koriste se u sintezi polipeptida4. dekarboksilacija – nastaju amini5. stvaranje helata sa metalnim jonima (prelazni metali)

IV reakcije funkcionalnih grupa sa sumporom

� funkcionalne grupe sa sumporom sadrže :� cistein - tiolska (sulfhidrilna) grupa (-SH)� cistin - disulfidna grupa (-S-S-)� metionin - metilovana tiolska grupa (-S-CH3)

1. oksidacija tiola do disulfida

4R-SH → 2R-S-S-R + 2H2O O2

Page 12: Bromatologija - proteini

27.10.2015

12

2. formiranje tioestara

3. reakcije disulfida sa tiolima

R-S-S-R + 2R’-SH → 2R-SH + R’-S-S-R’

4. reakcije izmene disulfida

R-S-S-R + R’-S-S-R’ → R-S-S-R’ + R’-S-S-R

5. formiranje kompleksa sa metalnim jonima

� Co2+, Cu2+, Mn2+, Cd2+ i dr.

6. reakcije sa sulfitima� raskidanje disulfidne veze

R-S-S-R + SO32- → R-S- + R-S-SO3

� većina proteina optimalno učestvuje u ovim reakcijama tek posle denaturacije, što se objašnjava na dva načina:

1. aktivne grupe su skrivene usled konformacije nativne molekule

2. aktivne grupe učestvuju u formiranju labilnih hemijskih veza koje se raskidaju denaturacijom

Page 13: Bromatologija - proteini

27.10.2015

13

PEPTIDI� Peptidna veza nastaje kondenzacijom karboksilne grupe

jedne i amino grupe druge aminokiseline.

� Karbonilna (C=O) i imino (N-H) grupa leže u istoj ravni jer peptidna veza ima delimično karakter dvogube veze čime je praktično onemogućena rotacija

� Kod većine aminokiselina kondenzacija je linearna� Izuzetak je prolin� peptіdі dobіjaju oѕnovno іme prema C termіnalnoj

amіnokіѕelіnі, a oѕtale amіnokіѕelіne ѕe оznačаvајu kао radіkalі роčеv od N termіnalne amіnokіѕelіne npr. trіpeptіd glutatіon je glutamіl-cіѕteіnіl-glіcіn

Page 14: Bromatologija - proteini

27.10.2015

14

� рерtidnі nіz моžе da bude гаzlіčіtоg oblіka:1. linеаran2. rаčvаѕt zbog prіѕuѕtva dіamіnomonokarbonѕkіh i monoamіnodіkarbonѕkіh

kіѕelіna3. ѕеmісіklіčаn uѕled ѕtvaranja іntramolekulѕkіh vоdоničnіh veza

4. cikličan usled stvaranja intramolekulskih peptidnih veza

PROTEINI

� Proteini su makromolekulska jedinjenja izgrađena odpolipeptidnih lanaca koji se sastoje iz α-L-aminokiselinapovezanih peptidnom vezom.

� Postoje milioni prtoeinskih molekula i sve su izgrađene najvećimdelom iz 20-tak istih aminokiselina

� Raznolikost proteina u živom svetu je daleko veća od one kodugljenih hidrata i lipida

� Sekvenca (redosled vezivanja) aminokiselina je osnovnaodrednica osobina proteina

� Nivo organizacije proteina u prirodi je veoma složen i obuhvataprimarnu, sekundarnu, tercijernu i kvaternernu strukturu

Page 15: Bromatologija - proteini

27.10.2015

15

� molekule proteіna ѕaѕtoje ѕe іz jednog іlі vіšе polіpeptіdnіh lаnаса, abroj amіnokіѕelіnѕkіh ostataka kгеćе ѕe і do nekoiіko deѕetіnahіljada.

� ѕtruktura proteіna моžе da ѕe izučаvа nа čеtігі nіvoa:

1.рrіmаrnа ѕtruktura� redoѕled (ѕekvenca) amіnokіѕelіnѕkіh oѕtataka u molekulі proteіna

� određіvanje prіmarne ѕtrukture

ЅTRUKTURA PROTE ІNA

N termіnalna analіza

a) Ѕangerov po ѕtupak (d іnіtrofen іl poѕtupak)b) Edmanova degradacija

Prvi protein čija je primarna struktura bila potpuno rasvetljena je hormoninsulin

C terminalna analiza

a) Enzimska metoda� Enzim karboksipeptidazab) Sekvencioniranje DNK

Page 16: Bromatologija - proteini

27.10.2015

16

2. Sekundarna struktura� prostorni raspored aminokiselina koje su u primarnoj strukturi blizu

jedna drugoj i periodično ponavljanje strukture.

� Postoje tri tipa sekundarme strukture: β-plisirani list, α-spirala i slobodni niz

1. β-plisirani list2. α-spirala3. Slobodni niz

3. Tercijerna struktura

� α- i β- strukture, kao i molekule proteina koje nemajusekundarnu strukturu mogu da se savijaju i gradeglobularne, elipsaste ili vretenaste strukture

� savijeni delovi polipeptidnog niza međusobno supovezani disulfidnim, vodoničnim ili jonskim vezamapreko bočnih ostataka aminokiselina

Page 17: Bromatologija - proteini

27.10.2015

17

4. Kvaternerna struktura� Imaju je neki oligomerni proteini koji predstavljaju asocijaciju nekoliko

globula povezanih vezama koje nisu kovalentne (peptidne ni disulfidne), npr hemoglobin

� Primer: struktura hemoglobina� Primarna struktura: polipeptidni niz se sastoji iz 574 a.k. u određenom

redosledu� Sekundarna struktura: polipeptidni niz je uvrnut u α-spiralu� Tercijerna struktura: α-spirala je smotana u klupko� Kvaternerna struktura: 4 klupka formiraju tetramer

Podela proteina

Proteini se klasifikuju na nekoliko načina:

o prema složenosti molekule (prosti koji sadrže samo C, H, O, N i S, tj.aminokiseline i složeni koji sadrže dodatno P, lipide, proteine, DNK)

o prema rastvorljivosti (analitička podela)

o prema obliku molekule

o prema biološkoj vrednosti

Page 18: Bromatologija - proteini

27.10.2015

18

A. Podela proteina prema složenostiProsti proteini (homoproteini) sastoje se isključivo iz aminokiselina

1. Albumini (rasprostranjeni u biljnom i životinjskom svetu)

2. Globulini (u krvi, belancu, mleku)

3. Prolamini (proteini žitarica)

4. Glutelini (proteini žitarica, grade lepak sa prolaminima)

5. Globini (deo hromoproteina)

6. Protamini (sadrže arginin; bazni, u ikri riba)

7. Histoni (sadrže arginin, bazni, u ikri riba)

8. Skleroroteini (keratini, kolageni, elastini)

Složeni proteini (heteroproteini) sastoje se, pored aminokiselina i izneproteinskog dela (prostetične grupe):

1. fosfoproteini

� sadrže fosfornu kiselinu najčešće vezanu za aminokiselinu serin

� kazein (mleko), vitelin, vitelenin i fosfitin (žumance jajeta)

� kazein se u mleku nalazi kao so Ca-kazeinat. Taloži se zakišeljavanjem mleka do njegove izoelektrične tačke (pH 4.6)

Page 19: Bromatologija - proteini

27.10.2015

19

2. glikoproteini� satoje se iz proteina i heksoza ili heksozamina� teško hidrolizuju� mukoidi (ovomukoid belanceta) i mukoproteini (hondro-mukoprotein

hrskavice)

3. lipoproteini� kompleksi proteina sa lipidima� značajni za transport lipida� Lipovitelin, lipovitelenin

4. nukleoproteini� sastoje se iz alkalnih proteina protamina i histona i RNA i DNA� nalaze se u ikri riba, kvascu, klici žitarica

5. hromoproteini� sastoje se iz prostih proteina npr. globina i neke obojene supstance

(prostetična grupa)� hemoglobin, mioglobin, citohromi, flavoproteini, hlorofil, rodopsin,

karotenoproteini

B. Primer podele proteina prema rastvorljivosti

1. albumini� rastvorljivi u vodi i razblaženim rastvorima soli � talože se u zasićenom rastvoru amonijumsulfata� koagulišu na toploti� siromašni su u glikokolu� rasprostranjeni su u biljnom i životinjskom svetu.

2. globulini� nerastvorljivi u vodi, rastvorljivi u razblaženim rastvorima soli� koagulišu na toploti� talože se dodatkom zasićenog rastvora amonijumsulfata

(poluzasićenje), kao i uklanjanjem soli iz rastvora (dijaliza)� nalaze se u krvi, belancu jajeta, mleku i dr.

Page 20: Bromatologija - proteini

27.10.2015

20

Proteinski sastav nekih namirnica

namirnica proteini Vrsta % u namirnici

meso miogenmioalbumin

miozinaktin

mioglobinostali

albuminalbuminglobulinglobulin

hromoprotein....

ukupno

2.01.2

10.44.20.22.0

20.0

mleko kazeinlaktoalbuminlaktoglobulin

fosfoproteinalbuminglobulinukupno

2.70.20.43.3

jaje ovoalbuminlizozim

ovoglobulinovomukoid

vitelinfosfitinostali

albuminglobulinglobulin

glikoproteinfosfoproteinfosfoproteinlipoproteini

ukupno

6.10.40.40.55.10.40.5

13.4

Podela proteina prema obliku molekule:

1. globularni

� odnos dužina-širina molekule manji od 10

� kompaktno izuvijani polopeptidni lanci

� insulin, albumini, globulini, enzimi

2. fibrilarni

� odnos dužina-širina molekule veći od 10

� dugački polipeptidni lanci uvrnuti u spiralu poprečnopovezani disulfidnim ili vodoničnim vezama

� keratin, kolagen, miozin

Page 21: Bromatologija - proteini

27.10.2015

21

FIZIČKE I HEMIJSKE OSOBINE PROTEINA� Mm peptida: do 10 000

� Mm proteina: 10 000 - 25 000 000

Određivanje Mt proteina:1. Ultracentrifugiranje (6 000 o/min)2. SDS PAGE3. Gel filtracija

� prema veličini čestica (1-100 mµ) spadaju u koloide

� predstavljaju smešu više proteinskih frakcija različitih Mm (npr.glijadini se nalaze u opsegu Mm 15 – 90 kD)

� za prečišćavanje proteina koristi se dijaliza. Ne prolaze krozpolupropustljive membrane creva za dijalizu čiji su prečnici poramanji od njihovih prečnika.

� proteini su koloidni elektroliti i talože se na izoelektričnom pH.

� mogu da se razdvoje elektroforezom. U rastvoru čiji je pH manjiod izoelektrične tačke putuju prema katodi, a kada je pH viši odizoelektrične tačke prema anodi.

opti čke osobine proteina

� interakcije proteina ili njihovih konstituenata (aminokiselina i peptida) i elektromagnetog zračenja deli se na:

1. neapsorptivne interakcije:(polarizacija, difrakcija x zraka, optička anizotropija,

refrakcija i disperzija, skatering)

2. apsorptivne interakcije• apsorpcija u UV oblasti• apsorpcija u IR oblasti

Page 22: Bromatologija - proteini

27.10.2015

22

DIGESTIJA PROTEINAAPSORPCIJA PROTEINA

oko 100 g

Dnevne potrebe za proteinima

Dnevne potrebe za proteinima prema I principu racionalne ishrane su 12-15% dnevnih energetskih potreba

Maksimalni dnevni unos ne treba da prekorači 30-35%

Problemi koji nastaju usled prekomernog unosa proteina se još proučavaju, ali obuhvataju smanjeni unos drugih nutrimenata (pre svega ugljenih hidrata i vlakana), povećani prateći unos masti; jetra metaboliše povećanu količinu proteina, a bubrezi ekskretuju povećanu količinu azotnih metabolita

Unos od 2,5-5 g/kg TM može ozbiljno da ugroze zdravlje i bez pratećeg unosa UH i masti može dovesti do smrti (tzv. „gladovanje na zečetini“)

Page 23: Bromatologija - proteini

27.10.2015

23

Deficit proteina dovodi do ozbiljnog oboljenja rasprostranjenog u nerazvijenim zemljama – kvašiokor i marazmus

Proteinski deficit se javlja u gerijatrijskoj populaciji, kod bolničkih pacijenata

Klinički simptomi blažeg proteinskog deficitao gubitak koseo smanjenje mišićne maseo otežano zarastanje ranao smanjenje otpornosti organizma

Preporučen dnevni unos (RDA) proteina za različite starosne grupe i posebna stanja

starost (godine)ili stanje

RDA(g proteina/dan) do 1989.

DRI (g/dan)

0.0-0.5 telesna masa (kg) x 2.2 9,1

0.5-1 telesna masa (kg) x 2.0 11

1-3 23 13

4-6 30 19 (4-8 godina)

7-10 34 34 (9-13 godina)

11-14, muškarci 45 52 (14-18 godina)

15-51+, muškarci (70 kg) 56 56 (18- >70 godina)

11-18, žene 46 46 (14- >70 godina)

19-51+, žene (55 kg) 44

graviditet +30 71

laktacija +20 71

U proseku potrebe za proteinima za odraslu osobu iznose 0,8 g/ kg TM

Page 24: Bromatologija - proteini

27.10.2015

24

individualni faktori:

1. veli čina tela� višlje i krupnije osobe imaju veće potrebe2. uzrast� za vreme rasta potrebe su 2-3 puta veće po jedinici telesne mase3. pol� muškarci imaju veće potrebe po jedinici mase jer imaju razvijeniju

muskulaturu4. nutricioni status� pothranjene osobe i osobe na dijeti sa niskim sadržajem ugljenih

hidrata imaju veće potebe5. graviditet i laktacija� veće potrebe za razvoj fetusa i sintezu proteina mleka6. klima� pri niskim temperaturama nije potreban povećan unos proteina

ukoliko se energija obezbeđuje iz ugljenih hidrata. � pri visokim temperaturama potrebno je malo povećati unos proteina

zbog povećanog gubitka azota tanspiracijom

7. fizi čka aktivnost� osobe koje treniraju ili se oporavlju posle mirovanja imaju veće potrebe

8. dijetarne komponente ishrane� osobe koje unose proteine niske biološke vrednosti moraju da ih unose u

većoj količini (vegetarijanci)� važan je i odnos ugljenih hidrata i proteina u hrani, jer ugljeni hidrati “štede”

proteine

9. emocionalna stabilnost� pokazano je da stresna stanja dovode do izlučivanja veće količine azota i

do promena u hormonskom profilu

10. bolesti� uglavnom povećavaju potrebu za proteinima zbog regeneracije tkiva,

povećanog bazalnog metabolizma kod hipertermije, povećane siteze antitela, perspiracije, osim u slučaju povišene temperature

Page 25: Bromatologija - proteini

27.10.2015

25

AZOTNA RAVNOTEŽA

� proteinske potrebe organizma obično se izražavaju preko azotnog bilansa:

1. pozitivan azotni bilans - količina izlučenog azota je manja od količine unetog. Karakterističan za mlade organizme, jer se uneti proteini koriste ne samo za regeneraciju tkiva, već i za izgradnju novih tkiva -povećanja telesne mase

2. negativan azotni bilans - količina izlučenog azota je veća nego količina unetog. Troše se sopstvena tkiva -dolazi do smanjenja telesne mase

3. azotna ravnoteža - količina izlučenog azota je jednaka količini unetog - telesna masa se ne menja

BIOLOŠKA VREDNOST PROTEINA

Biološka vrednost proteina je sposobnost proteina da se nakon apsorpcije ugrade u proteine organizma

Faktori koji utiču na BV proteina su:osastav aminokiselinaopromene uslovljene procesima prerade namirnica

Postoji nekoliko načina za procenu BV proteina:oodređivanje indeksa efikasnosti proteina (Protein Efficacy Ratio)oodređivanje biološke vrednosti (BV)oodređivanje aminokiselinskog skora korigovanog za digestibilnost proteina (PDCAAS = Protein Digestibility Corrected Amino Acid Score)oupoređivanje sadržaja aminokiselina u ispitivanom proteinu sa referentnim sastavom aminokiselina

Page 26: Bromatologija - proteini

27.10.2015

26

indeks efikasnosti proteina - PER� pretstavlja sposobnost proteina da u datom momentu regenerišu stara i

izgrađuju nova tkiva – koristi se od 1913.godine

povećanje telesne masePER =

masa unetog proteina

biološka vrednost proteina - BV� pretstavlja deo iskorišćenog proteinskog azota u organizmu

količina zadržanog azotaBV =

količina unetog azota

� za određivanje BV i PER koriste se:

1. biološke metode - zasnivaju se na praćenju azotnog bilansa ipromena telesne mase eksperimentalnih životinja

2. hemijske metode - zasnivaju se na određivanju sadržajaamino-kiselina u hidrolizatu ispitivanog proteina

Formule Block-a i Mitchel-a:

PER = 3.77 - 0.0321 · x

BV = 102 - 0.634 · x

• limitirajući faktor (limitirajuća aminokiselina) je onaesencijalna aminokiselina čiji je sadržaj najmanji u odnosu nasadržaj iste aminokiseline u ukupnim proteinima jajeta čiji sesadržaj dogovorno uzima kao 100%

• x - procenat deficita limitirajuće aminokiseline - dobija seoduzimanjem od 100 vrednosti procenta limitirajućeaminokiseline (% od iste amino-kiseline proteina jajeta)

Page 27: Bromatologija - proteini

27.10.2015

27

% esencijelnih aminokiselina u proteinima jajeta (FAO)

Lizin 6,88

Treonin 5,01

Valin 6,75

Metionin 5,71

Izoleucin 8,70

Leucin 6,20

Tirozin 4,10

Fenilalanin 5,65

primer: u proteinima pasulja limitirajuća a.k. je metionin 1.92 % (5.71 % u proteinima jajeta)1.92 · 100 / 5.71 = 33.6 %100 - 33.6 = 66.4 - procenat deficita limitirajuće a.k.

BV = 102 - 0.634 · 66.4 = 59.9

PER = 3.77 - 0.0321 · 66.4 = 1.64

PDCAASmg limitirajuće AK u 1 g test proteina

PDCAAS = x % digestibilnostimg iste amino kiseline u 1 g test proteina

Prednost ove metode – utvrđuje se na ljudima i uzima se u obzir njihova prava digestibilnost

Poređenje sadržaja AK sa referentnim proteinom

Primer je zahtev za kvalitet AK u formulama za ishranu odojčadi„U odnosu na istu energetsku vrednost, početna formula za odojčad mora sadržati najmanje istu količinu svih iskoristljivih neophodnih i uslovno neophodnih aminokiselina kao u referentnim proteinima majčinog mleka“

Sastav referetnog proteina majčinog mleka

Page 28: Bromatologija - proteini

27.10.2015

28

Podela proteina prema biološkoj vrednosti:

1. potpuni proteini (BV > 75)- omogućavaju normalan rast i regeneraciju organizma- proteini: mesa (sem proteina vezivnog tkiva), mleka, jaja

2. delimično nepotpuni proteini (BV = 55-75)- omogućavaju samo održavanje telesne mase- većina biljnih proteina: proteini žitarica su deficitarni ulizinu, a proteini leguminoza u metioninu

3. nepotpuni proteini (BV < 55)- ne omogućavaju ni održavanje telesne mase- proteini vezivnog tkiva: kolagen, elastin. - zein iz kukuruza je veoma deficitaran u lizinu

Poboljšanje biološke vrednosti proteina

� komplementacija kombinovanjem proteina� dodavanje deficitarnih a.k. u dijetetske proizvode� genetske modifikacije – hibridi sa većim sadržajem deficitarnih a.k.

Page 29: Bromatologija - proteini

27.10.2015

29

Proteini poreklom iz namirnica životinjskog porekla obezbeđuju sve esencijelne aminokiseline u potrebnim količinama i zato se smatraju „potpunim“ proteinima.

Proteini iz namirnica biljnog porekla su uglavnom deficitarni u 1 ili više esencijelnih aminokiselina i zato se smatraju „nepotpunim“ proteinima

Ishrana vegetarijanaca može biti adekvatna po kvalitetu aminokiselina ako se kombinuju izvori nepotpunih proteina kojima nedostaju različite esencijelne aminokiseline

Kombinacija Primer

Žita i leguminozno povrće (uključujući suve leguminoze)

Pirinač i pasuljSupa od graška i tostKari sa sočivom i pirinač

Žita i mlečni proizvodi Testenina sa siromSutlijašSendvič sa sirom

Leguminozno povrće i semenke

Boranija sa susamomHumus / falafel sa semenkama bundeve

Kombinacije biljnih namirnica koje obezbeđuju sve EAK

DIGESTIBILNOST PROTEINAFaktori koji utiču na digestibilnost proteina:� poreklo (biljni proteini imaju manju digestibilnost zbog manje

digestibilnih ćelijskih memebrana)� fizikohemijski faktori (konformacija molekula, tipovi veza)� prisustvo sastojaka hrane koji modifikuju digestiju (vlakna, tanini)� prisustvo antifizioloških faktora koji utiču na digestiju (tripsin

inhibitori, lektini)� termički tretman (Millard-ova reakcija, stvaranje lizinoalanina,

racemizacija i dr.)

Page 30: Bromatologija - proteini

27.10.2015

30

Namirnica Digestibilnost proteina (%)

Belance jajeta 97

Celo jaje, govedina, živina, riba 95

Pšenično belo brašno 95

Soja protein izolat 94

Polirani pirinač 88

Sojino brašno 86

Integralna pšenica 86

Kukuruzni proizvodi 86

Integralni pirinač 84

pasulj 69

UTICAJ TERMIČKOG TRETMANA NA BIOISKORISTLJIVOST PROTEINA� Denaturacija i koagulacija proteina imaju povoljno dejstvo na

digestivnu iskoristljivost proteina zbog promene konformacijepolipeptidnih lanaca što omogućava lakši pristup enzimima

Page 31: Bromatologija - proteini

27.10.2015

31

Denaturacija proteina

� Denaturacija je promena nativne strukture proteina

� Faktori koji dovode do denaturacije:

� povišena ili snižena temperatura

� kiseline ili baze

� ultrazvuk

� UV svetlost

� jonizujuća zračenja

� teški metali

� enzimi

� organski rastvarači i dr.

� denaturisanjem proteini prelaze iz visoko organizovanog u neorganizovano stanje uz promenu konformacije (odmotavanje, ispravljanje molekula)

� denaturisani proteini se lakše hidrolizuju dejstvom enzima

� pokazuju povećanu optičku rotaciju i viskozitet

� povećana reaktivnost aktivnih grupa i smanjena rastvorljivost

� denaturisani enzimi i peptidi gube biološku aktivnost

Page 32: Bromatologija - proteini

27.10.2015

32

koagulacija proteina

� pojava kada se čestice proteina talože usled smanjenog Braunovogkretanja

� pri manjim koncentracijama čestice se talože, a pri većim dolazi doočvršćavanja celog sistema – prelazak u gel

� denaturacija je jednaka koagulaciji kada nastane talog

� neki koagulisani proteini su svarljiviji (npr. ovoalbumin)

� koagulacija eliminiše antivitaminsko dejstvo avidina (antivitamin vitamina H)

� koagulisani gluten ne može da veže vodu (sušenje hleba)

� Formiranje unutrašnjih peptidnih veza između ε-amino grupelizina i amidne karboksilne grupe glutaminske i asparaginskekiseline pri veoma visokim temperaturama usled sternih smetnjionemogućava pristup digestivnim enzimima.

Digestivna iskoristljivost proteina pasterizovanog mleka je većanego UHT sterilizoivanog.

� Racemizacija aminokiselina usled uticaja alkalne sredine prilikomtehnoloških procesa pripremanja proteinskih koncentrata (kazeinata,proteina kvasca, soje) dovodi do smanjenja bioskoristljivosti jer seD-aminokiseline ne metabolišu u organizmu

Page 33: Bromatologija - proteini

27.10.2015

33

� interakcija proteina i ugljenih hidrata• Pri zagrevanju dolazi do reakcije neenzimskog tamnjenja - Millard-ove reakcije.

Lizin najviše učestvuje u ovoj reakciji jer su slobodne i terminalne amino grupe najaktivnije. Zbog toga pri reakciji neenzimskog tamnjenja dolazi do smanjenja iskoristljivosti proteina jer je deo lizina blokiran.

� interakcija proteina i masti• Oksidativnom razgradnjom nezasićenih masnih kiselina i holesterola

nastaju proizvodi koji mogu da reaguju sa amino grupama proteina, naročitolizina, čime se smanjuje njihova iskoristljivost.

Uloga proteina u namirnicama

Fizičke osobine proteina i njihove interakcije sa drugim sastojcima namirnica utiču na senzorne karakteristike namirnica

Protein Funkcionalne karakteristike u namirnicama

Mehnizam funkcionalnih svojstava

Gluten Elastičnost, viskozitet Vodonične veze; disulfidne veze; hidrofobno povezivanje

Miozin Emulgujuća svojstva, želiranje Hidrofobno povezivanje; disulfidne veze

Kazein Koagulacija, emulgujuća svojstva, viskozitet

Hidrofobno povezivanje; elektrostatsko privlačenje

Kolagen Geliranje, penjenje Vodonične veze; hidrofobno povezivanje