biopile bioremediation of petroleum hydrocarbon contaminated soils

Download Biopile bioremediation of petroleum hydrocarbon contaminated soils

Post on 01-Jan-2017

216 views

Category:

Documents

3 download

Embed Size (px)

TRANSCRIPT

  • Biopile Bioremediation of Petroleum Hydrocarbon Contaminated

    Soils from a Sub-Arctic Site

    Jessica Snelgrove

    Department of Civil Engineering and Applied Mechanics

    McGill University, Montreal

    October, 2010

    A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the

    requirements for the degree of Master of Engineering

    Jessica Snelgrove, 2010

  • i

    ABSTRACT

    Petroleum contamination of several hundred sites in the northern arctic and sub-arctic

    regions of Canada has occurred as a result of petroleum oil exploration and use of petroleum

    fuels for heating, transportation and electricity generation. Petroleum contamination can persist

    in the ground for long periods of time and be a source of long-term environmental

    contamination. Bioremediation is a non-disruptive and often cost-effective technology for

    remediation of petroleum-contaminated sites that involves the microbial degradation of

    hydrocarbon compounds. Biopiles allow for rapid ex-situ treatment of petroleum-hydrocarbon

    contaminated soils. Two pilot scale biopiles (300 kg soil each) were construct using soils

    contaminated with approximately 1 500 mg/kg total petroleum hydrocarbons (TPH) from

    Norman Wells, North West Territories. Both systems were supplied with oxygen to stimulate

    aerobic conditions, and monitored in an enclosed room maintained at a temperature of 15oC, the

    ambient summer temperature in Norman Wells. One biopile was amended with ammonium

    nitrate at a ratio of 100:5:1 (C:N:P) to determine the effects of nutrients on TPH biodegradation.

    The research showed that biodegradation occurred within both biopile systems. Analysis of the

    hydrocarbon fractions, TPH chromatograms, and oxygen consumption and carbon dioxide

    production supported biodegradation versus volatilization. However, an absolute confirmation

    of whether these loses were due to biodegradation (or to what extent) are not possible to be

    reported here. Analysis of the inorganic nitrogen and aggregation of the soils helped provide

    insight into the process of biodegradation in both biopile systems. Overall 42% of the total

    petroleum hydrocarbons were removed from the nutrient amended biopile and 38 % in the

  • ii

    control biopile. For the F2 (>C10-16) fraction, both systems had less than 200 mg/kg soil and for

    the F3 (>C16-34) fraction around 700 mg/kg soil.

  • iii

    RESUME

    La contamination de ptrole de plusieurs cent sites dans les rgions du nord, arctiques et

    subarctiques de Canada est arrive la suite de l'exploration de ptrole de ptrole et la suite de

    l'usage de carburants de ptrole pour le chauffage, la gnration de transport et lectricit. La

    contamination de ptrole peut persister dans le sol pour les priodes longues de temps et est une

    source de contamination cologique long terme. Bioremediation est une technologie non-

    perturbateur et souvent rentable pour le redressement de sites ptrole-contamin qui impliquent

    la dgradation microbienne de composs d'hydrocarbure. Les biopiles tiennent au compte du

    traitement d'ex-situ rapide de ptrole-hydrocarbure a contamin des sols. Deux biopiles

    l'chelle pilote (300 sol de kg chacun) taient les sols d'utilisation de construction contamin

    avec approximativement 1 500 mg/kg hydrocarbures de ptrole totaux (TPH) desNorman Wells,

    le Nord Territoires d'Ouest. Les deux systmes ont t fournis avec l'oxygne pour stimuler des

    conditions arobiques, et contrl dans une pice enclose maintenue une temprature de 15oC,

    la temprature d't ambiante dans Norman Wells. Une biopile a t modifie avec le nitrate

    d'ammonium une proportion de 100:5:1 (C:N:P) dterminer les effets de nutriments sur TPH

    biodegradation. La recherche a montr ce biodegradation est arriv dans les deux systmes de

    biopile. L'analyse des fractions d'hydrocarbure, de chromatogrammes de TPH, et de

    consommation d'oxygne et de production de dioxyde de carbone a soutenu biodegradation

    contre volatilization. Toutefois, une confirmation absolue de savoir si ces pertes taient dues la

    biodgradation (ou dans quelle mesure) ne sont pas possible d'tre rapporte ici.L'analyse de

    l'azote et l'agrgation inorganique des sols aids fournit la perspicacit dans le processus de

    biodegradation dans les deux systmes de biopile. Gnral 42% des hydrocarbures totaux de

  • iv

    ptrole a t enlev du nutriment la biopile modifie et 38 % dans la biopile de contrle. Pour le

    F2 (>C10-16) fraction, les deux systmes ont eu moins que 200 sol de mg/kg et pour le F3

    (>C16-34) fraction autour de 700 sol de mg/kg.

  • v

    ACKNOWLEDGEMENTS

    The completion of this thesis and research is something I could not have done without the support

    system from McGill, my friends, and family. Id like to thank Professor Ghoshal for taking me on as a

    Masters student and providing me with the opportunity to work on this research. He was a sounding

    board for ideas and an endless resource for information pertaining to the research and was extremely

    supportive as I dealt with learning the ins and outs of the lab. Together we were able to interpret the data

    and develop this thesis.

    I couldnt have done this research without the help of the members in my research group.

    Wonjae Chang helped greatly by teaching me lab techniques and protocol methods, and was an overall

    source of encouragement and reassurance. As well, Ali Akbrai, Simon Dagher, and Salman Hafeez

    helped in developing lab techniques and acquiring data. As a group we shared ideas and results and

    helped each other whenever possible in the lab. Their strength was also appreciated when moving 300 kg

    barrels of soil!

    The technicians at McGill were a great resource. Diana Brumelis provided help in familiarizing

    myself with the Environmental Lab, and John Bartczak was a great help in the design and construction of

    the biopiles and the storage of the soil. Bill Cooks help with the maintenance of the cold room was

    always appreciated, especially for his fast response to the problems that would occur in the middle of the

    night! Jorge Sayat was always there to make sure that my computer needs were met and that. A huge

    thanks to Ranjan Roy and Andrew Golztajn in the Chemical Engineering Department for all their help

    with my lab techniques and development of lab protocols.

    I have all my friends and family to thank for listening to me discuss all aspects of my research

    over the past two years. They provided support and advice, and were always there to offer me well

    deserved breaks! Without the support of my Mom, I wouldnt have been able to do this.

  • vi

    TABLE OF CONTENTS

    ABSTRACT ................................................................................................................................................... i

    RESUME ..................................................................................................................................................... iii

    ACKNOWLEDGEMENTS .......................................................................................................................... v

    TABLE OF CONTENTS ............................................................................................................................. vi

    LIST OF FIGURES ................................................................................................................................... viii

    LIST OF TABLES ........................................................................................................................................ x

    1.0 INTRODUCTION ............................................................................................................................ 1

    1.1 Petroleum Contamination in the Arctic .............................................................................................. 1

    1.2 Clean up Standards ............................................................................................................................. 3

    1.2 Application of Bioremediation............................................................................................................ 4

    1.3 Objectives .......................................................................................................................................... 5

    1.4 Approach ............................................................................................................................................ 6

    2.0 LITERATURE REVIEW ................................................................................................................. 8

    2.1 Biopiles ............................................................................................................................................... 8

    2.2 Factors and Conditions Affecting Bioremediation ........................................................................... 10

    2.2.1 Bacteria ...................................................................................................................................... 10

    2.2.3 Temperature ............................................................................................................................... 11

    2.2.4 Nutrients .........................................................................................................

Recommended

View more >