branching random walk in random environment · branchingrandomwalkinrandomenvironment...

83
Branching random walk in random environment Bastien Mallein joint work with Piotr Miloś ENS, DMA June 26, 2016 Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 1 / 26

Upload: others

Post on 02-Feb-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Branching random walk in random environment

Bastien Malleinjoint work with Piotr Miłoś

ENS, DMA

June 26, 2016

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 1 / 26

Page 2: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Plan

1 The branching random walk in random environment

2 The random walk in random environment

3 Brownian motion above a Brownian curve

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 2 / 26

Page 3: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Plan

1 The branching random walk in random environment

2 The random walk in random environment

3 Brownian motion above a Brownian curve

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 2 / 26

Page 4: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Plan

1 The branching random walk in random environment

2 The random walk in random environment

3 Brownian motion above a Brownian curve

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 2 / 26

Page 5: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Branching random walk in random environment

1 The branching random walk in random environment

2 The random walk in random environment

3 Brownian motion above a Brownian curve

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 3 / 26

Page 6: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Description of the process

Let (Ln, n ≥ 0) be an i.i.d. sequence of point processes distributions on R.

time

space0 DescriptionAn individual alive at time 0.Gives birth to children aroundits current position.Each child then reproducesindependently.Every new generationreproduces independently.We take interest in the maximaldisplacement.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 4 / 26

Page 7: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Description of the process

Let (Ln, n ≥ 0) be an i.i.d. sequence of point processes distributions on R.

time

space0 DescriptionAn individual alive at time 0.Gives birth to children aroundits current position.Each child then reproducesindependently.Every new generationreproduces independently.We take interest in the maximaldisplacement.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 4 / 26

Page 8: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Description of the process

Let (Ln, n ≥ 0) be an i.i.d. sequence of point processes distributions on R.

time

space0• DescriptionAn individual alive at time 0.Gives birth to children aroundits current position.Each child then reproducesindependently.Every new generationreproduces independently.We take interest in the maximaldisplacement.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 4 / 26

Page 9: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Description of the process

Let (Ln, n ≥ 0) be an i.i.d. sequence of point processes distributions on R.

time

space0•

••

DescriptionAn individual alive at time 0.Gives birth to children aroundits current position.Each child then reproducesindependently.Every new generationreproduces independently.We take interest in the maximaldisplacement.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 4 / 26

Page 10: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Description of the process

Let (Ln, n ≥ 0) be an i.i.d. sequence of point processes distributions on R.

time

space0•

••

• •

DescriptionAn individual alive at time 0.Gives birth to children aroundits current position.Each child then reproducesindependently.Every new generationreproduces independently.We take interest in the maximaldisplacement.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 4 / 26

Page 11: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Description of the process

Let (Ln, n ≥ 0) be an i.i.d. sequence of point processes distributions on R.

time

space0•

••

• •••

DescriptionAn individual alive at time 0.Gives birth to children aroundits current position.Each child then reproducesindependently.Every new generationreproduces independently.We take interest in the maximaldisplacement.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 4 / 26

Page 12: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Description of the process

Let (Ln, n ≥ 0) be an i.i.d. sequence of point processes distributions on R.

time

space0•

••

• •••

•• ••••••

DescriptionAn individual alive at time 0.Gives birth to children aroundits current position.Each child then reproducesindependently.Every new generationreproduces independently.We take interest in the maximaldisplacement.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 4 / 26

Page 13: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Description of the process

Let (Ln, n ≥ 0) be an i.i.d. sequence of point processes distributions on R.

time

space0•

••

• •••

•• ••••••

•• •• •••• ••••••• •

DescriptionAn individual alive at time 0.Gives birth to children aroundits current position.Each child then reproducesindependently.Every new generationreproduces independently.We take interest in the maximaldisplacement.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 4 / 26

Page 14: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Description of the process

Let (Ln, n ≥ 0) be an i.i.d. sequence of point processes distributions on R.

time

space0•

••

• •••

•• ••••••

•• •• •••• ••••••• •

DescriptionAn individual alive at time 0.Gives birth to children aroundits current position.Each child then reproducesindependently.Every new generationreproduces independently.We take interest in the maximaldisplacement.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 4 / 26

Page 15: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Some notation

time

space0•

••

• •••

•• ••••••

•• •• •••• ••••••• •

NotationLet u be an individual.V (u) : position of u.|u| : generation of u.uk : ancestor of u at time k.Mn : position of the rightmostindividual at time n.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 5 / 26

Page 16: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Some notation

time

space0

•••

•• •••••

•• •• ••• ••••••• •

•u

NotationLet u be an individual.V (u) : position of u.|u| : generation of u.uk : ancestor of u at time k.Mn : position of the rightmostindividual at time n.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 5 / 26

Page 17: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Some notation

time

space0

•••

•• •••••

•• •• ••• ••••••• •

•u

V (u)Notation

Let u be an individual.V (u) : position of u.|u| : generation of u.uk : ancestor of u at time k.Mn : position of the rightmostindividual at time n.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 5 / 26

Page 18: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Some notation

time

space0

•••

•• •••••

•• •• ••• ••••••• •

•u

V (u)

|u|

NotationLet u be an individual.V (u) : position of u.|u| : generation of u.uk : ancestor of u at time k.Mn : position of the rightmostindividual at time n.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 5 / 26

Page 19: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Some notation

time

space0

•••

•• •••••

•• •• ••• ••••••• •

•u

V (u)

|u|

u0

u1

u2

u3

NotationLet u be an individual.V (u) : position of u.|u| : generation of u.uk : ancestor of u at time k.Mn : position of the rightmostindividual at time n.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 5 / 26

Page 20: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Some notation

time

space0•

••

• •••

•• ••••••

•• •• ••u•• ••••••• • •

MnNotation

Let u be an individual.V (u) : position of u.|u| : generation of u.uk : ancestor of u at time k.Mn : position of the rightmostindividual at time n.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 5 / 26

Page 21: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Example of a branching random walk in randomenvironment

time

space0

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 6 / 26

Page 22: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Example of a branching random walk in randomenvironment

time

space0

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 6 / 26

Page 23: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Additional notation

We write EL[.] = E [. |L1,L2, . . . ] and Ln a point process with law Ln.

Log-Laplace transform of Ln

∀φ > 0, κn(φ) = logE

∑`∈Ln

eφ` .

Critical parameterWe set K (φ) = E(κ1(φ)). We assume there exists θ > 0 such that

θK ′(θ)− K (θ) = 0.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 7 / 26

Page 24: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Additional notation

We write EL[.] = E [. |L1,L2, . . . ] and Ln a point process with law Ln.

Log-Laplace transform of Ln

∀φ > 0, κn(φ) = logE

∑`∈Ln

eφ` .

Critical parameterWe set K (φ) = E(κ1(φ)). We assume there exists θ > 0 such that

θK ′(θ)− K (θ) = 0.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 7 / 26

Page 25: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Additional notation

We write EL[.] = E [. |L1,L2, . . . ] and Ln a point process with law Ln.

Log-Laplace transform of Ln

∀φ > 0, κn(φ) = logE

∑`∈Ln

eφ` .

Critical parameterWe set K (φ) = E(κ1(φ)). We assume there exists θ > 0 such that

θK ′(θ)− K (θ) = 0.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 7 / 26

Page 26: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Boundary of the branching random walk

From now on, we assume that θ is the critical parameter of the branchingrandom walk.

Boundary of the branching random walkFor any n ∈ N, we write Fn =

∑nj=1 κj(θ)/θ.

ObservationsThe process (Fn, n ≥ 0) is a random walk that depend only on theenvironment (Ln, n ≥ 1).We have limn→+∞

Fnn = K(θ)

θ = K ′(θ).

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 8 / 26

Page 27: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Boundary of the branching random walk

From now on, we assume that θ is the critical parameter of the branchingrandom walk.

Boundary of the branching random walkFor any n ∈ N, we write Fn =

∑nj=1 κj(θ)/θ.

ObservationsThe process (Fn, n ≥ 0) is a random walk that depend only on theenvironment (Ln, n ≥ 1).We have limn→+∞

Fnn = K(θ)

θ = K ′(θ).

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 8 / 26

Page 28: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Boundary of the branching random walk

From now on, we assume that θ is the critical parameter of the branchingrandom walk.

Boundary of the branching random walkFor any n ∈ N, we write Fn =

∑nj=1 κj(θ)/θ.

ObservationsThe process (Fn, n ≥ 0) is a random walk that depend only on theenvironment (Ln, n ≥ 1).We have limn→+∞

Fnn = K(θ)

θ = K ′(θ).

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 8 / 26

Page 29: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Branching random walk in random environementThe maximal displacement

TheoremWe assume there exists θ > 0 such that θK ′(θ)− K (θ) = 0. We write

Fn =n∑

j=1

κj(θ)

θ, σ2

Q = θ2E[κ′′1(θ)

]and σ2

A = Var[θκ′1(θ)− κ1(θ)

].

Let mn = inf{y ∈ R : PL(Mn ≥ y) = 1/2}, we have

mn = Fn − φ log n + oP(log n) and Mn = Fn − φ log n + oP(log n),

withφ =

(12 + 2γ(σA/σQ)

).

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 9 / 26

Page 30: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Branching random walk in random environementThe maximal displacement

TheoremWe assume there exists θ > 0 such that θK ′(θ)− K (θ) = 0. We write

Fn =n∑

j=1

κj(θ)

θ, σ2

Q = θ2E[κ′′1(θ)

]and σ2

A = Var[θκ′1(θ)− κ1(θ)

].

Let mn = inf{y ∈ R : PL(Mn ≥ y) = 1/2}, we have

mn = Fn − φ log n + oP(log n) and Mn = Fn − φ log n + oP(log n),

withφ =

(12 + 2γ(σA/σQ)

).

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 9 / 26

Page 31: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Many-to-one lemma

We write µn((−∞, x ]) = EL[∑

`∈Ln eθ`−κn(θ)1{`≤x}], and we set Xn a

random variable with law µn.

DefinitionThe sequence (µn, n ∈ N) is a sequence of i.i.d. random probabilitydistributions on R.The process Sn = X1 + X2 + · · ·+ Xn is a random walk with randomenvironment (µn, n ∈ N).

Lemma (Many-to-one lemma)Let f be a measurable positive function, we have

EL

∑|u|=n

f (V (uj), j ≤ n)

= EL[e−θ(Sn−Fn)f (Sj , j ≤ n)

].

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 10 / 26

Page 32: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Many-to-one lemma

We write µn((−∞, x ]) = EL[∑

`∈Ln eθ`−κn(θ)1{`≤x}], and we set Xn a

random variable with law µn.

DefinitionThe sequence (µn, n ∈ N) is a sequence of i.i.d. random probabilitydistributions on R.The process Sn = X1 + X2 + · · ·+ Xn is a random walk with randomenvironment (µn, n ∈ N).

Lemma (Many-to-one lemma)Let f be a measurable positive function, we have

EL

∑|u|=n

f (V (uj), j ≤ n)

= EL[e−θ(Sn−Fn)f (Sj , j ≤ n)

].

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 10 / 26

Page 33: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Many-to-one lemma

We write µn((−∞, x ]) = EL[∑

`∈Ln eθ`−κn(θ)1{`≤x}], and we set Xn a

random variable with law µn.

DefinitionThe sequence (µn, n ∈ N) is a sequence of i.i.d. random probabilitydistributions on R.The process Sn = X1 + X2 + · · ·+ Xn is a random walk with randomenvironment (µn, n ∈ N).

Lemma (Many-to-one lemma)Let f be a measurable positive function, we have

EL

∑|u|=n

f (V (uj), j ≤ n)

= EL[e−θ(Sn−Fn)f (Sj , j ≤ n)

].

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 10 / 26

Page 34: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Boundary of the processWe compute the number of individuals crossing for the first timek 7→ Fk + x :

EL

∑u∈T

1{V (u)>F|u|+x}1{V (uj )≤Fj+x ,j<|u|}

=∑n≥1

EL

∑|u|=n

1{V (u)>Fn+x}1{V (uj )≤Fj+x ,j<n}

=∑n≥1

EL[e−θ(Sn−Fn)1{Sn>Fn+x}1{Sj<Fj+x ,j<n}

]≤ e−θx ∑

n≥1PL [Sn > Fn + x ,Sj < Fj + x , j < n]

≤ e−θx .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 11 / 26

Page 35: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Boundary of the processWe compute the number of individuals crossing for the first timek 7→ Fk + x :

EL

∑u∈T

1{V (u)>F|u|+x}1{V (uj )≤Fj+x ,j<|u|}

=∑n≥1

EL

∑|u|=n

1{V (u)>Fn+x}1{V (uj )≤Fj+x ,j<n}

=∑n≥1

EL[e−θ(Sn−Fn)1{Sn>Fn+x}1{Sj<Fj+x ,j<n}

]≤ e−θx ∑

n≥1PL [Sn > Fn + x ,Sj < Fj + x , j < n]

≤ e−θx .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 11 / 26

Page 36: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Boundary of the processWe compute the number of individuals crossing for the first timek 7→ Fk + x :

EL

∑u∈T

1{V (u)>F|u|+x}1{V (uj )≤Fj+x ,j<|u|}

=∑n≥1

EL

∑|u|=n

1{V (u)>Fn+x}1{V (uj )≤Fj+x ,j<n}

=∑n≥1

EL[e−θ(Sn−Fn)1{Sn>Fn+x}1{Sj<Fj+x ,j<n}

]≤ e−θx ∑

n≥1PL [Sn > Fn + x ,Sj < Fj + x , j < n]

≤ e−θx .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 11 / 26

Page 37: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Boundary of the processWe compute the number of individuals crossing for the first timek 7→ Fk + x :

EL

∑u∈T

1{V (u)>F|u|+x}1{V (uj )≤Fj+x ,j<|u|}

=∑n≥1

EL

∑|u|=n

1{V (u)>Fn+x}1{V (uj )≤Fj+x ,j<n}

=∑n≥1

EL[e−θ(Sn−Fn)1{Sn>Fn+x}1{Sj<Fj+x ,j<n}

]≤ e−θx ∑

n≥1PL [Sn > Fn + x ,Sj < Fj + x , j < n]

≤ e−θx .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 11 / 26

Page 38: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Boundary of the processWe compute the number of individuals crossing for the first timek 7→ Fk + x :

EL

∑u∈T

1{V (u)>F|u|+x}1{V (uj )≤Fj+x ,j<|u|}

=∑n≥1

EL

∑|u|=n

1{V (u)>Fn+x}1{V (uj )≤Fj+x ,j<n}

=∑n≥1

EL[e−θ(Sn−Fn)1{Sn>Fn+x}1{Sj<Fj+x ,j<n}

]≤ e−θx ∑

n≥1PL [Sn > Fn + x ,Sj < Fj + x , j < n]

≤ e−θx .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 11 / 26

Page 39: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Boundary of the processWe compute the number of individuals crossing for the first timek 7→ Fk + x :

EL

∑u∈T

1{V (u)>F|u|+x}1{V (uj )≤Fj+x ,j<|u|}

=∑n≥1

EL

∑|u|=n

1{V (u)>Fn+x}1{V (uj )≤Fj+x ,j<n}

=∑n≥1

EL[e−θ(Sn−Fn)1{Sn>Fn+x}1{Sj<Fj+x ,j<n}

]≤ e−θx ∑

n≥1PL [Sn > Fn + x ,Sj < Fj + x , j < n]

≤ e−θx .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 11 / 26

Page 40: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Upper bound for the maximal displacement

We compute the number of individuals who, while staying below the curvek 7→ Fk + x , are at time n larger than Fn − λ log n.

EL

∑|u|=n

1{V (u)≥Fn−λ log n}1{V (uj )≤Fj+x ,j≤n}

= EL

[eθ(Sn−Fn)1{Sn−Fn≥−λ log n}1{Sj−Fj≤x ,j≤n}

]≈ nθλPL (Sn − Fn ≥ −λ log n, Sj − Fj ≤ x , j ≤ n) .

To conclude, we need to compute the asymptotic behaviour of

PL (Sn − Fn ≥ −λ log n,Sj − Fj ≤ x , j ≤ n) .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 12 / 26

Page 41: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Upper bound for the maximal displacement

We compute the number of individuals who, while staying below the curvek 7→ Fk + x , are at time n larger than Fn − λ log n.

EL

∑|u|=n

1{V (u)≥Fn−λ log n}1{V (uj )≤Fj+x ,j≤n}

= EL

[eθ(Sn−Fn)1{Sn−Fn≥−λ log n}1{Sj−Fj≤x ,j≤n}

]≈ nθλPL (Sn − Fn ≥ −λ log n, Sj − Fj ≤ x , j ≤ n) .

To conclude, we need to compute the asymptotic behaviour of

PL (Sn − Fn ≥ −λ log n,Sj − Fj ≤ x , j ≤ n) .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 12 / 26

Page 42: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Upper bound for the maximal displacement

We compute the number of individuals who, while staying below the curvek 7→ Fk + x , are at time n larger than Fn − λ log n.

EL

∑|u|=n

1{V (u)≥Fn−λ log n}1{V (uj )≤Fj+x ,j≤n}

= EL

[eθ(Sn−Fn)1{Sn−Fn≥−λ log n}1{Sj−Fj≤x ,j≤n}

]≈ nθλPL (Sn − Fn ≥ −λ log n, Sj − Fj ≤ x , j ≤ n) .

To conclude, we need to compute the asymptotic behaviour of

PL (Sn − Fn ≥ −λ log n,Sj − Fj ≤ x , j ≤ n) .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 12 / 26

Page 43: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Upper bound for the maximal displacement

We compute the number of individuals who, while staying below the curvek 7→ Fk + x , are at time n larger than Fn − λ log n.

EL

∑|u|=n

1{V (u)≥Fn−λ log n}1{V (uj )≤Fj+x ,j≤n}

= EL

[eθ(Sn−Fn)1{Sn−Fn≥−λ log n}1{Sj−Fj≤x ,j≤n}

]≈ nθλPL (Sn − Fn ≥ −λ log n, Sj − Fj ≤ x , j ≤ n) .

To conclude, we need to compute the asymptotic behaviour of

PL (Sn − Fn ≥ −λ log n,Sj − Fj ≤ x , j ≤ n) .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 12 / 26

Page 44: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Upper bound for the maximal displacement

We compute the number of individuals who, while staying below the curvek 7→ Fk + x , are at time n larger than Fn − λ log n.

EL

∑|u|=n

1{V (u)≥Fn−λ log n}1{V (uj )≤Fj+x ,j≤n}

= EL

[eθ(Sn−Fn)1{Sn−Fn≥−λ log n}1{Sj−Fj≤x ,j≤n}

]≈ nθλPL (Sn − Fn ≥ −λ log n, Sj − Fj ≤ x , j ≤ n) .

To conclude, we need to compute the asymptotic behaviour of

PL (Sn − Fn ≥ −λ log n,Sj − Fj ≤ x , j ≤ n) .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 12 / 26

Page 45: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Persistence exponent for the random walk in randomenvironment

Let S be a random walk in random environment.TheoremWe assume that E(S1) = 0 and there exists λ > 0 and C > 0 such that

E(eλ|X1|

)< +∞ et EL

(eλ|X1−EL(X1)|

)≤ C p.s.

There exists γ ≥ 1/2 such that

− 1log n logPµ (Sj ≥ − log n, j ≤ n) = γ p.s.

Thus Pµ (Sj ≥ − log n, j ≤ n) ≈ n−γ a.s.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 13 / 26

Page 46: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Persistence exponent for the random walk in randomenvironment

Let S be a random walk in random environment.TheoremWe assume that E(S1) = 0 and there exists λ > 0 and C > 0 such that

E(eλ|X1|

)< +∞ et EL

(eλ|X1−EL(X1)|

)≤ C p.s.

There exists γ ≥ 1/2 such that

− 1log n logPµ (Sj ≥ − log n, j ≤ n) = γ p.s.

Thus Pµ (Sj ≥ − log n, j ≤ n) ≈ n−γ a.s.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 13 / 26

Page 47: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

From random walk to Brownian motion I

We set Ej = Sj − EL(Sj) and Mj = −EL(Sj). We have

Pµ (Sj ≥ − log n, j ≤ n) = Pµ (Ej ≥ Mj − log n, j ≤ n) .

NotationSet σ2

A = Var(M1) = Var(EL(X1)) and σ2Q = E(E 2

1 ) = E(Varµ(X1)).

Sakhanenko inequalitiesAs M is a random walk, there exists a Brownian motion W such that|Mj − σAWj | . log n.Conditionally on L and W , E is the sum of i.i.d. centred randomvariables, there exists a Brownian motion B such that|Ej − σQBj | . log n.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 14 / 26

Page 48: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

From random walk to Brownian motion I

We set Ej = Sj − EL(Sj) and Mj = −EL(Sj). We have

Pµ (Sj ≥ − log n, j ≤ n) = Pµ (Ej ≥ Mj − log n, j ≤ n) .

NotationSet σ2

A = Var(M1) = Var(EL(X1)) and σ2Q = E(E 2

1 ) = E(Varµ(X1)).

Sakhanenko inequalitiesAs M is a random walk, there exists a Brownian motion W such that|Mj − σAWj | . log n.Conditionally on L and W , E is the sum of i.i.d. centred randomvariables, there exists a Brownian motion B such that|Ej − σQBj | . log n.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 14 / 26

Page 49: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

From random walk to Brownian motion I

We set Ej = Sj − EL(Sj) and Mj = −EL(Sj). We have

Pµ (Sj ≥ − log n, j ≤ n) = Pµ (Ej ≥ Mj − log n, j ≤ n) .

NotationSet σ2

A = Var(M1) = Var(EL(X1)) and σ2Q = E(E 2

1 ) = E(Varµ(X1)).

Sakhanenko inequalitiesAs M is a random walk, there exists a Brownian motion W such that|Mj − σAWj | . log n.Conditionally on L and W , E is the sum of i.i.d. centred randomvariables, there exists a Brownian motion B such that|Ej − σQBj | . log n.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 14 / 26

Page 50: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

From random walk to Brownian motion I

We set Ej = Sj − EL(Sj) and Mj = −EL(Sj). We have

Pµ (Sj ≥ − log n, j ≤ n) = Pµ (Ej ≥ Mj − log n, j ≤ n) .

NotationSet σ2

A = Var(M1) = Var(EL(X1)) and σ2Q = E(E 2

1 ) = E(Varµ(X1)).

Sakhanenko inequalitiesAs M is a random walk, there exists a Brownian motion W such that|Mj − σAWj | . log n.Conditionally on L and W , E is the sum of i.i.d. centred randomvariables, there exists a Brownian motion B such that|Ej − σQBj | . log n.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 14 / 26

Page 51: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

From random walk to Brownian motion II

Therefore, we have

Pµ (Sj ≥ − log n, j ≤ n) ≈ P (σQBs ≥ σAWs − log n, s ≤ n|W ) a.s.

Thus γ = γ(σA/σQ), where we define

γ(β) = limt→+∞

− 1log t logP (Bs ≥ βWs − 1, s ≤ t|W ) .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 15 / 26

Page 52: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

From random walk to Brownian motion II

Therefore, we have

Pµ (Sj ≥ − log n, j ≤ n) ≈ P (σQBs ≥ σAWs − log n, s ≤ n|W ) a.s.

Thus γ = γ(σA/σQ), where we define

γ(β) = limt→+∞

− 1log t logP (Bs ≥ βWs − 1, s ≤ t|W ) .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 15 / 26

Page 53: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Brownian motion above a Brownian curve

1 The branching random walk in random environment

2 The random walk in random environment

3 Brownian motion above a Brownian curve

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 16 / 26

Page 54: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Brownian motion above a Brownian curve

Let B and W be two independent Brownian motions.

TheoremThere exists a convex pair function γ such that for all β ∈ R,

limt→+∞

1log t logP (Bs + 1 ≥ βWs , s ≤ t|W ) = −γ(β) p.s.

In particular, P (Bs + 1 ≥ βWs , s ≤ t|W ) ≈ t−γ(β).

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 17 / 26

Page 55: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Brownian motion above a Brownian curve

Let B and W be two independent Brownian motions.

TheoremThere exists a convex pair function γ such that for all β ∈ R,

limt→+∞

1log t logP (Bs + 1 ≥ βWs , s ≤ t|W ) = −γ(β) p.s.

In particular, P (Bs + 1 ≥ βWs , s ≤ t|W ) ≈ t−γ(β).

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 17 / 26

Page 56: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Brownian motion above a Brownian curve

Let B and W be two independent Brownian motions.

TheoremThere exists a convex pair function γ such that for all β ∈ R,

limt→+∞

1log t logP (Bs + 1 ≥ βWs , s ≤ t|W ) = −γ(β) p.s.

In particular, P (Bs + 1 ≥ βWs , s ≤ t|W ) ≈ t−γ(β).

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 17 / 26

Page 57: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Brownian motion above a Brownian curve

β × WB

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 18 / 26

Page 58: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Properties of γ

Symmetry

As W (d)= −W , we have

(P (Bs + 1 ≥ βWs , s ≤ t|W ))t≥0(d)= (P(Bs + 1 ≥ −βWs , s ≤ t|W ))t≥0 ,

thus γ(β) = γ(−β).

Lower boundBy Jensen inequality,

E [− logP (Bs + 1 ≥ βWs , s ≤ t|W )] ≥ − logP(Bs + 1 ≥ βWs , s ≤ t),

thus γ(β) ≥ γ(0) = 1/2.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 19 / 26

Page 59: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Properties of γ

Symmetry

As W (d)= −W , we have

(P (Bs + 1 ≥ βWs , s ≤ t|W ))t≥0(d)= (P(Bs + 1 ≥ −βWs , s ≤ t|W ))t≥0 ,

thus γ(β) = γ(−β).

Lower boundBy Jensen inequality,

E [− logP (Bs + 1 ≥ βWs , s ≤ t|W )] ≥ − logP(Bs + 1 ≥ βWs , s ≤ t),

thus γ(β) ≥ γ(0) = 1/2.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 19 / 26

Page 60: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Properties of γ

ConvexityThe Gaussian random variables being log-concave, we have

P(Bs ≥ f (s), s ≤ t)P(Bs ≥ g(s), s ≤ t) ≤ P(Bs ≥ f (s)+g(s)

2 , s ≤ t)2.

Therefore, we have

P(Bs + 1 ≥ βWs , s ≤ t|W )P(Bs + 1 ≥ β′Ws , s ≤ t|W )

≤ P(

Bs + 1 ≥ β+β′

2 Ws , s ≤ t∣∣∣W)2

,

thus β 7→ γ(β) is convex.

RemarkBy similar arguments, β 7→ γ(

√|β|) is convex.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 20 / 26

Page 61: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Properties of γ

ConvexityThe Gaussian random variables being log-concave, we have

P(Bs ≥ f (s), s ≤ t)P(Bs ≥ g(s), s ≤ t) ≤ P(Bs ≥ f (s)+g(s)

2 , s ≤ t)2.

Therefore, we have

P(Bs + 1 ≥ βWs , s ≤ t|W )P(Bs + 1 ≥ β′Ws , s ≤ t|W )

≤ P(

Bs + 1 ≥ β+β′

2 Ws , s ≤ t∣∣∣W)2

,

thus β 7→ γ(β) is convex.

RemarkBy similar arguments, β 7→ γ(

√|β|) is convex.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 20 / 26

Page 62: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Properties of γ

ConvexityThe Gaussian random variables being log-concave, we have

P(Bs ≥ f (s), s ≤ t)P(Bs ≥ g(s), s ≤ t) ≤ P(Bs ≥ f (s)+g(s)

2 , s ≤ t)2.

Therefore, we have

γ(β) + γ(β′) ≥ 2γ(β+β′

2

),

thus β 7→ γ(β) is convex.

RemarkBy similar arguments, β 7→ γ(

√|β|) is convex.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 20 / 26

Page 63: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Properties of γ

ConvexityThe Gaussian random variables being log-concave, we have

P(Bs ≥ f (s), s ≤ t)P(Bs ≥ g(s), s ≤ t) ≤ P(Bs ≥ f (s)+g(s)

2 , s ≤ t)2.

Therefore, we have

γ(β) + γ(β′) ≥ 2γ(β+β′

2

),

thus β 7→ γ(β) is convex.

RemarkBy similar arguments, β 7→ γ(

√|β|) is convex.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 20 / 26

Page 64: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Properties of γ

ConvexityThe Gaussian random variables being log-concave, we have

P(Bs ≥ f (s), s ≤ t)P(Bs ≥ g(s), s ≤ t) ≤ P(Bs ≥ f (s)+g(s)

2 , s ≤ t)2.

Therefore, we have

γ(β) + γ(β′) ≥ 2γ(β+β′

2

),

thus β 7→ γ(β) is convex.

RemarkBy similar arguments, β 7→ γ(

√|β|) is convex.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 20 / 26

Page 65: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ I

Let Xt = e−t/2(1+ Bet−1) et Yt = e−t/2Wet−1.

X and Y are two independent Ornstein-Uhlenbeck processes, moreover:

P (Bs + 1 ≥ βWs , s ≤ t|W ) = P (Xs ≥ βYs , s ≤ log t|Y ) .

We prove there exists γ(β) such that

limt→+∞

−1t logP (Xs ≥ βYs , s ≤ t|Y ) = γ(β) a.s.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 21 / 26

Page 66: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ I

Let Xt = e−t/2(1+ Bet−1) et Yt = e−t/2Wet−1.

X and Y are two independent Ornstein-Uhlenbeck processes, moreover:

P (Bs + 1 ≥ βWs , s ≤ t|W ) = P (Xs ≥ βYs , s ≤ log t|Y ) .

We prove there exists γ(β) such that

limt→+∞

−1t logP (Xs ≥ βYs , s ≤ t|Y ) = γ(β) a.s.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 21 / 26

Page 67: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ I

Let Xt = e−t/2(1+ Bet−1) et Yt = e−t/2Wet−1.

X and Y are two independent Ornstein-Uhlenbeck processes, moreover:

P (Bs + 1 ≥ βWs , s ≤ t|W ) = P (Xs ≥ βYs , s ≤ log t|Y ) .

We prove there exists γ(β) such that

limt→+∞

−1t logP (Xs ≥ βYs , s ≤ t|Y ) = γ(β) a.s.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 21 / 26

Page 68: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ IINotationWe set τ0 = 0 and

τk+1 = inf {t ≥ τk : Yt = 0,∃s ∈ [τk , t] : |Ys | = 1} .

t

Y

τ1 τ2 τ3 τ4

We set pk,n = logP (Xτn−τk ≥ 1,Xs ≥ βYτk+s , s ≤ τn − τk |Y ) .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 22 / 26

Page 69: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ IINotationWe set τ0 = 0 and

τk+1 = inf {t ≥ τk : Yt = 0,∃s ∈ [τk , t] : |Ys | = 1} .

t

Y

τ1 τ2 τ3 τ4

We set pk,n = logP (Xτn−τk ≥ 1,Xs ≥ βYτk+s , s ≤ τn − τk |Y ) .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 22 / 26

Page 70: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ IINotationWe set τ0 = 0 and

τk+1 = inf {t ≥ τk : Yt = 0,∃s ∈ [τk , t] : |Ys | = 1} .

t

Y

τ1 τ2 τ3 τ4

We set pk,n = logP (Xτn−τk ≥ 1,Xs ≥ βYτk+s , s ≤ τn − τk |Y ) .

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 22 / 26

Page 71: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ III

By the Markov property, we havep0,m+n ≥ p0,m + pm,m+n;

(pm+1,n+1,m ≥ 0, n ≥ 0) (d)= (pm,n,m ≥ 0, n ≥ 0);

(pn,n+k , k ≥ 0) is independent with (pm,m′ , 0 ≤ m ≤ m′ ≤ n);E(|p0,1|) < +∞.

Kingman’s subbaditive ergodic theoremWe have

limn→+∞

p0,nn = −γ̃(β) > −∞ p.s,

so γ̃(β) = − infn∈N 1nE [p0,n].

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 23 / 26

Page 72: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ III

By the Markov property, we havep0,m+n ≥ p0,m + pm,m+n;

(pm+1,n+1,m ≥ 0, n ≥ 0) (d)= (pm,n,m ≥ 0, n ≥ 0);

(pn,n+k , k ≥ 0) is independent with (pm,m′ , 0 ≤ m ≤ m′ ≤ n);E(|p0,1|) < +∞.

Kingman’s subbaditive ergodic theoremWe have

limn→+∞

p0,nn = −γ̃(β) > −∞ p.s,

so γ̃(β) = − infn∈N 1nE [p0,n].

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 23 / 26

Page 73: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ III

By the Markov property, we havep0,m+n ≥ p0,m + pm,m+n;

(pm+1,n+1,m ≥ 0, n ≥ 0) (d)= (pm,n,m ≥ 0, n ≥ 0);

(pn,n+k , k ≥ 0) is independent with (pm,m′ , 0 ≤ m ≤ m′ ≤ n);E(|p0,1|) < +∞.

Kingman’s subbaditive ergodic theoremWe have

limn→+∞

p0,nn = −γ̃(β) > −∞ p.s,

so γ̃(β) = − infn∈N 1nE [p0,n].

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 23 / 26

Page 74: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ III

By the Markov property, we havep0,m+n ≥ p0,m + pm,m+n;

(pm+1,n+1,m ≥ 0, n ≥ 0) (d)= (pm,n,m ≥ 0, n ≥ 0);

(pn,n+k , k ≥ 0) is independent with (pm,m′ , 0 ≤ m ≤ m′ ≤ n);E(|p0,1|) < +∞.

Kingman’s subbaditive ergodic theoremWe have

limn→+∞

p0,nn = −γ̃(β) > −∞ p.s,

so γ̃(β) = − infn∈N 1nE [p0,n].

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 23 / 26

Page 75: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ III

By the Markov property, we havep0,m+n ≥ p0,m + pm,m+n;

(pm+1,n+1,m ≥ 0, n ≥ 0) (d)= (pm,n,m ≥ 0, n ≥ 0);

(pn,n+k , k ≥ 0) is independent with (pm,m′ , 0 ≤ m ≤ m′ ≤ n);E(|p0,1|) < +∞.

Kingman’s subbaditive ergodic theoremWe have

limn→+∞

p0,nn = −γ̃(β) > −∞ p.s,

so γ̃(β) = − infn∈N 1nE [p0,n].

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 23 / 26

Page 76: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ III

By the Markov property, we havep0,m+n ≥ p0,m + pm,m+n;

(pm+1,n+1,m ≥ 0, n ≥ 0) (d)= (pm,n,m ≥ 0, n ≥ 0);

(pn,n+k , k ≥ 0) is independent with (pm,m′ , 0 ≤ m ≤ m′ ≤ n);E(|p0,1|) < +∞.

Kingman’s subbaditive ergodic theoremWe have

limn→+∞

p0,nn = −γ̃(β) > −∞ p.s,

so γ̃(β) = − infn∈N 1nE [p0,n].

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 23 / 26

Page 77: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ IV

NotationWe set qn = logP(Xs ≥ βYs , s ≤ τn|Y ). Observe that qn ≥ pn.

FKG inequalityBy FKG inequality for the Brownian motion, we have

qn + logP(Xτn ≥ 1|Y ) ≤ pn.

As a consequence limn→+∞qnn = −γ̃(β) a.s..

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 24 / 26

Page 78: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ IV

NotationWe set qn = logP(Xs ≥ βYs , s ≤ τn|Y ). Observe that qn ≥ pn.

FKG inequalityBy FKG inequality for the Brownian motion, we have

qn + logP(Xτn ≥ 1|Y ) ≤ pn.

As a consequence limn→+∞qnn = −γ̃(β) a.s..

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 24 / 26

Page 79: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ IV

NotationWe set qn = logP(Xs ≥ βYs , s ≤ τn|Y ). Observe that qn ≥ pn.

FKG inequalityBy FKG inequality for the Brownian motion, we have

qn + logP(Xτn ≥ 1|Y ) ≤ pn.

As a consequence limn→+∞qnn = −γ̃(β) a.s..

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 24 / 26

Page 80: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ V

For all τn ≤ t ≤ τn+1,

qn+1τn≤ 1

t logP(Xs ≥ Ys , s ≤ t|Y ) ≤ qnτn+1

,

thus

limt→+∞

1t logP(Xs ≥ Ys , s ≤ t|Y ) = − γ̃(β)E(τ1)

= −γ(β) p.s.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 25 / 26

Page 81: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

Existence of γ V

For all τn ≤ t ≤ τn+1,

qn+1τn≤ 1

t logP(Xs ≥ Ys , s ≤ t|Y ) ≤ qnτn+1

,

thus

limt→+∞

1t logP(Xs ≥ Ys , s ≤ t|Y ) = − γ̃(β)E(τ1)

= −γ(β) p.s.

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 25 / 26

Page 82: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

The γ function

β

γ

Figure : An approximation of E [− logP(Bs ≥ βWs − 1, s ≤ 1000)].

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 26 / 26

Page 83: Branching random walk in random environment · Branchingrandomwalkinrandomenvironment BastienMallein jointworkwithPiotrMiłoś ENS, DMA June26,2016 Bastien Mallein (ENS, DMA) Branching

The γ function

β

γ

Figure : An approximation of E [− logP(Bs ≥ βWs − 1, s ≤ 1000)].

Bastien Mallein (ENS, DMA) Branching random walk in random environment 27/06/2016 26 / 26