bounded arithmetic in free logic

31
Bounded Arithmetic in Free Logic Yoriyuki Yamagata CTFM, 2013/02/20

Upload: yamagata-yoriyuki

Post on 09-Jul-2015

182 views

Category:

Technology


3 download

DESCRIPTION

Presentation at CTFM (Computability Theory and Foundation of Mathematics)

TRANSCRIPT

Page 1: Bounded arithmetic in free logic

Bounded Arithmetic in Free Logic

Yoriyuki Yamagata CTFM, 2013/02/20

Page 2: Bounded arithmetic in free logic

Buss’s theories 𝑆2𝑖 β€’ Language of Peano Arithmetic + β€œ#”

– a # b = 2 π‘Ž β‹…|𝑏| β€’ BASIC axioms β€’ PIND

𝐴 π‘₯2 , Ξ“ β†’ Ξ”,𝐴(π‘₯)

𝐴 0 , Ξ“ β†’ Ξ”,𝐴(𝑑)

where 𝐴 π‘₯ ∈ Σ𝑖𝑏, i.e. has 𝑖-alternations of bounded quantifiers βˆ€π‘₯ ≀ 𝑑,βˆƒπ‘₯ ≀ 𝑑.

Page 3: Bounded arithmetic in free logic

PH and Buss’s theories 𝑆2𝑖

𝑆21 = 𝑆22 = 𝑆23 = … Implies

𝑃 = β–‘(𝑁𝑃) = β–‘(Ξ£2𝑝) = …

We can approach (non) collapse of PH from (non) collapse of hierarchy of Buss’s theories

(PH = Polynomial Hierarchy)

Page 4: Bounded arithmetic in free logic

Our approach

β€’ Separate 𝑆2𝑖 by GΓΆdel incompleteness theorem β€’ Use analogy of separation of 𝐼Σ𝑖

Page 5: Bounded arithmetic in free logic

Separation of 𝐼Σ𝑖

𝐼Σ3 ⊒ Con(IΣ2)

𝐼Σ2 ⊒ Con IΣ2

…

𝐼Σ1

βŠ†

βŠ†

Page 6: Bounded arithmetic in free logic

Consistency proof inside 𝑆2𝑖 β€’ Bounded Arithmetics generally are not

capable to prove consistency. – 𝑆2 does not prove consistency of Q (Paris, Wilkie) – 𝑆2 does not prove bounded consistency of 𝑆21 (PudlΓ‘k)

– 𝑆2𝑖 does not prove consistency the 𝐡𝑖𝑏 fragement of 𝑆2βˆ’1 (Buss and IgnjatoviΔ‡)

Page 7: Bounded arithmetic in free logic

Buss and Ignjatović(1995)

…

βŠ†

𝑆23 ⊒ 𝐡3b βˆ’ Con(𝑆2βˆ’1)

𝑆22 ⊒ 𝐡2b βˆ’ Con(𝑆2βˆ’1)

𝑆21 ⊒ 𝐡1b βˆ’ Con(𝑆2βˆ’1)

βŠ†

Page 8: Bounded arithmetic in free logic

Where…

β€’ 𝐡𝑖𝑏 βˆ’ 𝐢𝐢𝐢 𝑇 – consistency of 𝐡𝑖𝑏 βˆ’proofs – 𝐡𝑖𝑏 βˆ’proofs : the proofs by 𝐡𝑖𝑏-formule – 𝐡𝑖𝑏:Ξ£0𝑏(Σ𝑖𝑏)… Formulas generated from Σ𝑖𝑏 by

Boolean connectives and sharply bounded quantifiers.

β€’ 𝑆2βˆ’1 – Induction free fragment of 𝑆2𝑖

Page 9: Bounded arithmetic in free logic

If…

𝑆2𝑗 ⊒ 𝐡ib βˆ’ Con 𝑆2βˆ’1 , j > i

Then, Buss’s hierarchy does not collapse.

Page 10: Bounded arithmetic in free logic

Consistency proof of 𝑆2βˆ’1 inside 𝑆2𝑖

Problem β€’ No truth definition, because β€’ No valuation of terms, because

β€’ The values of terms increase exponentially β€’ E.g. 2#2#2#2#2#...#2

In 𝑆2𝑖 world, terms do not have values a priori. β€’ Thus, we must prove the existence of values in proofs. β€’ We introduce the predicate 𝐸 which signifies existence of

values.

Page 11: Bounded arithmetic in free logic

Our result(2012)

…

βŠ†

𝑆25 ⊒ 3 βˆ’ Con(𝑆2βˆ’1𝐸)

𝑆24 ⊒ 2 βˆ’ Con(𝑆2βˆ’1𝐸)

𝑆23 ⊒ 1 βˆ’ Con(𝑆2βˆ’1𝐸)

βŠ†

Page 12: Bounded arithmetic in free logic

Where…

β€’ 𝑖 βˆ’ 𝐢𝐢𝐢 𝑇 – consistency of 𝑖-normal proofs – 𝑖-normal proofs : the proofs by 𝑖-normal formulas – 𝑖-normal formulas: Formulas in the form: βˆƒπ‘₯1 ≀ 𝑑1βˆ€π‘₯2 ≀ 𝑑2 …𝑄π‘₯𝑖 ≀ 𝑑𝑖𝑄π‘₯𝑖+1 ≀ 𝑑𝑖+1 .𝐴(… ) Where 𝐴 is quantifier free

Page 13: Bounded arithmetic in free logic

Where…

β€’ 𝑆2βˆ’1𝐸 – Induction free fragment of 𝑆2𝑖𝐸 – have predicate 𝐸 which signifies existence of

values β€’ Such logic is called Free logic

Page 14: Bounded arithmetic in free logic

𝑆2𝑖𝐸(Language)

Predicates β€’ =,≀,𝐸

Function symbols β€’ Finite number of polynomial functions

Formulas β€’ Atomic formula, negated atomic formula β€’ 𝐴 ∨ 𝐡,𝐴 ∧ 𝐡 β€’ Bounded quantifiers

Page 15: Bounded arithmetic in free logic

𝑆2𝑖𝐸(Axioms)

β€’ 𝐸-axioms β€’ Equality axioms β€’ Data axioms β€’ Defining axioms β€’ Auxiliary axioms

Page 16: Bounded arithmetic in free logic

Idea behind axioms…

β†’ π‘Ž = π‘Ž

Because there is no guarantee of πΈπ‘Ž Thus, we add πΈπ‘Ž in the antecedent

πΈπ‘Ž β†’ π‘Ž = π‘Ž

Page 17: Bounded arithmetic in free logic

E-axioms

β€’ 𝐸𝐸 π‘Ž1, … ,π‘Žπ‘› β†’ πΈπ‘Žπ‘— β€’ π‘Ž1 = π‘Ž2 β†’ πΈπ‘Žπ‘— β€’ π‘Ž1 β‰  π‘Ž2 β†’ πΈπ‘Žπ‘— β€’ π‘Ž1 ≀ π‘Ž2 β†’ πΈπ‘Žπ‘— β€’ Β¬π‘Ž1≀ π‘Ž2 β†’ πΈπ‘Žπ‘—

Page 18: Bounded arithmetic in free logic

Equality axioms

β€’ πΈπ‘Ž β†’ π‘Ž = π‘Ž

β€’ 𝐸𝐸 οΏ½βƒ—οΏ½ , οΏ½βƒ—οΏ½ = 𝑏 β†’ 𝐸 οΏ½βƒ—οΏ½ = 𝐸 𝑏

Page 19: Bounded arithmetic in free logic

Data axioms

β€’ β†’ 𝐸𝐸 β€’ πΈπ‘Ž β†’ 𝐸𝑠0π‘Ž β€’ πΈπ‘Ž β†’ 𝐸𝑠1π‘Ž

Page 20: Bounded arithmetic in free logic

Defining axioms

𝐸 𝑒 π‘Ž1 ,π‘Ž2, … , π‘Žπ‘› = 𝑑(π‘Ž1, … , π‘Žπ‘›)

πΈπ‘Ž1, … ,πΈπ‘Žπ‘›,𝐸𝑑 π‘Ž1, … , π‘Žπ‘› β†’ 𝐸 𝑒 π‘Ž1 ,π‘Ž2, … , π‘Žπ‘› = 𝑑(π‘Ž1, … , π‘Žπ‘›)

𝑒 π‘Ž = 0,π‘Ž, 𝑠0π‘Ž, 𝑠1π‘Ž

Page 21: Bounded arithmetic in free logic

Auxiliary axioms

π‘Ž = 𝑏 βŠƒ π‘Ž#𝑐 = 𝑏#𝑐

πΈπ‘Ž#𝑐,𝐸𝑏#𝑐, π‘Ž = |𝑏| β†’ π‘Ž#𝑐 = 𝑏#𝑐

Page 22: Bounded arithmetic in free logic

PIND-rule

where 𝐴 is an Σ𝑖𝑏-formulas

Page 23: Bounded arithmetic in free logic

Bootstrapping 𝑆2𝑖𝐸

I. 𝑆2𝑖𝐸 ⊒ Tot(𝐸) for any 𝐸, 𝑖 β‰₯ 0 II. 𝑆2𝑖𝐸 ⊒ BASICβˆ—, equality axioms βˆ— III. 𝑆2𝑖𝐸 ⊒ predicate logic βˆ— IV. 𝑆2𝑖𝐸 ⊒ Σ𝑖𝑏 βˆ’PINDβˆ—

Page 24: Bounded arithmetic in free logic

Theorem (Consistency)

𝑆2𝑖+2 ⊒ i βˆ’ Con(𝑆2βˆ’1𝐸)

Page 25: Bounded arithmetic in free logic

Valuation trees

a#a+b=19

a#a=16 b=3

a=2

ρ-valuation tree bounded by 19 ρ(a)=2, ρ(b)=3

𝑣 π‘Ž#π‘Ž + 𝑏 ,𝜌 ↓19 19 𝑣 𝑑 ,𝜌 ↓𝑒 𝑐 is Ξ£1𝑏

Page 26: Bounded arithmetic in free logic

Bounded truth definition (1)

β€’ 𝑇 𝑒, 𝑑1 = 𝑑2 , 𝜌 ⇔def βˆƒπ‘ ≀ 𝑒, 𝑣 𝑑1 ,𝜌 ↓𝑒 𝑐 ∧ 𝑣 𝑑1 ,𝜌 ↓𝑒 𝑐

β€’ 𝑇 𝑒, πœ™1 ∧ πœ™2 ,𝜌 ⇔def 𝑇 𝑒, πœ™1 , 𝜌 ∧ 𝑇 𝑒, πœ™2 , 𝜌 β€’ 𝑇 𝑒, πœ™1 ∨ πœ™2 ,𝜌 ⇔def 𝑇 𝑒, πœ™1 , 𝜌 ∨ 𝑇 𝑒, πœ™2 ,𝜌

Page 27: Bounded arithmetic in free logic

Bounded truth definition (2)

β€’ 𝑇 𝑒, βˆƒπ‘₯ ≀ 𝑑,πœ™(π‘₯) ,𝜌 ⇔def βˆƒπ‘ ≀ 𝑒, 𝑣 𝑑 , 𝜌 ↓𝑒 𝑐 ∧

βˆƒπ‘‘ ≀ 𝑐,𝑇 𝑒, πœ™ π‘₯ ,𝜌 π‘₯ ↦ 𝑑 β€’ 𝑇 𝑒, βˆ€π‘₯ ≀ 𝑑,πœ™(π‘₯) , 𝜌 ⇔def

βˆƒπ‘ ≀ 𝑒, 𝑣 𝑑 , 𝜌 ↓𝑒 𝑐 ∧ βˆ€π‘‘ ≀ 𝑐,𝑇(𝑒, πœ™ π‘₯ ,𝜌[π‘₯ ↦ 𝑑])

Remark: If πœ™ is Σ𝑖𝑏,𝑇 𝑒, πœ™ is Σ𝑖+1𝑏

Page 28: Bounded arithmetic in free logic

induction hypothesis

𝑒: enough large integer π‘Ÿ: node of a proof of 0=1 Ξ“π‘Ÿ β†’ Ξ”π‘Ÿ: the sequent of node π‘Ÿ 𝜌: assignment 𝜌 π‘Ž ≀ 𝑒 βˆ€π‘’β€² ≀ 𝑒 βŠ– π‘Ÿ, { βˆ€π΄ ∈ Ξ“π‘Ÿ 𝑇 𝑒′, 𝐴 , 𝜌 βŠƒ

[βˆƒπ΅ ∈ Ξ”r,𝑇(𝑒′ βŠ• π‘Ÿ, 𝐡 , 𝜌)]}

Page 29: Bounded arithmetic in free logic

Conjecture

β€’ 𝑆2βˆ’1𝐸 is weak enough – 𝑆2𝑖+2 can prove 𝑖-consistency of 𝑆2βˆ’1𝐸

β€’ While 𝑆2βˆ’1𝐸 is strong enough – 𝑆2𝑖𝐸 can interpret 𝑆2𝑖

β€’ Conjecture 𝑆2βˆ’1𝐸 is a good candidate to separate 𝑆2𝑖 and 𝑆2𝑖+2.

Page 30: Bounded arithmetic in free logic

Future works

β€’ Long-term goal 𝑆2𝑖 ⊒ π‘–βˆ’Con(𝑆2βˆ’1𝐸)?

β€’ Short-term goal – Simplify 𝑆2𝑖𝐸

Page 31: Bounded arithmetic in free logic

Publications

β€’ Bounded Arithmetic in Free Logic Logical Methods in Computer Science Volume 8, Issue 3, Aug. 10, 2012